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Abstract

Rationale: Quantitative computed tomographic (CT) measures of
baseline disease severity might identify patients with idiopathic
pulmonary fibrosis (IPF) with an increased mortality risk. We
evaluated whether quantitative CT variables could act as a cohort
enrichment tool in future IPF drug trials.

Objectives: To determine whether computer-derived CTmeasures,
specifically measures of pulmonary vessel–related structures (VRSs),
can better predict functional decline and survival in IPF and reduce
requisite sample sizes in drug trial populations.

Methods: Patients with IPF undergoing volumetric noncontrast
CT imaging at the Royal Brompton Hospital, London, and
St. Antonius Hospital, Utrecht, were examined to identify pulmonary
function measures (including FVC) and visual and computer-derived
(CALIPER [Computer-Aided Lung Informatics for Pathology
Evaluation and Rating] software) CT features predictive of mortality
and FVC decline. The discovery cohort comprised 247 consecutive
patients, with validation of results conducted in a separate cohort of
284 patients, all fulfilling drug trial entry criteria.

Measurements andMainResults: In the discovery and validation
cohorts, CALIPER-derived features, particularly VRS scores, were
among the strongest predictors of survival and FVC decline.
CALIPER results were accentuated in patients with less extensive
disease, outperforming pulmonary functionmeasures.When used as
a cohort enrichment tool, a CALIPERVRS score greater than 4.4% of
the lung was able to reduce the requisite sample size of an IPF drug
trial by 26%.

Conclusions: Our study has validated a new quantitative CT
measure in patients with IPF fulfilling drug trial entry criteria—
the VRS score—that outperformed current gold standard
measures of outcome. When used for cohort enrichment in an
IPF drug trial setting, VRS threshold scores can reduce a
required IPF drug trial population size by 25%, thereby limiting
prohibitive trial costs. Importantly, VRS scores identify patients in
whom antifibrotic medication prolongs life and reduces FVC
decline.
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Idiopathic pulmonary fibrosis (IPF) is a
progressive fibrosing lung disease of
increasing prevalence (1–5) that results in a
patient’s median survival being curtailed to
only 3–5 years from diagnosis (1, 6–11).
In a drug trial setting, a decline in FVC has
been used as the primary measure of
outcome in IPF (12–17), and it has been
correlated with survival in several IPF
cohorts (13, 15, 18–21). FVC testing is
associated with a degree of measurement

variation (22). Evidence from several
clinical studies (15, 18–21) confirms that a
10% FVC decline threshold is a surrogate
marker of mortality, and in the absence of
an alternative explanation, it is an indicator
of genuine disease progression (11).

Given the inexorable decline associated
with late-stage IPF, characterization of
indicators suggesting a poor prognosis at
baseline in IPF is essential to guiding
optimal management and allowing timely
referral for lung transplant (23). In IPF drug
trial settings, cohort enrichment strategies
aim to create more homogeneous study
populations and identify patients who are
likely to experience increased clinical events
(24), thereby reducing sample sizes and
lessening the prohibitive costs associated
with clinical trials (25).

Given the rapid recent advances in
computer technology, the focus of imaging-
based disease biomarkers in IPF has fallen
primarily on computer analysis of computed
tomographic (CT) imaging, which does
not have the constraints of interobserver
variation associated with visual CT scoring.
New computer algorithms using three-
dimensional volumetric CT datasets
can quantify parenchymal pattern extents
(26, 27) and have been shown to better
predict survival in various fibrosing lung
diseases at baseline than visual CT scores
(28, 29). Computer analysis also has the
potential to uncover CT features hitherto
underrecognized by visual CT analysis that
predict mortality in IPF. The quantitation
of pulmonary vessels (arteries and veins)
and associated structures (perivascular
fibrosis), collectively termed vessel-related
structures (VRSs) (Figure 1), which cannot
be achieved by the human eye, has been
shown to associate strongly with survival in
a series of patients with IPF (28).

However, the utility of quantitation of
VRSs in predicting survival in IPF has not
been examined across multicentered patient
cohorts or in patients with less extensive
disease. It also remains unclear whether

computer analysis of CT imaging can
identify patients at risk of progressive disease
and in turn act as a cohort enrichment tool in
IPF. Therefore, in our present study, we
evaluated mortality prediction using
pulmonary function tests (PFTs), composite
indices, and visual and computer-based CT
scoring in a discovery cohort of patients with
IPF of varying disease severity. Prediction of
decline in FVC using baseline measures, as
well as a combined endpoint of a 10% relative
FVC decline or death within 12 months, was
also investigated. Statistically significant
variables derived from these analyses were then
examined in a separate IPF validation cohort.
We also examined whether specific thresholds
of computer-derived CT variables, particularly
VRS measures, could be used to enrich drug
trial–eligible IPF populations. Some of the
results of these studies were previously
reported in the form of an abstract (30).

