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RESEARCH ARTICLE Open Access

Predicting outcomes of steady-state 13C isotope
tracing experiments using Monte Carlo sampling
Jan Schellenberger1, Daniel C Zielinski2, Wing Choi2, Sunthosh Madireddi2, Vasiliy Portnoy2, David A Scott3,

Jennifer L Reed4, Andrei L Osterman3 and Bernhard ∅ Palsson2*

Abstract

Background: Carbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical

networks. The choice of carbon labeling pattern is an important consideration when designing these experiments.

We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular

experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the

flux distribution beforehand.

Results: Using a large E. coli isotopomer model, different commercially available substrate labeling patterns were

tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was

found to be dependent upon the desired experimental objective. Many commercially available labels are predicted

to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of

experimental data was found to be considerably less than anticipated, suggesting that effectiveness of 13C

experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed.

Conclusions: While 13C analysis is a useful tool in systems biology, high redundancy in measurements limits the

information that can be obtained from each experiment. It is however possible to compute potential limitations

before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved.

Background

In vivo metabolic reaction flux data provides insight into

the dynamic function of the cell [1-3]. One widely-used

experimental method for measuring in vivo reaction

fluxes is steady-state substrate 13C isotope labeling [4-6].

An overview of the general 13C methods is described in

Figure 1. Isotopomers, or isomers created from inserting

labeled isotopes (often 13C) at different positions in a

molecule, provide a unique way to track the progress of

carbon through a metabolic network. By measuring the

enrichment for 13C in metabolite pools after growing on

a 13C labeled substrate, inferences about the internal

flux state can be made. The approach can be summar-

ized as a data fitting problem between simulated and

experimentally measured 13C labeled metabolite concen-

trations. An isotopomer model, describing the positional

transfer of carbon atoms for all or a subset of reactions

in the network, is used to simulate data (Figure 1a). For

a specified carbon input label, an isotopomer model

enables the calculation of an isotopomer distribution

vector (IDV) corresponding to a particular simulated

steady-state flux distribution (Figure 1b). Mass spectro-

metry (MS) experiments on 13C-labeled metabolites (e.g.

macromolecules) generate fractional 13C enrichments

from fragmented macromolecules, forming a mass dis-

tribution vector (MDV) (Figure 1c). The error between

the measured MDV and the MDV corresponding to the

simulated IDV summarizes how well the presumed flux

distribution fits the 13C experiment. The flux distribu-

tion v that minimizes this error can be computed by sol-

ving a non-linear optimization problem. Simulating 13C

enrichment given a flux distribution is computationally

inexpensive; however, the inverse problem of calculating

the flux distribution that best fits a 13C experiment is

both of greater interest and significantly more computa-

tionally difficult (Figure 1d). A review of these methods

and associated challenges can be found in [6-8].
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There are several distinct sources of variability in a
13C experiment that limit the confidence with which

particular reactions can be determined. First, due to

experimental accuracy limitations and biological varia-

bility, uncertainty arises in the experimentally measured

MDV. Second, due to alternate pathways present in

metabolic networks, the mass balance equations under-

lying a metabolic steady-state are significantly under-

determined [9]. While the full network flux distribution

may not be resolved at high confidence by a given

experiment, certain labeling patterns may resolve fluxes

through certain pathways with greater confidence than

other labeling patterns, as has previously been shown

[4,10].

For a given n-carbon compound, there are 2n possible
13C labeling states (as well as mixtures), and the choice

of label is known to affect the ability to determine reac-

tions fluxes [10]. As 13C methods are based upon com-

putational modeling of isotopomer distributions, it is

possible to computationally optimize the choice of

substrate labeling pattern to enhance the information

gained from an experiment. There are two primary

motivations that drive such an endeavor. First, 13C

experiments are expensive, so choosing the best experi-

ment a priori is desirable. Second, we can assess the

capability of the steady-state 13C labeling approach

towards determining reaction fluxes in an unbiased

manner. The issue of optimization of 13C labeling

experiments has been addressed in the literature

[4,10,11]. However, the use of flux sampling for optimal

isotopomer experiment prediction has not been

explored previously, and this approach presents several

unique advantages over previous methods.

We describe a Monte Carlo sampling-based method

for choosing the optimal substrate label, based upon the

Constraint-Based Reconstruction and Analysis (COBRA)

computational platform [12,13]. COBRA methods use

manually-curated biochemical network reconstructions

of known reaction stoichiometries and measurable nutri-

ent uptake and secretion rates to define feasible ranges
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Figure 1 Isotopomer Overview. a) definition of the network, including carbon fates b) isotopomer balance equations - solving these equations

yields the Isotopomer Distribution Vector (IDV) c) experimental data are compared to computed Mass Distribution Vectors (MDV) yielding

experimental fit. d) two types of possible computations - the forward computation uses a flux distribution as input to compute the MDV, while

the inverse problem attempts to find the flux distribution that minimizes the experimental discrepancy.
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for internal reaction fluxes. Many of these reconstruc-

tions have been generated [14] and the procedure is

well-established [13,15]. These models can be used for

methods such as computing growth rates [16,17], pre-

dicting the effects of gene knockouts [16,18,19], predict-

ing the endpoint of adaptive evolutions [20], and

designing strains for industrial production [21,22]. A

review of these methods can be found here [12,13,23].

