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Abstract: Anthropogenic sources of fine particulate matter (PM2.5) threaten ecosystem security,
human health and sustainable development. The accuracy prediction of daily PM2.5 concentration
can give important information for people to reduce their exposure. Artificial neural networks
(ANNs) and wavelet-ANNs (WANNs) are used to predict daily PM2.5 concentration in Shanghai.
The PM2.5 concentration in Shanghai from 2014 to 2020 decreased by 39.3%. The serious COVID-19
epidemic had an unprecedented effect on PM2.5 concentration in Shanghai. The PM2.5 concentration
during the lockdown in 2020 of Shanghai is significantly reduced compared to the period before
the lockdown. First, the correlation analysis is utilized to identify the associations between PM2.5

and meteorological elements in Shanghai. Second, by estimating twelve training algorithms and
twenty-one network structures for these models, the results show that the optimal input elements for
daily PM2.5 concentration predicting models were the PM2.5 from the 3 previous days and fourteen
meteorological elements. Finally, the activation function (tansig-purelin) for ANNs and WANNs
in Shanghai is better than others in the training, validation and forecasting stages. Considering the
correlation coefficients (R) between the PM2.5 in the next day and the input influence factors, the
PM2.5 showed the closest relation with the PM2.5 1 day lag and closer relationships with minimum
atmospheric temperature, maximum atmospheric pressure, maximum atmospheric temperature, and
PM2.5 2 days lag. When Bayesian regularization (trainbr) was used to train, the ANN and WANN
models precisely simulated the daily PM2.5 concentration in Shanghai during the training, calibration
and predicting stages. It is emphasized that the WANN1 model obtained optimal predicting results
in terms of R (0.9316). These results prove that WANNs are adept in daily PM2.5 concentration
prediction because they can identify relationships between the input and output factors. Therefore,
our research can offer a theoretical basis for air pollution control.

Keywords: PM2.5; wavelet; artificial neural network; predicting; DNN; CNN; LSTM; COVID-19;
epidemic

1. Introduction

Air pollution affects global climate change, ecosystem and human health [1–5]. Ad-
ditionally, air pollution also leads to huge losses in human capital, productive forces and
social welfare [6]. Air pollution is responsible for millions of deaths all over the world [7].
Exposure to air pollution resulted in 7 million premature deaths all over the whole world
in 2019 [8]. In total, 1.42 million deaths in China were ascribed to outdoor air pollution in
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2019 [9]. High concentration of PM2.5 are associated with reduced visibility, economic loss
and passive impact on public health because it adds to the incidence rate and mortality of
some diseases [10]. Global exposure to environmental PM2.5 causes about ~6 to ~10 million
deaths every year [6]. In total, 2.12 million deaths in China in 2017 were attributed to
PM2.5 [11]. Therefore, the accurate prediction of future air pollution can offer reference for
travel mode.

With the rapid development of China’s economy, a lot of fossil energy is consumed.
Meanwhile, a large number of polluting gases and particulate matter are emitted into the
air, seriously influencing the air on which human beings depend. Air pollution is mainly
caused by abundant pollutant emissions [12]. It is also strongly related to meteorological
conditions [13,14]. The removal and dissipation of air pollutants is determined by the
atmospheric diffusion conditions and the precipitation [15].

The outbreak of the COVID-19 pandemic has had a negative impact on social and
economic development and human health [16,17]. On 30 January 2020, the WHO Emer-
gency Committee designated COVID-19 as a global health emergency; as of 12 August
2022, COVID-19 had caused at least 585,950,085 confirmed cases and 6,425,422 deaths
globally (WHO). The COVID-19 epidemic has had an unprecedented influence on global
air pollution [18–23]. The abrupt COVID-19 pandemic offers a chance to research the
impact of urban blockade policies on the change of air pollutants, and to describe the nor-
mal modes of air pollution under the disappearance of the epidemic [24]. The COVID-19
epidemic has had an unprecedented influence on the air pollution in the Beijing and Tianjin
districts [25]. During the period of the COVID-19, different urban blockade policies signifi-
cantly improved the air quality of all four mega cities in China [26]. The reduction of social
and productive activities during the lockdown plays an extraordinarily significant role in
improving air quality [27]. The implementation of travel restrictions greatly reduced air pol-
lution in 44 cities in China. In addition, the concentration of PM2.5 decreased by 5.93% [28].
Air quality can be improved by emphasizing the importance of green commuting, green
production and consumption and reducing unnecessary personal trips.

Air pollution forecasting techniques include numerical models and statistical mod-
els [29]. The numerical models achieve the simulation of the transformation and diffusion
of air pollutants and reflect the change law of air pollutants. However, they are based
on a large amount of meteorological information, air pollutant discharge source data and
atmospheric monitoring data, they need to master the mechanism of pollution change,
and the calculation time is long [30]. Daily PM2.5 concentration prediction is a nonlinear,
multivariable problem with strong coupling between predictors, so PM2.5 numerical fore-
casting will be an extraordinarily complex system engineering problem. Statistical models
are widely used in operational prediction, with the strong points of easy calculation, low
data requirements and high precision. Nevertheless, most statistical models align with
linear regression theory; assuming that there is nonlinear relationship between pollutant
concentration and weather conditions, linear regression is difficult to be applied to nonlin-
ear strongly coupled systems [31]. So far, the artificial intelligence (AI) technique has been
extensively applied in a variety of research areas [32–35].