Methods

Study Design

All research subjects were diagnosedwith IPF
by a multidisciplinary team and had received
a noncontrast volumetric CT scan as part of
their clinical care. In this observational study,
all consecutive patients with IPF presenting
to the Royal Brompton Hospital between
January 2007 and June 2011 were included in
the discovery cohort. All patients with IPF
presenting between July 2011 and December
2014 to the Royal Brompton Hospital and
patients with IPF presenting to the St.
Antonius Hospital were amalgamated to
form the validation dataset. PFT,
echocardiography, and CT protocols are
outlined in the appendix in the online
supplement. CALIPER (Computer-Aided
Lung Informatics for Pathology Evaluation
and Rating) CT analysis has been described
previously (29, 31) and is outlined in the
appendix in the online supplement.
Approval of this study of clinically indicated
computed tomography and pulmonary
function data was obtained from the
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At a Glance Commentary

Scientific Knowledge on the

Subject: Quantification of computed
tomographic (CT) parenchymal
patterns in idiopathic pulmonary
fibrosis using computer tools has been
suggested as a method that can
improve mortality prediction using
visual CT scoring. As computer
technology advances, it is becoming
possible to study CT parenchymal
features that have no visual correlate.

What This Study Adds to the

Field: Our study demonstrates that
computer-derived vessel-related
structure scores can outperform
current gold standard measures of
outcome in idiopathic pulmonary
fibrosis, such as FVC decline.
Specifically, we demonstrate that using
thresholds of computer-derived vessel-
related structure scores for cohort
enrichment can identify patients with
idiopathic pulmonary fibrosis who
respond to antifibrotic medication with
reduced FVC decline and improved
survival. Importantly, the vessel-
related structure thresholds would be
able to reduce idiopathic pulmonary
fibrosis drug trial population sizes by
26%, thereby dramatically reducing
study costs.
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Liverpool Research Ethics Committee
(reference number 14/NW/0028) and the
institutional ethics committees of the
Royal Brompton Hospital (London, UK),
the Mayo Clinic (Rochester, MN), and St.
Antonius Hospital (Nieuwegein, the
Netherlands). Informed patient consent
was not required.

CT Pattern Evaluation

CT variables scored visually and by
CALIPER included honeycombing, reticular
pattern, and ground-glass opacity extents.

Fibrosis extent represented the sum of
reticular and honeycombing extents.
Interstitial lung disease (ILD) extent also
summed ground-glass opacification.
Visual scores also quantified traction
bronchiectasis extent and severity.
CALIPER also quantified pulmonary VRSs
(see details in the appendix in the online
supplement). Volumes for all CALIPER
parenchymal features were converted into
percentages using the total lung volume
measured by CALIPER. The total
pulmonary VRS score (CAL VRS) was

subdivided according to cross-sectional
area and zonal location of the structures
(described below). The VRS subdivisions
were expressed as a percentage of the three
CALIPER-derived zonal volumes.

Statistical Analysis

We compared the association of the five
PFT scores (FVC; DLCO; composite
physiologic index [CPI]; gender, age,
physiology [GAP] score; and GAP index),
five visual CT scores (ILD extent, fibrosis
extent, honeycombing extent, traction
bronchiectasis severity, and traction
bronchiectasis extent), four CALIPER CT
parenchymal scores (ILD extent, fibrosis
extent, honeycombing, and CALIPER
total VRSs [CAL VRSs]), and 18 detailed
VRS variables (the five different cross-
sectional areas [,5 mm2, 5–10 mm2,
10–15 mm2, 15–20 mm2, and .20 mm2]
occurring in the upper, middle, or lower
zones of the lungs, as well as the three
total zonal VRS scores) resulting in
32 predictors in total. We considered
different measures of clinical outcome
(i.e., death or longitudinal FVC
trajectories). Each predictor variable
was tested alone while correcting for
confounders. Adjustment was made for
covariates to demonstrate the additional
benefit of CALIPER variables when
compared with more routinely acquired
clinical and functional variables.