Monte Carlo sampling of constraint-based metabolic

models can be used to generate sets of biochemically

feasible flux distributions that obey measured uptake

and secretion rate constraints [24]. IDVs generated from

these flux distributions in an isotopomer model can

then be compared against simulated 13C data to evaluate

the ability of the experiment to determine reaction

fluxes. Monte Carlo sampling takes advantage of the

speed with which IDVs can be simulated from putative

flux distributions, making this approach suitable for

large-scale analysis of in silico experiments.

A Monte Carlo sampling approach was implemented

using a newly developed isotopomer model to evaluate

the efficiency of different carbon labeling patterns

toward determining reaction fluxes in E. coli. The

dimensionality of simulated 13C data was calculated

using singular value decomposition (SVD) for different

substrate labeling patterns and compared to the number

of undetermined dimensions in the network. 13C experi-

ments were performed for three substrate labeling pat-

terns to validate the prior theoretical analysis. The

methods developed represent a flexible computational

analysis that can be applied to various biological systems

and experimental setups to estimate, a priori, the effi-

ciency of isotopomer experiments in determining reac-

tion fluxes.

Results and Discussion

Expanded Isotopomer Model

An isotopomer model was constructed in two phases.

First, a central metabolic isotopomer model that

accounts for 85 reactions including glycolysis, the TCA

cycle, the pentose phosphate pathway, oxidative phos-

phorylation, pyruvate metabolism, and anaplerotic reac-

tions was derived from the iJR904 E. coli reconstruction

[16]. This initial model was equivalent in reaction con-

tent to commonly used isotopomer models for E. coli

[25,26].

An expanded model was then constructed that

includes both central and biosynthetic pathways. The

iMC1010 metabolic network [19] was evaluated to

determine which reactions can sustain non-zero fluxes

during growth on glucose, acetate, or lactate when only

certain by-products are allowed to be secreted (acetate,

formate, D-lactate, pyruvate, succinate, glycerol, CO2,

and ethanol). Blocked reactions, which must have zero

net flux at steady state, were subsequently omitted from

consideration. Groups of reactions that could be merged

together without affecting model results (e.g. linear

pathways) were combined in order to reduce the num-

ber of variables. Large sets of biosynthesis reactions that

produce phospholipids, nucleotides, co-factors were also

combined, since there no experimental measurements

existed for these high-carbon metabolites. However, by-

products resulting from high-carbon metabolite produc-

tion (e.g. CO2, formate, succinate, fumarate, and pyru-

vate) that could enter back into the metabolic network

were tracked. Of the original 932 reactions in the com-

plete metabolic iMC1010 network, nearly a third were

represented in the biosynthetic isotopomer model, either

individually or as grouped reactions.

The final isotopomer model accounts for a total of

313 irreversible reactions, including 278 which track

carbon. Inclusion of these additional pathways is likely

important for accurate assessment of the flux-resolving

power of 13C experiments both within and beyond cen-

tral metabolism [7]. A complete listing of the reactions

and metabolites in the biosynthetic network can be

found in the Additional File 1.

Monte Carlo Sampling Approach

To compute possible flux distributions of the E. coli

model, the network was sampled using a Markov Chain,

Monte Carlo (MCMC) sampling algorithm (see Meth-

ods). The steady-state mass balance and uptake rate

constraints for the metabolic network create a convex

hyperspace that contains all biochemically feasible

steady-state flux distributions [27]. Monte Carlo sam-

pling generates a set of flux distributions that are spread

uniformly throughout the feasible space. The inclusion

of 13C experimental data reduces the feasible space in

which the true flux state must lie by requiring that the

IDV calculated from the putative flux distribution must

match the experimental data within error. While the

space of feasible flux distributions depends only on reac-

tion stoichiometry, the space of resulting simulated

IDVs differs depending on the input substrate labeling

pattern. Hence, different labeling patterns can have dif-

fering abilities to resolve each reaction flux.

Here, we used Monte Carlo sampling of flux distribu-

tions to analyze the degree to which reaction fluxes can

be determined by steady-state 13C labeling experiments

in terms of several possible experimental objectives. For

example, one possible experimental objective is to deter-

mine whether a particular reaction has a flux above or

below a specified value. For this objective, a well-

designed labeling pattern would be one in which flux

distributions that have an objective reaction flux greater

than the specified value can be easily distinguished from

flux distributions with an objective reaction flux less
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than the specified value. As seen in Figure 2, a hypothe-

tical experiment 1 produces measurement distributions

which overlap whereas experiment 2 shows greater

separation. If one were interested in differentiating

between the two partitions, experiment 2 would be

much preferable. This method allows for the scoring of

any label for any given experimental objective without

first knowing the true cellular flux distribution v.