Machine learning (ML) is an important branch discipline of AI which has been exten-
sively utilized in many research areas [36]. The chief aim of ML is to automatically optimize
the nature of algorithms through emulating historical data. ML is able to build steady
models, learning from historical data, and utilize these models to forecast future data.
Machine learning methods, such as artificial neural networks (ANNs) [37], support vector
machines (SVMs), and extreme gradient boosting (XGBoost), have shown fine performance
in dealing with nonlinear problems. Deep learning (DL) has also been extensively applied
in various fields [38,39]. For example, ordinary recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) are usually employed to predict air pollution [40].

Previous researchers have put forward different ML algorithms used for data modeling.
Some researchers have proved that ANN has good learning efficiency and is extensively utilized
in forecasting groundwater level [41], the COVID-19 epidemic [42], air pollution [43,44],
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and so on. There is good similarity in the predictive and metrical PM2.5 for training in the
ANN [45].

Although the deep neural network is powerful, it still has many shortcomings. First,
there are too many parameters in DNN, and the learning performance depends heavily
on careful parameter adjustment. Secondly, the training of DNN requires a large amount
of training data, so it is laborious to apply DNN to tasks with only small-scale training
data [46]. In addition, the challenges faced by DL are more common, such as the deficiency
of theoretical basis, the insufficiency of interpretability of models, and the need for big
amounts of computing resources [47].

There are various types of mother wavelet functions. According to the diurnal varia-
tion of air pollutant concentration, each wavelet has its pros and cons in the air pollutant
concentration decomposition properties [48]. Using wavelet transform to transform highly
variable air pollutant concentrations into several low variability subsequences has distinct
merits. For most models, wavelet transform is an effective technique to increase the fore-
casting accuracy [49]. The basic prediction model uses wavelet transform to decompose
the air pollutant concentrations, and then uses artificial neural networks to predict it.

This paper proposes a hybrid model of wavelet transform and ANN (WANN) solution
to the problem of predicting the daily PM2.5 concentration. To avoid overfitting, the
improved algorithms are utilized for modeling, such as trainbr and trainlm. The hybrid
model provides a novel alternative for forecasting daily PM2.5 concentration.

2. Materials and Methods
2.1. Study Location and Data Sources

Shanghai is the largest city in China (Figure 1a). Shanghai is located in East China
with the area of 6340 km2, and it is at the estuary of the Yangtze River. The average altitude
of Shanghai is 2.19 m, and the permanent resident population and the GDP in 2021 were
about 24.8943 million and CNY 4321.485 billion.
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Figure 1. The geographical position of Shanghai city in China. (a) The location of Shanghai city in
China; (b) the location of the monitoring sites in Shanghai city.

In this paper, the air pollution data sets and meteorological data sets of Shanghai from 1
January 2014 to 31 December 2020 are utilized. The daily PM2.5 concentration data are from
the mean values of twenty monitoring sites (stations) in Shanghai and can be obtained on
the website of China Environmental Monitoring Station (http://www.cnemc.cn/) (accessed
on 21 January 2022) and platform (http://www.aqistudy.cn/) (accessed on 22 January 2022)
(Figure 1b). Table 1 displays the list of the monitoring stations used in this study. The
data of meteorological elements (including temperature, precipitation, humidity, wind,

http://www.cnemc.cn/
http://www.aqistudy.cn/
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atmospheric pressure, etc.) are from the average value of the observation station of the
China Meteorological Administration. These data are divided into three stages, namely,
the training stage (80%), the verification stage (10%) and the prediction stage (10%). The
training stage is from 1 January 2014 to 30 June 2019, the verification stage is from 1 July
2019 to 31 March 2020, and the prediction stage is from 1 April 2020 to 31 December 2020.

Table 1. The list of the monitoring stations used in this study in Shanghai city.