In our primary analyses, to compare
the predictor variables, the 2log10 P values
for each measure from the discovery and
validation sets were plotted on the x- and
y-axes, respectively, with the axes labeled
using the P value scale, and including both
horizontal and vertical lines marking the
Li and Ji corrected cutoffs for statistical
significance (32). The Bonferroni method is
a conservative method for multiple testing
correction: The significance threshold
(a = 0.05) is divided by the number of
conducted tests (usually equivalent to
the number of tested variables). The
Bonferroni method assumes that all tests
are statistically independent; in practice,
however, this assumption is often violated
because of strong correlations between
tested variables. This includes the analysis
in the present study (e.g., total pulmonary
VRS [CAL VRS] and upper zone [UZ] VRS
scores are strongly correlated; R2 = 0.77).
We therefore used the method of Li and
Ji to estimate the effective number of
independent tests (Meff), which is derived

Figure 1. Color overlay computed tomographic images demonstrating CALIPER (Computer-Aided

Lung Informatics for Pathology Evaluation and Rating software) vessel-related structures (CAL VRSs)

of different sizes in the upper and middle lung zones in three patients with idiopathic pulmonary

fibrosis with varying degrees of disease severity. (A and B) A 78-year-old male ex-smoker (DLCO,

69.7% predicted) demonstrates mild reticulation at the anterior and posterior aspects of the lungs.

(C and D) A 56-year-old female ex-smoker (DLCO, 57.1% predicted) demonstrates coarse reticulation

most marked in the apical segments of the lower lobes bilaterally. (E and F) A 68-year-old male

ex-smoker (DLCO, 27.5% predicted) has more extensive reticulation in the lung periphery and at

the lung bases. As fibrosis extent increases, so too does the CAL VRS score within the lungs. CAL

VRS size key: red =,5 mm2; green = 5–10 mm2; yellow = 10–15 mm2; dark blue = 15–20 mm2;

light blue =.20 mm2.
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from the eigenvalues of the correlation
matrix of all tested variables. We then used
Meff to adjust the significance threshold:
a = 0.05/Meff. Essentially, the method of
Li and Ji allows calculation of the number
of effective independent tests, and then
a Bonferroni correction is applied to
that number instead of being applied
indiscriminately to all variables.

Longitudinal Analysis

A subset of subjects in both cohorts was
followed longitudinally with repeated PFTs.
Percent change from baseline FVC (raw)
was modeled using linear mixed effects with
random intercept and random slope. More
precisely, each follow-up FVC value was
divided by the baseline FVC value and
multiplied by 100 (FVC%). FVC% was
the target variable, and confounders were
baseline raw FVC, sex, age at CT imaging,
smoking status (ever vs. never), and time
since baseline FVC, as well as interactions
between time and sex, age, and smoking
status. As an additional confounder, we
used the predictor variable and then
measured the effect of the predictor-by-time
interaction as a means of analyzing how the
predictor affects the longitudinal
percentage decline in FVC. The lmer
function of the R package lme4 (33) was
used for the analysis. We present the
2log10 P values of the predictor-by-time
interaction for the discovery and validation
cohorts.

In addition to the linear mixed effects
analysis, we calculated for each subject the
presence or absence of a 10% decline in FVC
at 12 months. More precisely, for each
subject, we estimated a 10% FVC loss within
12 months based on best linear unbiased
predictions from the longitudinal mixed
model (a minimum of 4 mo of follow-up
data was required). The presence of a 10%
FVC decline at 12 months was defined
on the basis of fitted trajectory (i.e., the
predicted value at 12 mo was 10% less than
the baseline FVC measurement).

We combined the endpoint of a 10%
FVC decline at 12 months with a second
endpoint of death within 12 months, and
using logistic regression, we considered both
endpoints as the outcome variable. One
logistic regression was fitted per predictor,
and the models were corrected for sex, age at
CT imaging, and smoking status (ever vs.
never). The glm function in R was used for
this analysis. As described above, we present

the 2log10 P values of the predictor for the
discovery and validation cohorts.

Survival Analysis

We performed a survival analysis using
right-censored Cox proportional hazards
models. Time to event (death) or censoring
was measured from CT imaging. The
models were corrected for sex, age at CT
imaging, and smoking status (ever vs.
never). The analysis was conducted using
the coxph function of the survival package
(34) in R (35). As mentioned above, we
present the 2log10 P values of the predictor
for the discovery and validation cohorts.