Generating and Evaluating 13C Experimental Hypotheses

An experimental hypothesis is defined as a partition of

the sampled flux distribution set. While many possible

hypotheses could be considered, two rational hypotheses

were studied. The first case attempts to elucidate

whether a reaction has high or low flux (hi-lo). The

solution space is partitioned into all points with vj
>threshold versus vj <threshold. A different hypothesis

is generated for each reaction j. The threshold was cho-

sen to be the median of all vj so that half of all points

would be in each of the two partitions. The second set

of hypotheses tested consisted of biologically relevant

flux ratios. For each point the ratio of two reactions, vi/

vj, was determined to be above or below some threshold

that formed a partition.

Intuitively, a hypothesis score should be high if the

isotopomer distributions coming from one partition are

distinguishable from distributions in the other partition.

While there are several ways of doing this, we chose a
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Figure 2 Method Overview. a) The space of flux distributions is partitioned in two parts corresponding to ‘high’ flux versus ‘low’ flux. A uniform

random sample is drawn from the space and is also partitioned into partition 1 and partition 2. b) For each point in the space the distribution

of experimental measurements is simulated. Hypothetical experiment 1 and experiment 2 with different glucose label mixtures produce different

measurement distributions. The distributions from experiment 2 are more separated, indicating parameters of experiment 2 are more conducive

for differentiating between the high and low partition.
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heuristic metric based on a Z-score, which is commonly

used to determine the difference between two samples.

A Z-score was calculated for each fragment (element) of

the calculated MDV for each simulated flux distribution:

Zi =
|x̄hi − x̄lo|

√

s2
hi + s2

lo + σ
2

where x̄hi and x̄lo are the average fragment enrich-

ments for the upper and lower partitions, respectively,

s2
hi and s2

lo are the variances of fragment enrichments

for the upper and lower partitions, respectively, and the

a is a constant equal to 0.014. a is on the order of mag-

nitude of the uncertainty in measurements. This slight

modification to the standard Z-score puts a lower

bound on the expected experimental variation. The Z-

score of each fragment is added together to give the Z-

score of the experiment.

Z =
∑

i∈fragment

Zi

Using this approach, candidate flux states were

sampled uniformly and experimental hypotheses tested.

Z-scores were calculated for the hi-lo hypothesis corre-

sponding to 1) individual reactions 2) reaction ratios

and 3) two ‘random’ reactions or ratios. Random

hypotheses were tested to estimate the level of noise

associated with the set of flux distributions. Raw and

normalized Z-scores are given in the Additional File 1.

Z-scores varied from the level of noise to a maximum of

>20-fold the level of noise.

To illustrate the differences in label-dependent reac-

tion resolving capacity, two sets of Z-scores correspond-

ing to [1-13C] glucose and [6-13C] glucose are plotted in

Figure 3. Lighter colors indicate higher Z-scores and

ease of measurement. In this case, [6-13C] glucose scores

higher at measuring the pentose phosphate pathway and

most of lower glycolysis, whereas [1-13C] glucose glu-

cose scores much higher at measuring the glyoxylate

shunt. The results suggest that there is no single label

that yields a high score for all experimental objectives.

For example, the exchange of formate (EX_for) could be

easiest measured with a [1,2-13C] glucose; however, this

labeling pattern is bested by [1-13C] glucose for the

measurement of reaction formyltetrahydrofolate defor-

mylase (FTHFD) (Figure 4). This non-universality of

labels is in line with expectations, as it has been pre-

viously shown that the choice of labels can affect the

flux resolution. For many reactions, the best experiment

that could be performed involves hypothetical (non-

commercially available) labels. One example is the ratio

of phosphofructokinase (PFK) flux to fructose bispho-

sphate aldolase (FBA) flux. The best label for determin-

ing this ratio is [1,2,3-13C] glucose (Z = 28.0), which

gives a much higher Z-score than the best commercially

50+Z-score: 0Scale: Linear;

ba

Figure 3 Simulated Z-Scores. Two possible glucose label patterns show different strengths in evaluating different parts of the network. Brighter

colors indicate more easily determined fluxes. a) [1-13C] glucose Z-scores illustrates flux determinability with 100% [1-13C] glucose. b) [6-13C]

glucose Z-scores shows the same network evaluated with [6-13C] glucose. It is observed, for example, that [6-13C] glucose is predicted to

elucidate the pentose phosphate pathway more easily, while [1-13C] glucose better elucidates the glyoxylate shunt.
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available label, [1,2-13C] glucose (Z = 18.5). Thus, there

may be motivation to synthesize compounds with more

complex labeling patterns than commonly used. Addi-

tionally, there are certain reactions which are predicted

to be difficult to measure with any labeling pattern. For

example, the Z-scores for each possible labeled glucose

substrate for the reaction pyruvate oxidase (POX) all lie

within the level of noise, as determined by the compari-

son with random hi-lo experiment Z-scores.

