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Context

� Subjects with rheumatoid arthritis develop
damage to the joints.

� We wish to predict the severity of damage.

� Damage scale:

1. No damage
2. Joint space narrowing
3. Slight evidence of erosion
4. Clear evidence of erosion
5. Worse than 4, not as bad as 6
6. No further damage to joint possible
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What do you do with ordinal data ?

1. Dichotomise: use logistic regression

2. Pretend there is an interval scale: use linear
regression

3. Ignore the ordering: fit a multinomial model

4. Use methods specifically for ordinal data
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Types of Ordinal Data

� Grouped Continuous

– There is a underlying continuous variable.
– Not measured exactly, only to certain fixed

ranges.
– E.g. Age 15-24, 25-34, 35-50 etc.

� Assessed

– Subjective judgement made by an individual.
– E.g. strongly disagree, disagree, neither

agree nor disagree, agree, strongly agree.
– May or may not be an underlying continuous

latent variable.
– Erosions outcome is of this type.

3



Ordinal Regression Models

� Generalized Linear Models

1. The Cumulative Odds Model
2. The Continuation Ratio Model
3. Ordered Probit Model

– Almost identical to the Cumulative Odds
Model

� The Stereotype Model

– Non-linear form of constrained multinomial
model
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Generalized Linear Models

Model the Cumulative Response Probability j

j(x) = pr(Y � jjx)

�(j) = �j + �x

� = logit ) Cumulative Odds
� = complementary log log ) Continuation Ratio
� = probit ) Ordered Probit

All assume that, on some scale, the effect of x
is the same for all levels of Y .
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The Cumulative Odds Model

y
1 2 3

x 1 a b c
2 d e f

Odds Ratio for being in a higher category if
x = 2 rather than x = 1

�1 =
a(e+ f)

d(b+ c)

�2 =
(a+ b)f

(d+ e)c

Assume �1 and �2 are both estimates of the
same population parameter.

Should test that �1 � �2
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Comments

� Motivation: Grouped continuous data

– Changing groupings does not affect the
population parameter being estimated.

� Reversal invariant.

� Stata commands

– ologit resp preds
– omodel logit resp preds
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The Continuation Ratio Model

y
1 2 3

x 1 a b c
2 d e f

Odds Ratio for category � j + 1 given
category � j if x = 2 rather than x = 1

�1 =
a(e+ f)

d(b+ c)

�2 =
bf

ec

Assume �1 and �2 are both estimates of the
same population parameter.

Should test that �1 � �2
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Comments

� Not reversal invariant.

� Not collapsing invariant.

� Subtables are independent: easy model to fit

� Stata commands

– ocratio resp preds
– I have not found a test of proportionality of

hazards.
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The Stereotype Model

� The full multinomial model can be thought of a
series of independent logistic regressions

– category 2 vs category 1
– category 3 vs category 1

� If we assume that the regression function is the
same for all categories, we have a stereotype
model.

� Stereotype model has fewer parameters than
multinomial, but is nested within it.
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Multinomial Model

� Full multinomial model is

pr(yi = sjxi1 : : : xip) =

exp
�

�0s +
Pp

j=1 xij�js
�

Pk
t=1 exp

�
�0t +
Pp

j=1 xij�jt
�

� This is not identified: commonly fix �j1 = 0; forj = 0 to p.

� This compares all groups with group 1.
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Stereotype Model

� The stereotype model assumes that for all groups, �js = �s�j, i.e.

pr(yi = sjxi1 : : : xip) =

exp
�
�0s + �s
Pp

j=1 xij�j
�

Pk
t=1 exp

�
�0t + �t
Pp

j=1 xij�j
�

�j = Logistic Regression Function

�s = Distance apart of groups

� Commonly �1 is fixed at 0 and �k fixed at 1.
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Distinguishability & Dimensionality

Distinguishability

� If �i = �j, then x does not distinguish
between groups i and j.

� Can test constrained model with �i = �j for
adequacy of fit.

Dimensionality

� If one function of x discriminates between all
groups, relationship is one-dimensional (i.e.
ordinal).

� If more than one function is required (i.e.
different variables differentiate between different
levels) relationship is multi-dimensional.

� In multidimensional models, outcome categories
are not strictly ordered with respect to
predictors/
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Ordinal relationship
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2 dimensional relationship
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Indistinguishable categories
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Stereotype Regression Strategy

� Determine dimensionality

� Constrain parameters where possible

– Decide which variables belong to which
dimensions if there are more than one

– Collapse indistinguishable groups together
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Model

� Outcome

– Severity of the most eroded joint (1 - 6)

� Predictors

– Age (measured in decades, 15 - 85)
– Rheumatoid factor (present or absent)
– Shared epitope (0, 1 or 2 copies)
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Cumulative Odds Model

. omodel logit erosion age rf epitope
Ordered logit estimates Number of obs = 251

LR chi2(3) = 62.04
Prob > chi2 = 0.0000

Log likelihood = -385.29669 Pseudo R2 = 0.0745
------------------------------------------------------------------------------
erosion | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
age | .3986464 .0879168 4.534 0.000 .2263326 .5709603
rf | 1.309473 .2594066 5.048 0.000 .8010456 1.817901

epitope | .4779209 .1671797 2.859 0.004 .1502548 .805587
---------+--------------------------------------------------------------------
Approximate likelihood-ratio test of proportionality of odds
across response categories:

chi2(12) = 41.71
Prob > chi2 = 0.0000
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Continuation Ratio

. ocratio erosion age rf epitope

Continuation-ratio logit Estimates Number of obs = 687
chi2(3) = 45.26
Prob > chi2 = 0.0000