We also calculated the C-index (36)
in the discovery cohort based on 500
bootstrap replicates for the logistic
regression (10% FVC decline/death within
12 mo) and Cox mortality models. We
further computed C-indices in the
validation cohort by applying models with
regression coefficients for the variable of
interest and confounders estimated in the
discovery cohort. We also calculated the
improvement in the model C-index when
a powerful VRS measure was added to
a model adjusted for confounders and
contained FVC, DLCO, or CPI.

Drug Trial Power Calculation

We conducted a power analysis to explore
possible sample size reductions in clinical
trials using CAL VRS scores as an
enrichment parameter. The power analysis
was based on a two-sample t test with a
P value threshold of 0.05 and assuming 90%
power. Furthermore, we assumed that the
control group in an IPF drug trial would be
receiving antifibrotic medication rather than
a placebo and would decline, on average, by
120 ml/yr in FVC. The rate of decline in
FVC in the control arm is therefore an
average of rates of FVC decline in the treated
arms of antifibrotic trials (12, 13).

Three different drug effects were
investigated: 25%, 40%, and 50% effect,
leading to annual average declines in
FVC of 90, 72, and 60 ml, respectively.
To derive the effect size (Cohen’s d), we
computed the SD in the cohort with DLCO

greater than or equal to 30. We used the
stable estimator for SD based on median
absolute deviation, resulting in a value of
230.27. Thus, in the unenriched design, the
effect sizes (Cohen’s d) are 0.13, 0.21, and
0.26, respectively. For the enrichment
design, we considered CAL VRS thresholds
that retain 70%, 50%, and 30% of subjects

with DLCO greater than or equal to 30%
predicted: 3.7, 4.4, and 5.1, respectively.
Again, we used the stable estimator to
compute the SD of annual FVC decline in
these enriched subgroups: 228.1, 197.4, and
195.6, respectively. These values were used
to derive the corresponding effect size that
would be seen when considering the
potency of each drug and the corresponding
sample sizes for a trial. In published
antifibrotic studies in which these data are
available (16, 37), SDs of FVC decline
graphed or derived from graphed SEs did
not differ materially between treatment
and nontreatment arms.

The C-index was calculated for the
logistic regression and mortality models that
contained the CAL VRS thresholds in both
the discovery and validation cohorts when
patients fulfilled drug trial entry criteria (DLCO,
>30% predicted). We finally also examined
the effect on study outcome measures of
antifibrotic use in drug trial–eligible patients
selected for cohort enrichment.

Results

Baseline Data

To evaluate the potential of computer-
derived indices to aid cohort enrichment in
a drug trial setting, our cardinal analyses
considered patients with IPF fulfilling drug
trial inclusion criteria (17). Accordingly,
patients with a DLCO percent predicted
between 30% and 90% were analyzed in the
discovery (n = 163) and validation (n = 200)
cohorts. Two secondary analyses were
also performed. First, after combining
the discovery and validation cohorts, we
separately examined patients with a DLCO

greater than or equal to 30% predicted who
were not exposed to antifibrotic medication
(n = 200) and those who had received
antifibrotics (n = 159) to characterize the
effects of medication on CT measures
predicting FVC decline and survival.
Antifibrotic use was categorized on an
intention-to-treat basis. Second, we
examined patients with a DLCO less than
30% predicted in both the discovery
(n = 84) and validation (n = 84) cohorts to
evaluate the performance of computer tools
in predicting the various study outcome
measures in patients with severe disease.

Patients with a DLCO greater than or
equal to 30% predicted in the validation
cohort had a marginally higher mean DLCO

than patients in the discovery cohort, with
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no statistically significant difference identified
in other baseline variables (see Table E1 in the
online supplement). No statistically significant
difference in survival curves was found
between cohorts (Figures E1A and E1B).

FVC Decline

Across the entire discovery (n = 181) and
validation (n = 207) cohorts, CALIPER
variables (particularly UZ VRS and
CALIPER fibrosis extents) were the
strongest predictors of FVC decline
(Figure 2A). When analyses were limited to
patients in the discovery (n = 130) and
validation (n = 168) cohorts with a DLCO

greater than or equal to 30% predicted,
upper and midzone VRS subdivisions and
visual traction bronchiectasis extent were
more powerful than functional indices and
visual ILD and fibrosis extents in predicting
FVC decline (Figure 2D).

Ten Percent FVC Decline/Death at

12 Months

When all patients in the discovery (n = 224)
and validation (n = 251) cohorts were
evaluated, CAL VRS variables (particularly
total VRS and upper and midzone VRS
subdivisions) were the strongest predictors
of the combined endpoint, outperforming
all functional indices (Figure 2B). In patients
with a DLCO greater than or equal to 30%
predicted across the discovery (n = 148) and
validation (n = 176) cohorts, UZ VRS
subdivisions and visual traction bronchiectasis
severity and extent were the most powerful
predictors of the combined endpoint, though
no single variable satisfied both Li and Ji
cutoffs for statistical significance (Figure 2E).