In addition to label-specific reaction flux elucidation

properties, 13C experiments show a clear pathway bias

regardless of labeling pattern. The maximum Z-score of

all labeling patterns was found for each reaction, giving

a metric for the maximum potential for reaction flux

determination using 13C-labeled glucose (Figure 5A).

Then, the fraction of reactions that had a maximum

potential at least twice the noise level was found for

each subsystem (Figure 5b). Reactions that were stoi-

chiometrically fixed by the measured constraints on

acetate, glucose, D-lactate, oxygen, growth rate, and

ATP maintenance were also categorized by subsystem.

Stoichiometrically fixed (i.e. constraint-determined)

reactions have a confidence interval of zero, and thus

are label-independent and receive no additional knowl-

edge from 13C experiments. It was found that histidine,

valine, leucine, and isoleucine metabolism fluxes are

completely identified solely based on the flux con-

straints. On the other hand, prior constraints fix none

of the fluxes in central carbon metabolic systems such

as glycolysis, citric acid cycle, pentose phosphate path-

way, and anaplerotic reactions; however, fluxes in these

pathways are all predicted to be identifiable with a 13C

experiment using optimal labeling patterns for each

reaction. This result is expected as these identifiable

EX_nh4 24.0 18.3 24.0 16.3 13.1 13.4 11.5 13.4 12.1 9.7 11.0 9.7 22.5 8.9 16.7 0.6 0.9 0.5 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.8 0.2 0.6

EX_for 27.2 15.1 21.5 21.9 9.4 21.5 9.4 21.5 18.5 10.4 22.9 3.6 4.4 6.0 27.2 0.4 0.7 0.7 0.2 0.7 0.2 0.7 0.6 0.3 0.7 0 0 0.1 0.9

CS 54.4 44.0 38.7 54.4 43.9 28.4 15.4 28.4 22.8 39.7 36.9 12.1 20.6 43.1 47.9 0.7 0.7 0.9 0.7 0.5 0.2 0.5 0.4 0.7 0.6 0.2 0.3 0.7 0.8

EDA 29.3 28.6 16.7 20.1 23.3 19.6 5.4 19.6 16.1 21.5 12.2 21.4 18.4 11.2 29.3 0.9 0.5 0.6 0.7 0.6 0.1 0.6 0.4 0.6 0.3 0.6 0.5 0.3 0.9

FTHFD 30.8 12.2 13.2 21.7 9.3 30.8 5.0 30.8 25.4 16.6 9.9 2.6 8.6 5.5 16.0 0.3 0.3 0.6 0.2 0.9 0.1 0.9 0.7 0.4 0.2 0 0.2 0.1 0.4

GLYK 13.0 2.4 9.6 10.0 1.8 10.0 1.0 10.0 8.1 1.4 13.0 0.9 1.2 1.0 11.2 0 0.5 0.5 0 0.5 0 0.5 0.4 0 0.8 0 0 0 0.6
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PGI 68.1 59.8 44.0 52.4 68.1 34.1 11.4 34.1 24.8 45.4 32.7 13.6 31.9 60.5 54.0 0.8 0.6 0.7 1 0.5 0.1 0.5 0.3 0.6 0.4 0.2 0.4 0.8 0.7

PGK 61.2 52.8 34.9 41.8 61.2 32.5 8.5 32.5 24.1 39.4 25.4 15.3 30.3 49.3 47.2 0.8 0.5 0.6 0.9 0.5 0.1 0.5 0.3 0.6 0.4 0.2 0.4 0.8 0.7

POX 3.4 3.0 2.6 2.8 2.1 2.2 2.5 2.2 1.8 2.2 2.3 1.5 0.8 1.8 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PFL 22.8 13.3 17.2 21.3 7.2 21.4 7.8 21.4 18.3 9.9 18.5 4.1 3.9 2.6 22.8 0.4 0.6 0.8 0.2 0.8 0.2 0.8 0.7 0.3 0.7 0 0 0 0.9
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PPC / PPCK 11.1 10.8 4.1 7.5 4.1 7.4 5.6 7.4 6.4 6.2 3.4 1.8 2.0 2.2 11.1 0.7 0.1 0.4 0.1 0.4 0.2 0.4 0.3 0.3 0 0 0 0 0.7
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LDHD / PDH 7.9 6.2 7.9 4.8 6.0 5.6 1.5 5.6 4.5 5.3 4.8 2.5 3.7 5.5 7.5 0.4 0.6 0.2 0.4 0.3 0 0.3 0.2 0.3 0.2 0 0.1 0.3 0.5
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pathways are the typical pathways being studied using
13C analysis. Other pathways, such as cysteine, threo-

nine, and lysine metabolism, are completely identifiable

through a combination of prior stoichiometric con-

straints combined with well-chosen 13C experiments.