Monitoring Sites Monitoring Sites

Jinshan New City Minhang Pujiang
Chongming Shangshi Dongtan Qingpu Xujing
Chongming Shangshi Dongtan Shanghai Normal University

Yangpu Fourth Drift Pudong Zhangjiang
Fifteenth Factory Baoshan Temple Trip

Jing’an Monitoring Station Fengxian Nanqiao New City
Pudong Huinan Jiading Nanxiang

Putuo Songjiang Library
Pudong Chuansha Changning Heavenly Mist

Pudong New Area Monitoring Station Hongkou

2.2. Wavelet Transformation (WT)

Wavelet transformation (WT) is one of the waveform analytical methods for time-
varying signals. In wavelet transform, the wavelet coefficients can be obtained by con-
volution integration of the mother wavelet function and the original time domain signal.
Discrete wavelet transform (DWT) has the advantage of less computational expense than
continuous wavelet transform (CWT). The Daubechies (db) wavelet is the most commonly
utilized mother wavelet function. The Mallat pyramidal algorithm is used to compute
DWT. Therefore, the DWT is used to decompose the daily PM2.5 concentration data and
meteorological elements data [50]. The DWT of a time series f(q) is defined as Equation (1):

f (c, d) =
1√
c

∞∫
−∞

f (h)ψ(
h− d

c
)dh (1)

where ψ(h) expresses the fundamental wavelet of effective length h; c expresses the scale
or dilation factor; and d expresses the translation time. For a discrete signal y, the DWT
is defined by multi-resolution decomposition, which can be computed by the Mallat
decomposition algorithm and Mallat pyramidal reconstruction algorithm [41]. For m-level
decomposition and reconstruction, the original signal y can be expressed as

y = CAm + ∑m
i=1 CDi (2)

where CAm is the approximation series representing the low-frequency component, which
contains trend information, and CDi is the detail series on the i level representing the
high-frequency component, which contains periodic information. Basically, this is a process
in which the low-frequency sequence is decomposed into low-frequency subsequences
and relatively high-frequency subsequences with the increase in m (Figure 2). The results
of the 2-level wavelet decomposition of the original time series of PM2.5 concentration by
applying bior1.1 wavelets was implemented in the wavelet toolbox of MATLAB.

The main purpose of utilizing the discrete wavelet transform is to reduce the complex-
ity of the input signal and the amount of relevant information between the decomposition
combinations (detailed CD2, CD1 and approximate CA2). Discrete wavelet transform
could be used to approximate components to obtain low dimensional components and gain
components for multidimensional analysis.
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2.3. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a part of AI. It simulates the prediction and
recognition functions of the biological brain and is used to solve complex problems in vari-
ous application fields. The typical network architecture of an ANN consists of three layers
(i.e., input layer, hidden (implication) layer and output layer), each one composed of several
artificial neurons and an activation function. Each artificial neuron is contacted via weights
and gains information from the correlative neurons for processing. Owing to its strong non-
linear processing features, ANN could output nonlinear relationships of many complicated
scientific problems. The proposed ANN model for predicting the daily PM2.5 concentration
is displayed in Figure 3. The seventeen input neurons of the input layer are designed
as the key operating parameters, which include precipitation (P), extreme wind velocity
(EWV), mean atmospheric pressure (MAP), mean wind velocity (MWV), mean atmospheric
temperature (MAT), mean water vapor pressure (MWP), mean relative humidity (MRH),
sunshine hours (SH), minimum atmospheric pressure (MINAP), minimum atmospheric
temperature (MINAT), maximum atmospheric pressure (MAXAP), maximum atmospheric
temperature (MAXAT), maximum wind velocity (MAXWV), minimum relative humidity
(MINRH), PM2.5 (t), PM2.5 (t − 1), and PM2.5 (t − 2).

Back propagation (BP) is the most commonly used and effective method to train
the artificial neural network (ANN) algorithm. In the process of model development,
there are two phases of forward propagation and error back propagation. The hidden
(implication, middle) layer neurons calculate the weighted summation of the acquired
input layer information s using Equations (3) and (4), and transmit these to the coming
layer through the activation function (transfer function), then contrast the error criterions
between the input value and the metrical value, then transfer the error back to the input
layer, and decrease the error to the goal standard by altering the relation weight and
thresholds (deviations or biases) [51].

k =∑m
i=1 wijOi + p (3)

Q = f (k) (4)

where k is the weighted total, wij is the relation weight, j is the number of neurons in
the output layer, Oi is the input data, and p is the biases (deviation or thresholds) value,
utilized to balance the effect of the activation function. Q is the output data, and f is the
activation function. After the forward propagation transversion of the signals, the global
error is counted. If the global error is lower than the setting error (10−5), the backward
propagation of the global error is completed to change the weights and thresholds. The
back propagation of the global error function is counted as in Equation (5):

E =
1
l ∑l

j=1 (Tj −Qj)
2

(5)



Toxics 2023, 11, 51 6 of 19

where E is the error of the current output, Tj is the target output, Qj is the predicted output,
and l is the total output number (2004). After adjusting and training the network model,
the messages of the input parameters could be stored for modelling, such as weights and
thresholds (biases).
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Four kinds of activation functions are usually utilized in BPANN are sigmoid (logsig),
tanh (tansig), purelin and ReLU (poslin) functions, which are logarithmic sigmoid, hyperbolic
tangent sigmoid, linear, and positive linear transfer functions, respectively. The four
functions of the network are defined as follows:

sigmoid(r) =
1

1 + e−r (6)

tansig(r) =
er − e−r

er + e−r (7)

purelin(r) = r (8)