Survival Analyses

When all study patients were examined
in the discovery (n = 247) and validation
(n = 284) cohorts, DLCO and CPI were the
most powerful predictors of survival. Total
CAL VRS and UZ VRS scores also strongly
predicted survival across both cohorts
(Figure 2C). In patients fulfilling drug
trial entry criteria (DLCO, >30% predicted)
(n = 363), functional indices (CPI and
DLCO), total and UZ VRS scores, and large
VRS scores (.20 mm) in the middle and
UZs best predicted survival (Figure 2F).

Subanalysis Related to Antifibrotic

Administration

Analyses of patients who had never received
antifibrotic medication but fulfilled drug
trial entry criteria (DLCO, >30% predicted)

in the discovery (n = 128) and validation
(n = 72) cohorts are demonstrated in Figures
2G–2I and Figures 3A–3C. UZ VRS
variables were the strongest predictors of
FVC decline (Figures 2G and 3A), 10%
FVC decline/death at 12 months (Figures
2H and 3B), and survival (Figures 2I and
3C). Upper and midzone VRS variables
outperformed functional indices for all
three study outcome measures. Results were
maintained when patients were stratified on
the basis of median cohort DLCO of 40.15%
predicted (below median DLCO, see Figures
3B, 3E, and 3H; above median DLCO, see
Figures 3C, 3F, and 3I).

In patients with a DLCO greater than or
equal to 30% predicted who had received
antifibrotics (n = 32 in the discovery cohort;
n = 127 in the validation cohort), upper and
midzone VRS variables were the strongest
predictors of FVC decline (Figure E2D)
and 10% FVC decline/death at 12 months
(Figure E2E), and they outperformed DLCO

and CPI. UZ VRS subdivisions were similar
to DLCO and CPI in their ability to predict
survival (Figure E2F).

C-Index Analyses

The relative strength of adjusted models
predicting the combined endpoint of 10%
FVC decline/death at 12 months was
compared using the C-index for models
containing CAL VRS subdivision scores,
functional indices, and visual CT variables. All
models were adjusted for patient age,
sex, smoking status, and reconstruction
algorithm in patients with a DLCO greater than
or equal to 30% predicted who had never
received antifibrotics (n = 175). Models were
examined separately in the combined cohorts,
the discovery cohort, and the validation
cohort (Table E2). Models in the combined
cohorts containing CAL VRS subdivisions
outperformed models containing functional
indices in predicting the combined endpoint.

When adjusted Cox mortality models
were compared using the C-index,
models containing CAL VRS subdivisions
demonstrated higher C-indices than models
containing FVC, DLCO, and CPI in the
combined cohort (Table E2). The addition of
an upper or midzone VRS subdivision score
to a model containing a functional index
increased, to a modest degree, the model
C-index in all cases (Table E3).

Patients with Severe Disease

When patients with severe disease (DLCO,
,30% predicted) were evaluated (n = 168),

CPI and DLCO were clearly the strongest
predictors of survival (Figure E3C). These
results were maintained in subanalysis
of patients who received antifibrotic
medication (n = 29) (Figure E2C). No
variables strongly predicted FVC decline or
a 10% FVC decline/death at 12 months in
all study patients with a DLCO less than 30%
predicted (Figures E3A and E3B) or when
those receiving antifibrotic medication were
subanalyzed (n = 27) (Figures E2A and
E2B).

When patients with a DLCO less than
30% predicted who had never received
antifibrotics were subanalyzed (n = 139),
lower-zone VRS subdivisions were better
predictors of FVC decline than DLCO or
CPI (Figure E3D). UZ VRS subdivisions
demonstrated stronger relationships with
10% FVC decline/death at 12 months and
survival than DLCO or CPI in patients with
severe disease who were not exposed to
antifibrotics (Figures E3E and E3F).