However, many of the remaining subsystems have a

fraction of reactions that cannot be determined using

any 13C-labeling pattern of glucose. In particular, no

additional information can be obtained from 13C-labeled

glucose experiments about certain biosynthetic path-

ways, nucleotide salvage pathways, reductive citric acid

cycle reactions, and certain alternate pathways periph-

eral to glycolysis, such as an alternate pathways from

DHAP to D-lactate. Measuring metabolites other than

amino acids may give more information on these path-

ways. Note that in this discussion of identifiability, the

Z-score metric indicates that an experiment can signifi-

cantly reduce the confidence interval of a particular

reaction but does not specifically predict the value of

the confidence interval. Confidence intervals are directly

calculated for experimental data sets in a later section

and compared to the Z-scores for the same labeling

patterns.

Dimensionality of Isotopomer Data

The Monte Carlo sampling approach enables the deter-

mination of the dimensionality of simulated 13C experi-

ments for a particular substrate labeling pattern. The

dimensionality gives an indication of the degree to

which a particular substrate labeling pattern can specify

the free dimensions inherent in a network structure,

given a set experimental error. In an extreme case, if all

the data falls on one point (zero dimensions), no addi-

tional information is given from the data. Similarly, a

dimensionality of one indicates that the data can specify

one degree of freedom. Singular value decomposition

(SVD) is a data reduction technique that allows the esti-

mation of data dimensionality (Figure 6a). A data matrix

M of size (nfragments x npoints), consisting of all sample

points generated from Monte Carlo Sampling, is decom-

posed into M = U · Σ · V T where U and V are ortho-

normal bases and Σ is a diagonal matrix containing

singular values in descending order. The singular values

are effectively weightings that describe the information

content of the corresponding vectors in U and V

towards reconstructing the full matrix M. A partial

reconstruction of M is possible by taking only a subset

of the singular values greater than some threshold.

These thresholds have a direct interpretation as the

uncertainty with which a data point can be measured.

For example, a threshold cutoff of 0.01 indicates that

the remaining uncertainty of the data falls within 0.01

or 1% error in the measurement of isotope enrichment.

To determine the dimensionality of the isotopomer

data, SVD was performed on 13C fragments derived

from uniformly sampled flux distribution sets for several

glucose labels. The results are summarized in Figure 6b.

Globally, the choice of glucose labels affects the dimen-

sionality of the resulting isotopomer data set. At the 1%

(0.01) threshold, the label with the highest
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Figure 6 Data Dimensionality with SVD. The linear dimensionality of experimental data space is measured with Singular Value Decomposition.

a) The E. coli model has 313 reactions and 139 degrees of freedom. The isotopomer fragments were computed for a random sample of flux

distributions and plotted in the 186 dimensional space of simulated measurements. The upper bound on the number of degrees of freedom in

this space was determined by singular value decomposition on the samples. The number of singular values was counted until the magnitude of

the next singular value fell below the instrument threshold. b) The number of significant singular values at different levels of experimental error

is tabulated for various labeling patterns, with values ranging from 26 to 100.
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dimensionality was hypothetical [1,2,5-13C] glucose with

73 dimensions. The three labels for which experimental

data was measured in the subsequent section, [1-13C]

glucose, [6-13C] glucose, and 20% [U-13C] glucose, had

dimensions 53, 53 and 35, respectively, at this cutoff.

These values are all significantly lower than the best

label, and, in particular, the uniform labeled experiment

only produces half of the dimensionality as the optimal

experiment. This result is significant. While 139 dimen-

sions (the number of undetermined dimensions for the

model used) are required to specify a unique flux vector,

the dimensionality of the 13C data for each label is sig-

nificantly lower. The best labeling experiment specifies

just over half (73/139 = 0.52) the degrees of freedom

required, and 20% [U-13C] glucose only specifies about

one fourth of the possible degrees of freedom (0.26). It

is worth noting that SVD is a linear operation used to

approximate properties of a non-linear system and the

true degrees of freedom may be even lower than

reported. SVD serves as a useful upper bound on the

dimensionality of data for non-linear systems, but the

difference between SVD dimensionality and true dimen-

sionality may grow to be unacceptable for large systems.

For the system studied here, SVD was found to be of

practical use.

Experimental Validation

In order to assess the agreement of computationally pre-

dicted flux elucidation capacity with experimental data,

we took fluxomic measurements for three labeling pat-

terns in E. coli. Flux distributions that best explain each

set of 13C data were calculated using a non-linear opti-

mization problem:

min
v

Error(v)

subject to :
vmin < v < vmax

S · v = 0

The function Error(v) is a score of how well a given

flux distribution fits the experimental data. It is defined

as:

Error(v) =
∑

i∈ fragments

(fragmenti(v) − measuredi)
2

σ
2

where measured i is the measured fractional enrich-

ment of fragment i, fragment i(v) is the computed frac-

tional enrichment of fragment i as a function of the flux

distribution v, and a = 0:014 is the standard deviation

of the fragments as calculated from experimental

replicates.