ReLU(r) =
{

r,i f (r≥0)

0,i f (r≤0) (9)

where r is the corresponding input.
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Artificial neural networks could fulfil well in the training information, but not well
in the forecasting information, which explains that they perform poorly as different infor-
mation or error increases. When the artificial neural network (ANN) cannot generalize
this problem, it is called “overfitting”. This problem could be solved utilizing the Bayesian
regularization algorithm (BR, or trainbr), Levenberg–Marquardt algorithm (LM, or trainlm)
or other training algorithms [52]. Trainbr is a function which updates weights and thresh-
old (bias or deviation) values on the basis of LM optimization. It minimizes the union of
square error and weight, and then ascertains the correct union to generate a network with
good generalization. In addition, the LM algorithm (trainlm) is a variant of Newton’s way,
which is devised to minimize the sum of squares of other nonlinear functions. While the
property function has the modality of the summation of squares, the Hessian matrix could
be calculated approximately as the outcome of the Jacobian matrix, which is much less
complicated than calculating the Hessian matrix.

The raw data were normalized, for quick convergence, and rendered dimensionless.
The results after treatment are as follows:

S =
s− smin

smax − smin
(10)

where S is the normalized data for the original variable, smin is the minimum of the raw
data, smax is the maximum of the raw data, and s denotes the original data.

2.4. Wavelet Artificial Neural Network

The WANN model is utilized to decompose the raw data Dn (t) into three suites: CD2,
CD1 and CA2. After that, these data are employed by the ANN as the input factors. In
Figure 4, Dn (t) is the input factors of day t, PM2.5 (t + 1) is the PM2.5 predicted t + 1 day in
the future.
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2.5. Performance Criteria

Three kinds of statistical indicators were adopted to appraise the nature of ANN and
WANN models. These are mean absolute error (MAE), root mean square error (RMSE), and
correlation coefficient (R), which are as follows:

MAE =
1
U ∑|Ak − Ck| (11)
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RMSE =

√
∑ (Ak − Ck)

2

U
(12)

R =
∑ (Ak −

−
A)(Ck −

−
C)√

∑ (Ak −
−
A)

2

(Ck −
−
C)

2
(13)

Ak expresses the kth observed PM2.5 concentration, Ck expresses the kth predicted

PM2.5 concentration,
−
A is the mean of the observed PM2.5 concentration,

−
C is the mean of

the predicted PM2.5 concentration, and U is the number of observed PM2.5 concentration.

3. Result and discussion
3.1. Long Term Change of PM2.5 Concentration in Shanghai

As shown in Figure 5, the PM2.5 concentration in Shanghai shows a tendency of
descending year after year. The annual mean PM2.5 concentrations from 2014 to 2020 are
52.33 µg/m3, 53.67 µg/m3, 44.67 µg/m3, 38.25 µg/m3, 34.17 µg/m3, 35.17 µg/m3, and
31.75 µg/m3, in the range of 8–190 µg/m3, 6–216 µg/m3, 5–163 µg/m3, 7–175 µg/m3,
6–189 µg/m3, 6–122 µg/m3, and 3–131 µg/m3, respectively. The PM2.5 concentration in
Shanghai decreased by 39.3% from 2014 to 2020. This change improved the PM2.5 level from
about 10 times the World Health Organization (WHO) guidelines to about 6 times. The
average value of PM2.5 concentration in Shanghai for the 7 years is 41.43 µg/m3. Although
the air quality in Shanghai has improved a lot, it exceeded the new Global Air Quality
Guidelines (AQGs) of the WHO standard (5 µg/m3 above the annual PM2.5 limit). The
average value change of PM2.5 in 7 years has a U-shaped characteristic, with the maximum
in January and the minimum in August. The seasonal average value of PM2.5 in 7 years has
obvious change characteristics, with the maximum in winter, followed by spring, autumn
and the minimum in summer.
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The COVID-19 epidemic has had a significant impact on the PM2.5 concentration
in Shanghai. These data in 2019–2020 are divided into three parts: period I (1 January
to 26 January, 2019–2020); period II (27 January to 30 April, 2019–2020); and period III
(1 May to 31 July, 2019–2020). Period II is the lockdown period. The values of PM2.5 during
period I, period II, and period III in 2020 are, respectively, 52.62, 32.41, and 31.99 (µg/m3).
However, those are, respectively, 53.12, 43.11, and 29.58 (µg/m3) in the same period of 2019.
Compared with those values in 2019, these values of PM2.5 in 2020 decreased by 0.5, 10.7,
and −2.41 (µg/m3), which are respectively 0.9, 24.8, and −8.2% lower in 2020 than those in
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2019. The air quality during lockdown in 2020 is apparently improved compared with that
in the same period of 2019.