Cohort Enrichment Using CAL VRS

Thresholds

The primary aim of or study was to see
whether computer quantitation of CT imaging
could have a role in cohort enrichment of IPF
drug trials. In a final analysis, we aimed to
calculate potential savings to an IPF drug trial
that would result from cohort enrichment of a
study population using various CAL VRS
thresholds (Table 1). Using patients with IPF
with a DLCO greater than or equal to 30%
predicted, we modeled sample size savings for
a drug with three potential effect sizes on
FVC decline (25%, 40%, and 50% reductions
in FVC decline). At each drug effect size, we
looked at cohort enrichment using three
CAL VRS thresholds (representing the total
VRS score throughout the entire lungs)
corresponding to 70% (CAL VRSs = 3.7% of
the lung), 50% (CAL VRSs = 4.4% of the
lung), and 30% (CAL VRSs = 5.1% of the
lung) of the original IPF study population.

As shown in Table 1, restricting a
clinical trial cohort to patients with IPF
with a CAL VRS threshold of 4.4% of the
lung or greater, it would be possible to
reduce the sample size by 26% to identify
the same drug treatment effect size.
Importantly, half of all patients with IPF
studied were included in the CAL VRS
threshold of greater than 4.4% of the lung.
The model C-indices for the CAL VRS
threshold of 4.4% in the discovery cohort of
patients with a DLCO greater than or equal
to 30% predicted and not on antifibrotics
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Figure 2. Scatterplots demonstrating 2log10 P values for variables (various computer-derived CALIPER [Computer-Aided Lung Informatics for Pathology

Evaluation and Rating software], visual computed tomography–derived, and pulmonary function indices) in the discovery cohort (x-axis) and validation

cohort (y-axis). Horizontal and vertical dotted lines represent the Li and Ji corrected cutoffs for statistical significance. (A–C) All subjects. (D–F) Patients with

DLCO greater than or equal to 30% predicted. (G–I) Patients with DLCO greater than or equal to 30% predicted who were not exposed to antifibrotic

medication. The first column of A, D, and G represents variables predicting FVC decline. The second column of B, E, and H represents variables predicting

a 10% FVC decline or death within 12 months. The third column of C, F, and I represents variables predicting survival. In C, to allow visualization of all the

points on the figure, values that were infinite (owing to a P value of 0) were set to 20. The pulmonary vessel-related structure score was subdivided

according to structure cross-sectional area (,5 mm2, 5–10 mm2, 10–15 mm2, 15–20 mm2, and.20 mm2). AF = antifibrotic therapy; CAL VRS =CALIPER

total vessel-related structure scores; CFibrosis = CALIPER fibrosis extent; CILD = CALIPER interstitial lung disease; CPI = composite physiologic index;

GAP = gender, age, physiology; LZ = lower zone; MZ =middle zone; MZ VRS =middle zone vessel-related structure scores; PFT = pulmonary function

test; TxBx = traction bronchiectasis (extent and severity); UZ = upper zone; UZ VRS = upper zone vessel-related structure scores; VFibrosis = visual fibrosis

extent; VILD = visual interstitial lung disease.
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(n = 128) were 0.67 for survival and 0.73 for
the combined endpoint of 10% FVC
decline/death in 12 months. The equivalent
C-indices in the validation cohort (n = 72
after exclusion of patients on antifibrotics
and those with a DLCO ,30% predicted)
were 0.56 for survival and 0.64 for the
combined endpoint.

As a final analysis, to exclude the
possibility that the CAL VRS threshold of
4.4% was identifying patients who were likely
to progress regardless of any medical
intervention, we examined the effect of
antifibrotic medication in all study patients
with a DLCO greater than or equal to 30%
predicted with a CAL VRS threshold

greater than 4.4% (n = 190). Our results
demonstrated that antifibrotic use in this
subpopulation increased life expectancy
(mortality analysis odds ratio, 0.437; 95%
confidence interval [CI], 0.298–0.641;
Z =24.239; P = 2.253 1025; 10% FVC
decline/death in 12 months, odds ratio,
0.246; 95% CI, 0.122–0.498; Z=23.89;
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Figure 3. (A–C) 2Log10 P values for variables (various computer-derived CALIPER [Computer-Aided Lung Informatics for Pathology Evaluation and

Rating software], visual computed tomography–derived, echocardiography-derived, and pulmonary function indices) in all study patients (discovery and

validation cohorts) with a DLCO greater than or equal to 30% predicted who were not exposed to antifibrotic medication. The patients were stratified with

regard to disease severity on the basis of median DLCO value for the combined cohort (40.15% predicted), with results for patients below the median DLCO

shown in D–F and patients above the median DLCO shown in G–I. A, D, and G represent variables predicting FVC decline. B, E, and H represent variables

predicting a 10% FVC decline or death within 12 months. C, F, and I represent variables predicting survival. The pulmonary vessel–related structure score

was subdivided according to structure cross-sectional area (,5 mm2, 5–10 mm2, 10–15 mm2, 15–20 mm2, .20 mm2). CPI = composite physiologic

index; LZ = lower zone; LZ VRS = lower zone vessel-related structure scores; MZ =middle zone; MZ VRS =middle zone vessel-related structure scores;