Reaction flux confidence ranges were then computed

for all reactions using all three sets of 13C data and all

combinations thereof. Confidence intervals for reaction

rates were computed by maximizing and minimizing the

value of each reaction in turn subject to a slightly

relaxed score.

min
α

/ max
α

cT
i · N · α

subject to :

vmin ≤ N · α ≤ vmax

Error (N · α) ≤ Errormax

where ci = (0, 0, ...0, 1, 0...0) is a vector of all zeros

with a 1 in position i, and Errormax was set based on the

confidence value. Because different data sets provide dif-

ferent levels of consistency, Errormax was chosen to be

30 units greater than the minimum error found.

These intervals were compared with Z-scores calcu-

lated through Monte Carlo methods to assess the ability

of the Z-scores to predict the size of experimental reac-

tion ranges in a label-specific manner (Figure 7a). The

Z-scores were found to be correlated with the relative

flux ranges in a statistically significant manner (Stu-

dent’s T-test, p <8.6 × 10-34). A receiver operating char-

acteristic (ROC) curve suggests that the Z-scores can

identify with both sensitivity and specificity the reactions

that can be elucidated in a label-specific manner, with

better performance predicting ranges that are restricted

more by data (Figure 7b). These findings indicate that

the Z-score is indeed a useful predictor of the degree a

flux range will be constrained by a particular 13C experi-

ment and provide experimental support for the compu-

tational approach taken.

The number of reactions elucidated at particular con-

fidence intervals was then found (Figure 8). Using differ-

ent labels provides different levels of reaction confidence

(Additional File 1). Including no 13C data generates the

largest flux ranges (lower black line), while adding 13C

data reduces the ranges and shifts the curve left. With

almost no exception, including one experiment yields

larger confidence intervals than any combination of two

carbon sources which in turn is a larger range than

including all three sets. Of the single experiment curves,

the 20% [U-13C] glucose curve provides notably worse

ranges than the other two experiments, consistent with

the finding that 20% [U-13C] substrate provides data

with the smallest number of dimensions.

At a reaction confidence of 1 mmol · gDW-1·h-1 (a

relatively non-stringent cutoff), 85 reactions are specified

simply from uptake rate data without any 13C data. Per-

forming the least informative 13C experiment, using 20%

[U-13C] substrate, yields 105 reactions that meet the

confidence criterion, whereas the combination of all

three 13C experiments yields 125 reactions that meet the

criterion. In other words, performing all three experi-

ments will increase the number of elucidated reactions
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by 40 reactions or about 50%. As the model used con-

tains 278 carbon-tracking reactions and reaction groups,

the increase in knowledge at 1 mmol · gDW-1·h-1 confi-

dence from 85 to 125 reactions from using 13C data

indicates that a large gap in the knowledge remains. It

seems apparent that other methods must be developed

to obtain flux information at the genome scale from sin-

gle experiments, as would ultimately be desirable. How-

ever, as noted in the above section, the majority of

reactions that are elucidated by 13C-labeled glucose

experiments lie in central metabolic pathways, which

tend to be both of high interest and not-specifiable by

constraints alone.

Conclusions

We introduce a new framework for calculating the

uncertainty inherent to 13C experiments using Monte

Carlo Sampling. This allows us to predict the success of

experiments before performing them. The method used

here 1) does not require experimental identification of

the ‘real’ flux state a priori [10] and 2) reports scores

for the resolution capability for each reaction as

opposed to Boolean identification calls [11]. This frame-

work reveals several key findings:

• The choice of input label is important, as different

labels perform better than others. In particular, the

commonly-used 20% mixture of uniform label + 80%

natural label was shown computationally and experi-

mentally to resolve significantly fewer reaction fluxes

than either [1-13C] glucose or [6-13C] glucose. Thus,

the amount of information likely to be obtained by a
13C experiment can be predicted in a reaction-speci-

fic manner before having to carry out an experiment.

• There is no universally best label. The best label

depends on the experimental objective. Certain reac-

tions are more precisely measured with some labels

than others, and no label is best at elucidating all

reactions. Certain hypothetical 13C labels of glucose,

for example [1,2,3-13C] glucose and [1,2,5-13C] glu-

cose, are predicted to perform better than commer-

cially available single labels for many reactions.

• The 13C data dimensionality is less than antici-

pated. Whereas each 13C experiment can measure

186 pieces of information at a time, there is a high

degree of interdependence. We measured the true

data dimensionality to be between 35 and 50 dimen-

sions for commercially available labels and as high

as 73 for exotic labels. This high data redundancy

can partially explain why 13C experiments yield

many reaction rates with high uncertainties.