3.2. Relevance between Daily PM2.5 Concentration and Meteorological Factors in Shanghai

Correlation analysis could ascertain the linear relationships between PM2.5 concen-
tration and meteorological elements. The determination of input variables is one of the
most significant parts in the projection of ANN and WANN models. The results of the
relationships counted for the input factors are shown in Figure 6, which is significant at the
0.01 level (2-tailed).
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The correlation between each factor and PM2.5 (t + 1) was appraised by determining
its R. The analysis results exhibited that PM2.5 (t) was strongly related to PM2.5 (t + 1) in
Shanghai. In addition, the performance results of MINAT, MAXAP, MAXAT, PM2.5 (t),
PM2.5 (t − 1) were better than other factors in Shanghai. That is, these meteorological
factors have the highest correlation to PM2.5 (t + 1). We ascertained five important factors.
Therefore, various combinations of factors were used as inputs for simulating daily PM2.5
(t + 1) in Table 2. For example, the network structure 17:5:1 in Table 1 indicates that there
are 17 neurons in the input layer, 5 neurons in the hidden layer, and 1 neuron in the output
layer. Other network structures are similar. The ascertaining factors were chosen based on
relationship with PM2.5.

Table 2. Sets of input factors that were tested with the ANN and WANN models for the predicting of
next-day PM2.5 concentrations in Shanghai.

Model ID Input Variables Structure

ANN1

ANN2

P (t), EWV (t), MAP (t), MWV (t), MAT (t), MWP (t), MRH (t), SH (t), MINAP (t),
MINAT (t), MAXAP (t), MAXAT (t), MAXWV (t), MINRH (t), PM2.5 (t), PM2.5 (t − 1),

PM2.5 (t − 2)
MINAT(t), MINAP(t), MAXAT(t), PM2.5 (t), PM2.5 (t − 1)

17:15:1

5:19:1
ANN3 MINAT(t), PM2.5 (t) 2:19:1
ANN4 PM2.5 (t) 1:21:1

WANN1
P (t), EWV (t), MAP (t), MWV (t), MAT (t), MWP (t), MRH (t), SH (t), MINAP (t),

MINAT (t), MAXAP (t), MAXAT (t), MAXWV (t), MINRH (t), PM2.5 (t), PM2.5 (t − 1),
PM2.5 (t − 2)

51:20:1

WANN2 MINAT(t), MINAP(t), MAXAT(t), PM2.5 (t), PM2.5 (t − 1) 15:20:1
WANN3 MINAT(t), PM2.5 (t) 6:17:1
WANN4 PM2.5 (t) 3:19:1
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3.3. Determination of Model Structure and Parameters

It should be stressed that selecting the most compatible network structure is one of the
important assignments of the model designer. The important information obtained from
meteorological elements is extracted by discrete wavelet transform (DWT). The various
details and dimensions of input factors are gained by two-period decomposition of WT.
After two-period decomposition and reconstruction, the input factors are changed into
three parts. The approximate component CA2 represents the low frequency information of
the raw factor, while the detailed CD2 and CD1 represent the high-frequency information of
the raw factor. The change characteristics of time series are the key factors affecting wavelet
selection [53]. In order to optimize the decomposition of input factors, the mother wavelet
is chosen, and the correlation between CD1, CD2 and CA2 is considered. The minimum
R could primely meet the objective of analyzing the change characteristics of various
components of input factors. The quantitative estimation showed that the components
were independent of one another. In total, 21 types of wavelet functions are ascertained for
wavelet transform. The mother wavelets (wavelet functions) evaluated are Daubechies (db),
symlets (sym), coiflets (coif), and biorthogonal wavelets (bior) [54]. Coiflets are a family of
compactly supported orthogonal wavelets. Figure 7 shows that bior1.1 is the best wavelet
function in the current research on account of the smallest R. bior1.1 is a biorthogonal
wavelet [54]. The correlation coefficients between CD1, CD2 and CA2 after the input factors
are decomposed by bior1.1 are all 0.
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Shanghai during the testing phase; (a) wavelet Daubechies (db) and symlets (sym); (b) wavelet coiflets
(coif) and biorthogonal wavelets (bior). Bior6.8 is a biorthogonal wavelet with an even symmetric
high-pass decomposition filter.

The optimal model parameters are obtained by the trial-and-error method. Figure 8
demonstrates that the network structures (17-15-1 for ANN and 51-20-1 for WANN) are
superior to other network topologies through repeated tests. In the models, the number
of neurons of the hidden (implication, middle) layer increases from 1 to 21. It can be seen
from Figure 6 that the RMSE value decreases slightly with the increase in the number of
hidden (implication, middle) layer neurons. Consequently, the optimal structures of the
mode for Shanghai are 17-15-1 (ANN) and 51-20-1 (WANN), respectively.

Figure 8 expresses the properties of the training algorithms, indicating that the trainbr
algorithm has the best property in forecasting PM2.5 (t + 1) in Shanghai. Trainbr automati-
cally fits the optimal values of the objective function parameters.