Log Likelihood = -393.6903 Pseudo R2 = 0.0544

------------------------------------------------------------------------------
erosion | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
age | .1749616 .0646592 2.706 0.007 .0482319 .3016914
rf | .9110031 .1926102 4.730 0.000 .5334939 1.288512

epitope | .392571 .1267941 3.096 0.002 .144059 .6410829
------------------------------------------------------------------------------
Omnibus Test of Proportional Hazards LR Chi2(12) = 53.67

Prob > chi2 = 0.0000
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Stereotype Regression: 1 Dimensional

. soreg erosion age rf epitope
Stereotype Logistic Regression Number of obs = 251
Comparison to null model LR Chi2(7) = 66.67

Prob > chi2 = 0.0000
Comparison to full model LR Chi2(8) = 33.56

Prob > chi2 = 0.0000
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--------------------------------------------------------------------

phi11 | (dropped)
phi21 | .5441926 .1649698 3.299 0.001 .2208578 .8675274
phi31 | .889524 .2373843 3.747 0.000 .4242595 1.354789
phi41 | .9523727 .2647397 3.597 0.000 .4334925 1.471253
phi51 | .8984605 .2527707 3.554 0.000 .403039 1.393882
phi61 | 1 . . . . .
beta11 | .832095 .2479933 3.355 0.001 .3460371 1.318153
beta21 | 1.864144 .6729833 2.770 0.006 .545121 3.183167
beta31 | .7770334 .3536477 2.197 0.028 .0838967 1.47017

------------------------------------------------------------------------------
beta1 = age
beta2 = rf
beta3 = epitope
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Stereotype Regression: 2 Dimensional

. soreg erosion age rf epitope, maxdim(2)

Stereotype Logistic Regression Number of obs = 251
Comparison to null model LR Chi2(12) = 97.42

Prob > chi2 = 0.0000
Comparison to full model LR Chi2(3) = 2.81

Prob > chi2 = 0.4217

. soreg erosion age rf epitope, maxdim(2) c(1/14)

Stereotype Logistic Regression Number of obs = 251
Comparison to null model LR Chi2(4) = 88.34

Prob > chi2 = 0.0000
Comparison to full model LR Chi2(11) = 11.89

Prob > chi2 = 0.3719
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Determining Dimensions
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Applying Constraints (1)

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------+--------------------------------------------------------------------
phi11 | (dropped)
phi21 | 1.692431 1.098211 1.541 0.123 -.4600231 3.84488
phi31 | 2.272531 1.469143 1.547 0.122 -.6069365 5.151999
phi41 | 1.517726 .9933333 1.528 0.127 -.4291719 3.464623
phi51 | 1.273904 .8419309 1.513 0.130 -.3762501 2.924058
phi61 | 1 . . . . .

beta11 | .4506742 .3014424 1.495 0.135 -.140142 1.04149

phi11 | (dropped)
phi21 | 1 . . . . .
phi31 | 1 . . . . .
phi41 | 1 . . . . .
phi51 | 1 . . . . .
phi61 | 1 . . . . .

beta11 | .7684656 .1288242 5.965 0.000 .5159748 1.020956

beta1 = age
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Applying Constraints (2)

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------+--------------------------------------------------------------------
phi12 | (dropped)
phi22 | -.0372127 .1810902 -0.205 0.837 -.392143 .3177176
phi32 | .3594271 .1656013 2.170 0.030 .0348545 .6839997
phi42 | .7134761 .236255 3.020 0.003 .2504249 1.176527
phi52 | .7098553 .2355299 3.014 0.003 .2482251 1.171485
phi62 | 1 . . . . .

beta22 | 2.169331 .7273564 2.982 0.003 .7437389 3.594924
beta32 | 1.120352 .4247061 2.638 0.008 .287943 1.95276

phi12 | (dropped)
phi22 | (dropped)
phi32 | .4986462 .1550644 3.216 0.001 .1947256 .8025669
phi42 | 1 . . . . .
phi52 | 1 . . . . .
phi62 | 1 . . . . .

beta22 | 1.683544 .3560441 4.728 0.000 .9857109 2.381378
beta32 | .8272222 .2424987 3.411 0.001 .3519335 1.302511
beta2 = rf
beta3 = epitope
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Stereotype Regression:
Interpretation(1)

First dimension

� �age = 0:77

� �1 = 0, �2 = �3 = �4 = �5 = �6 = 1

� Odds of having some slight damage rather than
none increases by e

0:77 per decade.

� Age does not help to predict how severe the
damage is, only that it exists.
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Stereotype Regression:
Interpretation(2)

Second dimension

� �rf = 1:68, �epitope = 0:83

� �1 = �2 = 0, �3 = 0:50, �4 = �5 = �6 = 1

� Odds of being in group 4, 5 or 6 rather than
group 1 or 2 is greater by e

1:68 in the RF+.

� Odds of being in group 3 rather than group 1 or
2 is greater by e

(1:68�0:50) in the RF+.

� Odds of being in group 4, 5 or 6 rather than
group 1 or 2 is greater by e

0:83 per copy of the
shared epitope.

� Odds of being in group 3 rather than group 1
or 2 is greater by e

(0:83�0:50) per copy of the
shared epitope.
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Relaxing Assumptions

� In theory, can relax the assumptions of the
cumulative odds and continuation ratio models.

� Fit a separate � for each level of the outcome.

� But can theoretically produce negative probabilities
p(y � 3) � p(y � 2).

� May want to introduce constraints to reduce
the number of parameters (partial proportional
odds).

� Model fit is similar, parameter interpretations
differ.

� May need to choose model on grounds other
than goodness of fit.
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Conclusions

� Importance of relationship between predictors
and outcome.

� An ordinal outcome need not have an ordinal
relationship with predictors.

� Several models may fit: ease of interpretation
may be the deciding factor.

� Constraints can be used to reduce the number
of parameters and simplify interpretation.
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