PFT = pulmonary function test; UZ = upper zone; UZ VRS = upper zone vessel-related structure scores; VFibrosis = visual fibrosis extent; VHC = visual

honeycombing extent; VILD = visual interstitial lung disease.
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P= 9.733 1025) and reduced FVC decline
(fitted between group difference in annual
relative FVC change, 3.36%; 95% CI,
0.39–6.5%; T = 2.22; P = 0.027). Accordingly,
it would seem that patients being selected
using CAL VRS thresholds are patients who
would respond to antifibrotic medication
and represent a good population with which
to enrich an IPF drug trial.

Discussion

Our study across two cohorts of patients
with IPF has demonstrated that computer-
derived CT variables, particularly the
CAL VRSs, predict two separate disease
endpoints (survival and FVC decline at
12 months) and demonstrate an enhanced
effect size in patients with IPF with less
extensive disease. Most importantly, VRS
scores can be used in cohort enrichment of
an IPF population. Patients selected using a
CAL VRS threshold of over 4.4% were
shown to reduce an IPF drug trial sample
size by 26% and were demonstrated to have
an increased life expectancy and reduced
rate of FVC decline when receiving
antifibrotic medication compared with
patients not receiving antifibrotics.

Existing computer algorithms that have
approached the analysis of CT imaging in
IPF have done so by characterizing and
quantifying the standard library of CT
parenchymal patterns recognized visually
by radiologists for over 20 years (27, 38–40).
The advent of volumetric CT datasets,
however, has allowed three-dimensional
structural information within the lungs to be
analyzed across several hundred CT images.
Furthermore, features such as the pulmonary
CAL VRS scores that have not been

associated with prognostication outside the
ambit of CALIPER studies can now be
quantified.

The VRS measure predominantly
quantifies pulmonary arteries and veins but
also captures connected tubular structures
mainly representing adjoining regions of
fibrosis. Our results regarding the utility of
CALIPER-defined VRS quantitation as a
prognostic tool may represent the first
example of a nontraditional CT
parameter, derived by a computer and
therefore having no inherent measurement
variation constraints, that strongly predicts
mortality in IPF. As computer tools evolve
and supervised machine learning
progresses, the scope for identifying novel
prognostic features that have been
overlooked using visual analysis can only
increase.

PFTs, specifically DLCO and CPI,
were the strongest predictors of survival
in patients with IPF with severe disease
(DLCO,,30% predicted). Without the benefit
of comprehensive right heart catheter
measurements, however, the possibility
that a major determinant of mortality in
patients with extensive disease reflects
pulmonary hypertension can only remain
speculative. The prognostic value of
functional tests, however, was reduced in
strength in patients with less extensive
disease. Similarly, the GAP index did not
strongly predict the likelihood of future
FVC decline in patients with less extensive
disease, confirming a previous report (41).

Although traction bronchiectasis has
been recognized as a predictor of mortality
in previous reports in IPF (42, 43), our
results are the first proof of their utility in
predicting FVC decline. The strength with
which a relatively simple visual traction

bronchiectasis score predicted FVC decline
suggests that the development of an automated
measure of traction bronchiectasis would
be a desirable tool for further prognostic
analyses in IPF.

UZ VRS scores were among the
strongest predictors of mortality in most
analyses, whereas no powerful mortality
signal was obtained from VRSs in the lower
lung zones, regardless of the severity of
underlying fibrosis. These results argue for
the selective evaluation of VRSs in discrete
lung subunits.

The potential utility of CALIPER as a
cohort enrichment tool could help to reduce
the prohibitive cost of modern drug trials
in IPF. With patients in the control arms
of new trials receiving antifibrotics and
therefore demonstrating a slower decline
in FVC when compared with the earlier
placebo-controlled nintedanib (16) and
pirfenidone (17) trials, the recognition of a
drug treatment effect from a novel agent
will require larger sample sizes in a trial
and potentially longer patient follow-up.
However, the use of CALIPER total VRS
scores may allow selective recruitment
of patients with IPF who are likely to
demonstrate more rapid FVC decline.
Accordingly, savings in trial size and
follow-up and therefore cost are likely.