Figure 9 shows that the activation function (tansig-purelin) for ANN in Shanghai is
better than others during training, calibration and predicting stages. In the same way,
the transfer function (tansig-purelin) for WANN in Shanghai is also better than others in
Figure 9.
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Figure 8. Performance comparison of different ANN and WANN structures and training algorithms
in Shanghai during the testing phase. The training algorithms include trainbr (br), trainlm (lm),
traingdx (gdx), traingd (gd), traingdm (gdm), trainrp (rp), traincgp (cgp), traincgf (cgf), traincgb
(cgb), trainscg (scg), trainbfg (bfg), and trainoss (oss). (a) Performance of different nodes in hidden
layer for ANN and WANN. (b) Performance of different training algorithms for ANN and WANN.
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tansig(T), purelin(PU), logsig(L), and poslin(PO); (b) RMSE for WANN.

3.4. Comparative Analysis of the Different PM2.5 Predicting Models

All results of the ANNs and WANNs during the training, validation and predicting
stage are shown in Table 3. We used the ten-fold cross-validation method to verify the
models. During the training stage, the root mean square errors (RMSEs) of ANN1 and
WANN1 in Shanghai were 20.7841 and 9.8824, respectively; mean absolute errors (MAEs)
were 15.0825 and 7.1153, respectively; and correlation coefficients (Rs) were 0.7061 and
0.9416, respectively. In the meantime, RMSE, MAE, and R for ANN2, ANN3, ANN4,
WANN2, WANN3, and WANN4 have similar results. During the training stage, the
WANNs were superior to the ANNs. During the verification stage, the RMSEs of ANN1
and WANN1 in Shanghai were 17.0006 and 9.7850, respectively; MAEs were 13.1262 and
6.8827, respectively; and Rs were 0.6830 and 0.8969, respectively. During the predicting
stage, the RMSEs of ANN1 and WANN1 in Shanghai were 24.2407 and 10.6580, respectively;
MAEs were 17.7867 and 7.6918, respectively; and Rs were 0.5618 and 0.9316, respectively.
In the above three stages, the WANNs were also superior to the ANNs. The WANN1
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model based on all 17 input variables is the best model in predicting PM2.5 concentration.
The WANN2 model based on five input variables is the second-best model for predicting
PM2.5 concentration. It is interesting that the performance of WANN2 is similar to WANN1.
These two models can meet the PM2.5 concentration prediction requirements.

Table 3. Comparison of the performance statistics using different models.

Model
R RMSE (µg/m3) MAE (µg/m3)

Training Verification Predicting Training Verification Predicting Training Verification Predicting

ANN1 0.7061 0.6830 0.5618 20.7841 17.0006 24.2407 15.0825 13.1262 17.7867
ANN2 0.6271 0.6258 0.4731 22.8559 18.1992 25.9092 16.3347 14.1125 18.9660
ANN3 0.5947 0.5831 0.4454 23.5883 18.7088 26.4504 16.9128 14.5707 19.2679
ANN4 0.5759 0.5450 0.4244 23.9847 18.9768 26.7117 17.2196 14.7856 19.7467

WANN1 0.9416 0.8969 0.9316 9.8824 9.7850 10.6580 7.1153 6.8827 7.6918
WANN2 0.9075 0.8424 0.8830 12.3243 11.9231 13.7228 8.4519 8.1825 9.1533
WANN3 0.7952 0.6860 0.7213 17.7836 16.1466 20.2332 12.5331 11.1733 14.6255
WANN4 0.7380 0.6404 0.7043 19.7903 17.0581 20.7106 13.5311 11.5643 14.7616

Figure 10 displays the forecasting PM2.5 outcomes and scatter plots with the ANN
models in the testing stage in Shanghai. ANNs were able to replicate the average of the daily
PM2.5 concentration but were limited in capturing minimal or maximal peaks. However,
the predicted and observed values are relatively scattered.
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Figure 11 indicates the forecasting line and scatter plots with the WANNs in the testing
stage. The WANNs predicted daily PM2.5 concentration at an acceptable precision level
in Shanghai. Additionally, WANNs were apparently superior to ANNs. The WANNs
reproduced a good consistency between the observed PM2.5 (t + 1) concentration and
predicted PM2.5 (t + 1) concentration. It is also apparent that the WANN1 model with
14 meteorological elements was better than the WANN4 with 1-day lag PM2.5 concentration;
in other words, including 14 meteorological elements and the 3 former days’ PM2.5 as
parameters in the input factors supplies more precise results. The agreement between the
observed PM2.5 (t + 1) concentration and the predicted PM2.5 (t + 1) concentration is also
very good in Shanghai using the WANN2 model. The main meteorological elements of the
WANN2 model are MINAT, MAXAP, and MAXAT in Shanghai. The possible reason is that
the relationship between them and PM2.5 is stronger than for other meteorological elements.
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3.5. Comparison with Other Existing PM2.5 Prediction Models