This study suggests limitations of steady-state 13C ana-

lysis using solely amino acids due to the lower than

expected dimensionality of the isotopomer data. How-

ever, steady-state 13C analysis is clearly still useful eluci-

dating reaction fluxes in E. coli metabolism. Notably, as

the study was conducted using only protein-derived

amino acids, it would be of immediate interest to deter-

mine the additional benefit of measuring other classes
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Figure 7 Comparison of Calculated Z-scores and Experimental Flux Ranges. a) For several reactions, the computed Z scores are compared

to the resulting measured flux ranges. Z-scores show (color coded) Z-scores for each of the 12 reactions and three glucose labels. FVA indicates
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of labeled metabolites, as well as the benefit of more

recently developed experimental techniques such as

multi-substrate [10] and dynamic flux labeling [28,29]

experiments. Monte Carlo methods are generic and thus

are well suited to be adapted to the experimental setup

of interest. Additionally, Monte Carlo methods are

amenable to biasing the sampling space based on known

data to improve results; however, this is expected to

incur a corresponding cost in convergence time. Possi-

ble sources of error in the current method include

unwanted bias in the sampled flux space, possible inade-

quacy of the Z-score as a statistical metric over more

sophisticated tests such as the Kolmogorov-Smirnov

test, and inadequacy of the distribution median as a

threshold for use in hi-lo hypotheses. Conducting

Monte Carlo isotopomer analysis on new systems will

become more accessible with the availability of the open

source COBRA Toolbox v2.0 for MATLAB, which

includes the algorithms presented here [30].

Methods

Isotopomer Network Description

The isotopomer network was derived from the iMC1010

E. coli reconstruction [19]. The content is reported in

the Additional File 1. There are a total of 313 irreversi-

ble reactions including 278 that track carbon. All carbon

tracking reactions are broken into elementary forward

and reverse reactions.

First, a central metabolic isotopomer model was gen-

erated that includes a total of 85 reactions, including a

biomass production reaction, which drains the precursor

metabolites used to make biomass, and 14 system

boundary exchange fluxes (for glucose, oxygen, phos-

phate, NO2, NO3, acetate, CO2, ethanol, formate, fuma-

rate, glycerol, D-lactate, pyruvate, and succinate). The

biomass composition is based on one that was reported

previously [16,31] and used in the biosynthetic isotopo-

mer model (see details below), but where the biomass

components are replaced by the amount of ATP,

NADH, NADPH, and central metabolic precursors

needed to synthesize the biomass components (Addi-

tional File 1). The remaining 70 reactions participate in

glycolysis, TCA cycle, pentose phosphate pathway, oxi-

dative phosphorylation, pyruvate metabolism, and ana-

plerotic metabolism. The central metabolic isotopomer

model includes linear mass balance equations for 67

metabolites. Carbon atoms are tracked through 46

metabolites in the core metabolic network. Changes to

the central metabolic reactions include assigning fuma-

rate reductase to utilize menaquinone and demethylme-

naquinone rather than ubiquinone and adding a

phosphate transport reaction coupled to proton

symport.

Aside from the central metabolic reactions contained

in the central isotopomer model, the biosynthetic model

also includes a number of other catabolic and anabolic

reactions. The fluxes were calculated with an additional

constraint that flux through formyltetrahydrofolate

deformylase (which removes the C1 unit from 10-for-

myltetrahydrofolate) was less than or equal to the mea-

sured formate secretion flux. When higher flux through

this reaction was allowed the minimum error improved

by only 0.3%, but the flux through this reaction was

high (around half the glucose uptake rate). To adjust

this aberrant behavior, the optimal flux distributions

and confidence intervals were calculated with this addi-

tional constraint on the formyltetrahydrofolate deformy-

lase flux. The resulting biosynthetic isotopomer model

includes 189 metabolites (126 of which have tracked

carbon atoms), 313 irreversible metabolic reactions (63

of which are reversible and involve tracked carbon

atoms), and 8,612 isotopomer variables (which is equal

to the number of non-linear isotopomer mass balance

constraints). The model also includes a biomass reaction

and 19 system boundary exchange reactions. The bio-

mass reaction was altered to include amino acids,

nucleotides, co-factors, and macromolecules rather than

their precursor metabolites. In addition, the biosynthetic

model balances intracellular protons as well as water

molecules similar to iJR904 [16].
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number of reactions determined at a particular confidence given
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Monte Carlo Sampling

With traditional MCMC, a point is selected within the

space which is then iteratively moved around. At each

step, a random direction is chosen and the next point is

chosen uniformly along this line. The set of points that

this algorithm visits will converge to a uniformly distrib-

uted set. Two modifications were made: 1) Artificial

Centering [32] - Because these biological spaces tend to

be elongated in one direction, it is often beneficial to

choose directions along the “long” direction rather than

uniformly. This can be done by choosing the direction

based on previously visited points. At each step, the

direction is chosen by drawing a vector from the center

of the previous points to one of the previous points cho-

sen at random. 2) In place sampling - Instead of moving

just one point throughout the space, many points are

moved simultaneously. In this way, no “history” is kept,

only the updated position of all the points. This method

is described in greater detail in other literature [33,34].