One of the main limitations of
computer analysis of CT imaging relates to
the requirement of noncontrast volumetric
imaging acquired using appropriate
reconstruction algorithms. In the present
study, most of the CT scans were obtained
using edge-enhancing algorithms that can
result in themisclassification of honeycombing,
reticulation, or even ground-glass opacities.
It was to avoid such misclassification that
the most severely edge-enhanced algorithm

Table 1. Impact of Cohort Enriching an Idiopathic Pulmonary Fibrosis Drug Trial Study Population

CAL VRS Threshold
(Percentage of
Population)

Setting A (25% Effect) Setting B (40% Effect) Setting C (50% Effect)

n (Size) Size Difference (%) n (Size) Size Difference (%) n (Size) Size Difference (%)

0 (100) 2,480 0 970 0 622 0
3.7 (70) 2,432 48 (2) 952 18 (2) 610 12 (2)
4.4 (50) 1,824 656 (26) 714 256 (26) 458 164 (26)
5.1 (30) 1,790 690 (28) 702 268 (28) 450 172 (28)

Definition of abbreviation: CAL VRS =Computer-Aided Lung Informatics for Pathology Evaluation and Rating software total vessel-related structures.
Data were derived by analyzing baseline computed tomographic imaging and stratifying patients according to various thresholds of CAL VRSs. Statistical
modeling was performed to calculate the number of patients that would be required in a study to identify a drug effect of 25%, 40%, and 50% reductions
in FVC decline. The number of patients in the unenriched cohort is demonstrated (CAL VRS threshold of 0), and the savings in drug trial sample size when
using three CAL VRS thresholds (3.7%, 4.4%, and 5.1% of the lung equating to 70%, 50%, and 30% of the study population, respectively) are expressed
as number and percentage.

ORIGINAL ARTICLE

774 American Journal of Respiratory and Critical Care Medicine Volume 198 Number 6 | September 15 2018



(Siemens B80) was not evaluated in our
study.

For institution of CALIPERCT analysis
as a cohort enrichment tool for a drug trial,
several preparatory steps would be necessary
at the various clinical trial centers. First,
scrupulous attention would need to be paid
to the quality of the CT scan acquired. An
optimal full inspiratory breath at TLC is
essential and could be aided with a form of
spirometric gating. The desired scanner
algorithms used to reconstruct the CT scan
would be clearly specified to avoid severely
edge-enhancing algorithms.

Once acquired, the anonymized
volumetric noncontrast digital imaging
and communications in medicine axial CT
files would be electronically sent by a
computed tomography technician to a central
processing hub, such as the Biomedical
Imaging Resource of the Mayo Clinic in
Rochester, MN. Some preprocessing of CT
data might be necessary before computer
analysis to reduce image noise, and though
this step can be inadvertently overlooked, its
importance to ensure optimal parenchymal

characterization cannot be overstated. Once
ready for analysis, CALIPER processing of
an entire CT examination takes less than
one minute, though it is accompanied by
careful quality control of segmentation
accuracy. The anonymized data files can
then be electronically sent to a trial
coordinator the same working day. In
our study, CAL VRS quantitation remained
predictive of mortality across a spectrum
of CT algorithms in the validation cohort,
suggesting that CAL VRS measures may
have a role in future multicenter studies.

The present study had limitations.
The measurement of VRS by CALIPER
predominantly included pulmonary arteries
and veins, but in patients with extensive
fibrosis, there is invariably a degree
of capture of reticular densities and
peribronchial fibrosis. It therefore remains
unclear just how much the associated
perivascular fibrosis may contribute to
overall variable strength. Importantly,
the VRS scores strongly predicted survival
when measured in the upper lung zones,
when fibrosis is least extensive in IPF, and

retained utility across independent patient
populations and a range of reconstruction
algorithms, suggesting a robustness of the
measure. Last, although the time intervals of
FVC measurement in our study were not
standardized in line with current drug trial
protocols, our study has the advantage of a
longer follow-up than is usually possible in a
drug trial setting.

In conclusion, our study shows that
in IPF, computer analysis of CT imaging, in
particular quantitation of pulmonary VRS,
can strongly predict survival and likelihood
of FVC decline with effects enhanced over
functional indices in patients with less
extensive disease. Importantly, CAL VRS
scores can selectively identify patients with
IPF who will reach drug trial endpoints
and respond to antifibrotic medication.
CAL VRS scores may therefore have a
major role in drug trial cohort enrichment,
reducing the prohibitive costs of current
IPF trials. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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