Many ML means have been utilized for PM2.5 prediction. Table 4 shows the R2, relative
errors (REs), RMSE, and MAE of different methods. The value of R2 was 0.74 while training
the ANN with 90% of basic data [45]. ANN was utilized to predict concentration of PM2.5
for the coming 1 day in Delhi, India. Coefficient of correlations for the ANN is 0.65 [55]. The
Trainlm using an ANN modeling nicely forecasted the vehicle exhaust emission of PM2.5
with the R2 of 0.94 in Addis Ababa, Ethiopia [56]. The support vector regression (SVR) and
multiple linear regression (MLR) models provide more accurate and reliable predictions
than other evaluation models. Among the ML models with the best performance, the
execution speed of SVR is about five times that of the MLR model, and the lowest MAE for
hourly prediction is 1.294 µg/m3 for t0 and 3.752 µg/m3 for t + 12 [57]. The XGBoost model
can accurately predict the daily PM2.5 (R2 = 0.80, RMSE = 14.75 µg/m3) [58]. It is confirmed
that the forecasting of the RNN model chiefly depends on the input information. The MAE
of the RNN model for PM2.5 prediction is 8.4 [59]. The optimized LSTM model has good
assessment criteria, with R2 = 0.94, RMSE = 13.06 µg/m3, and MAE = 8.61 µg/m3 [60]. The
CNN for PM2.5 prediction in Beijing has a R of 0.85, a RMSE of 40.83 µg/m3, and a MAE of
25.32 µg/m3 [61].

Table 4. The difference between existing PM2.5 prediction models and our model.

Model Area R2 RE RMSE MAE Reference

ANN Ahvaz, Iran 0.74 0.91507 46.44 [45]
ANN Delhi, India 0.86 0.451 [55]
ANN Addis Ababa, Ethiopia 0.943 0.12034 15.66 10.27 [56]
SVR Nottingham, United Kingdom 0.88782 0.12224 2.45315 1.29443 [57]

XGBoost China 0.8 0.36385 26.34 15.58 [58]
RNN Seoul metropolitan, Korea 0.31 8.4 [59]
LSTM Tianjin, China 0.94 0.4305 13.06 8.61 [60]
CNN Beijing, China 0.7225 0.58843 40.83 25.32 [61]

EMD-GRU Beijing, China 0.9706 0.14809 11.372 6.532 [62]
CNN-LSTM Beijing, China 0.921573 0.1518 24.2287 14.63446 [63]

3D CNN-GRU Tehran, Iran 0.78 0.27781 6.44 8.89 [64]
MCD-ESN-PSO four cities, China 0.9801 0.0167 1.18 0.88 [65]

CNN-GBM Shanghai, China 0.85 0.07982 10.02 [66]
iDeepAir Shanghai, China 0.2227 15.587 12.373 [67]
GA-SVM Shaanxi, China 0.18773 12.1 10.07 [68]
WANN Shanghai, China 0.8679 0.1363 10.658 7.6918 This article
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The hybrid models are also widely used in PM2.5 prediction. The R-square, RMSE,
and MAE of the gated recurrent unit neural network based on the empirical mode de-
composition (EMD-GRU) model are, respectively, 0.9852, 11.372 µg/m3, and 6.532 µg/m3.
These values are better than the decision tree regressor (DTR), support vector machine
(SVM), random forest (RF), recurrent neural networks (RNNs), gradient boosted decision
trees (GBDTs), long short-term memory (LSTM), and gated recurrent unit neural network
(GRU). These results prove that the EMD-GRU model has a better simulation result and
stronger precision than ordinary ML or DL models [62]. CNN and LSTM are combined
and utilized to forecast PM2.5 concentration. The R2, RMSE, and MAE of CNN-LSTM are,
respectively, 0.92157312, 24.22874 µg/m3, and 14.63446 µg/m3 [63]. The 3D CNN-GRU
model was utilized to predict the PM2.5 level. Compared with LSTM, ANN, SVR, GRU,
and autoregressive integrated moving average (ARIMA), it can obtain promising results;
it estimated 78% (R2 = 0.78) of PM2.5 concentration changes in the coming day [64]. Com-
pared with other related DL or solitary models, the hybrid MCD-ESN-PSO model has
better prediction accuracy for PM2.5 concentration in four cities of China [65]. Considering
CNN and the gradient boosting machine (GBM) method, a mixed model for estimating the
PM2.5 concentration in Shanghai was established. The constructed CNN-GBM model has
good estimation accuracy, with the RMSE of 10.02 [66]. The iDeepAir model can accom-
plish better simulating and forecasting performance than the Seq2Seq, gradient boosting
regression tree (GBRT), dual-stage attention-based recurrent neural network (DA-RNN),
LSTM model and other DL models. Specifically, compared to ARIMA, iDeepAir could
decrease the MAE from 25.36 µg/m3 to 12.28 µg/m3 [67]. Compared with the traditional
land use regression (LUR) and SVM models, the prediction accuracy of the combined
genetic algorithm and support vector machine (GA-SVM) method for PM2.5 concentration
is significantly improved, with a validation determination coefficient (R2) of 0.84, and a
lower RMSE and an MAE of 12.1 µg/m3 and 10.07 µg/m3, respectively [68].