Computing the Isotopomer Distribution

Each flux distribution and glucose input results in a

unique isotopomer distribution. The cumomer method

[35] and the elementary metabolite unit (EMU) method

[36] were implemented in Matlab and utilized in calcu-

lating isotopomer distributions. These methods involve

solving several linear systems of equations to compute

different groups of isotopomers. For numerical reasons,

a routine is introduced which checks whether all parts

of the network are still connected at every step. Discon-

nected components can occur when fluxes to and from

the component are zero, making it impossible to com-

pute a unique isotopomer distribution within this sub-

network as many isotopomers satisfy the balance

equations. By removing these components first, the

other metabolites can be solved in a numerically stable

fashion. The resulting isotopomers for the amino acids

for each flux distribution are transformed to a mass dis-

tribution. This way, each experiment is abstracted to a

(number of distributions) × (number of fragments)

matrix.

Sample Preparation and 13C Measurement

Culture labeling

Prior to labeling, single colonies of E. coli K12 MG1655

were selected from stock plates and inoculated directly

into 250 ml M9 medium in 500 Erlenmeyer flasks aera-

ted by stirring at 1000 rpm. Cells were grown overnight,

harvested, washed twice with water and used to inocu-

late 50 ml flasks containing 25 ml medium with 2 g/L

13C-labeled D-glucose, with initial OD600 0.005-0.01.

Glucose was supplied as either 100% [1-13C]-labeled,

100% [6-13C]-labeled, or a mixture of 20% uniformly [U-

13C]-labeled with 80% natural glucose (which is ran-

domly 1% 13C). Cells were grown to mid-log phase, cor-

responding to OD600 of 0.6. 3 ml of each culture was

harvested by centrifugation at 4°C. The media was aspi-

rated and analyzed with HPLC to determine the remain-

ing glucose concentration. Cell pellets were placed at

-80°C prior to further analysis.

Derivatization and GC-MS analysis

Cells were resuspended in 0.1 ml 6 M HCl and trans-

ferred to glass vials. Protein was digested into amino

acids under a nitrogen atmosphere for 18 hr at 105°C in

an Eldex H/D Work Station. Digested samples were

dried to remove residual HCl, resuspended with 75 μl

each of tetrahydrofuran and N-tert-butyldimethylsilyl-N-

methyltrifluoroacetamide (Aldrich), and incubated for 1

hr at 80°C to derivatize amino acids. Samples were fil-

tered through 0.2 μm PVDF filters and injected into a

Shimadzu QP2010 Plus GC-MS (0.5 μl with 1:50 split

ratio). GC injection temperature was 250°C and the GC

oven temperature was initially 130°C for 4 min, rising to

230°C at 4°C/min and to 280°C at 20°C/min with a final

hold at this temperature for 2 min. GC flow rate with

helium carrier gas was 50 cm/s. The GC column used

was a 15 m × 0.25 mm × 0.25 m SHRXI-5ms (Shi-

madzu). GC-MS interface temperature was 300 degrees

with 70 eV ionization voltage. The mass spectrometer

was set to scan an m/z range of 50 to 600.

Processing of GC-MS data

Mass data were retrieved from the GC-MS for frag-

ments of 14 derivatized amino acids: cysteine and tryp-

tophan were degraded during amino acid hydrolysis;

asparagine and glutamine were converted respectively to

aspartate and glutamate; arginine was not stable to the

derivatization procedure. For each fragment, these data

comprised mass intensities for the base isotopomer

(without any heavy isotopes, M+0), and isotopomers

with increasing unit mass (up to M+6) relative to that

of M+0. These mass distributions were normalized by

dividing by the sum of M+0 to M+6, and corrected for

naturally-occurring heavy isotopes of the elements H, N,

O, Si, S, and (in moieties from the derivatizing reagent)

C, using matrix-based probabilistic methods as

described [37,38] implemented in Microsoft Excel. Data

were also corrected for carry-over of unlabeled inocu-

lum [37].

Computing Reaction Rates from 13C Data

Reaction rates were computed from 13C data as

described in the Results. In calculating the best fit flux

values from experimental data, a small variation was

introduced to reduce the number of variables and

remove constraints. Let N be a basis for the null space

of S. Then all valid fluxes can be written as:
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v = N · α

min
α

Error N · α

subject to :
vmin < N · α < vmax

This reduced the number of variables from |v| = 335

to |a| = 139. Optimization was performed with the

Tomlab/SNOPT package. This method is an iterative

local optimization and is therefore not guaranteed to

find the optimal solution. To address the issue of local

minima, the procedure was run with many randomly

generated starting points and the lowest minimum was

taken.

Code and Equipment

The code was written in the MATLAB environment and

the COBRA toolbox. Linear Programming was done

with the Tomlab/CPLEX package and nonlinear optimi-

zation with the TOMLAB/SNOPT interface. The EMU

and cumomer method were written in native Matlab

but generated in Perl. Computations were performed on

a Dell Studio XPS desktops (2.6 Ghz core i7 with 9-12

GB ram) and a custom Rocks cluster (100 dual Xeon

5500 series nodes).

Additional material

Additional file 1: Z-scores, confidence intervals, and isotopomer

model. This file contains the absolute and relative Z-scores for individual

reactions across all glucose labeling patterns tested, confidence intervals

calculated using experimental 13C tracing data, and details of the model

that was used in calculations.
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