Compared with the outcomes of other PM2.5 prediction models, our WANN model
is in the upper middle position. Because each model has advantages and disadvantages,
and different regions require different models, it is necessary to develop general artificial
intelligence. Artificial intelligence could have decision-making processes that are very
difficult to explicate with current knowledge. In addition, the application of the R value
based on the correlation analysis method for variable selection keep more important
information for prediction and shorten the model running time. MINAT(t), MINAP(t), and
MAXAT(t) are input parameters for prediction at most levels. The main influencing factors
of the low-level detail series are precursors, while the approximation series is affected
by meteorological conditions and the accumulated PM2.5. The WT method improves the
predictive performance of the ANN significantly.

4. Conclusions

In this study, we study the ML modeling technology on small data sets. The results
prove that WANNs perfected the property of the regression model. Generally, the property
of the WANNs was better than that of the ANNs in this work. The training algorithm
trainbr avoids overfitting; consequently, a more powerful model could be established.
These models have very different numbers of inputs (such as 17 versus 5), so their predicted
results are different. When the input variables are the same, they are comparable (such as
WANN1 versus ANN1).

The prediction methods of the PM2.5 concentration make use of meteorological el-
ements. There is an intimate relation between the meteorological elements and PM2.5
concentration. Moreover, the relationship between meteorological elements and PM2.5 con-
centration is nonlinear. The important information obtained from meteorological elements
is extracted by discrete wavelet transform (DWT). ANNs and WANNs have flexible math-
ematical structures and can map highly nonlinear relationships between meteorological
elements and PM2.5 concentration. The performance results of WANNs are better than those
of ANNs in Shanghai. Most WANN models have success in predicting PM2.5 concentration.
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The severe COVID-19 epidemic has had an unprecedented impact on PM2.5 concen-
tration in Shanghai. The air quality in Shanghai during lockdown is apparently better
than before lockdown. The air quality during lockdown in 2020 was apparently improved
compared with those in the same period of 2019.

We examined the practicability of utilizing artificial intelligence with meteorological
elements as input factors to forecast the coming day’s PM2.5 concentration. The performance
results of the ANNs and WANNs are evaluated using three criteria. A simple WANN model
with 17 elements as input variables is used as a reference case. The accurate prediction
ability of the WANN model is also proved.

China has formulated the grand goal of carbon neutrality and pollution reduction.
In this paper, we only use ANN and WANN for daily PM2.5 prediction and consider the
meteorological elements and PM2.5 concentration of the last 3 days as predictors. In the
future, in order to further improve the effectiveness of future forecasting, we will use
deep learning and hybrid models to predict PM2.5 concentration in other cities, such as
LSTM, CNN, gated recurrent units networks (GRUs), deep belief network (DBN), graph
convolutional network (GCN), wavelet-LSTM (W-LSTM), wavelet-GRU (W-GRU), the
integration of CNN-LSTM, and Community Multiscale Air Quality (CMAQ-CNN), and
consider air pollutant emissions.
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Abbreviations Full Name
AI artificial intelligence
ANN artificial neural network
AQGs Global Air Quality Guidelines
ARIMA autoregressive integrated moving average
bior biorthogonal
BP back propagation
BR Bayesian regularization algorithm
CA approximate composition
CD detailed composition
CNN convolutional neural network
coif coiflet
CWT continuous wavelet transform
DA-RNN dual-stage attention-based recurrent neural network
db Daubechies
DL deep learning
DTR decision tree regressor
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DWT discrete wavelet transform
EMD-GRU gated recurrent unit neural network based on empirical mode decomposition
EWV extreme wind velocity
GA-SVM combined genetic algorithm and support vector machine
GBDT gradient boosted decision trees
GBM gradient boosting machine
GBRT gradient boosting regression tree
GDP gross domestic product
GRU gated recurrent unit neural network
LM Levenberg–Marquardt algorithm
LSTM long short-term memory
MAE mean absolute error
MAP mean atmospheric pressure
MAT mean atmospheric temperature
MAXAP maximum atmospheric pressure
MAXAT maximum atmospheric temperature
MAXWV maximum wind velocity
MINAP minimum atmospheric pressure
MINAT minimum atmospheric temperature
MINRH minimum relative humidity
ML machine learning
MLR multiple linear regression
MRH mean relative humidity
MWP mean water vapor pressure
MWV mean wind velocity
P precipitation
PM2.5 fine particulate matter
R correlation coefficient
RE relative error
ReLU rectified linear unit
RF random forest
RMSE root mean square error
RNN recurrent neural network
SH sunshine hours
SVM support vector machine
SVR support vector regression
sym symlet
WANN wavelet-ANN
W-GRU wavelet-GRU
WHO World Health Organization
W-LSTM wavelet-LSTM
WT wavelet transformation
XGBoost extreme gradient boosting
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