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Abstract

Background: To further our understanding of immunopeptidomics, improved tools are needed to identify peptides

presented by major histocompatibility complex class I (MHC-I). Many existing tools are limited by their reliance upon

chemical affinity data, which is less biologically relevant than sampling by mass spectrometry, and other tools

are limited by incomplete exploration of machine learning approaches. Herein, we assemble publicly available

data describing human peptides discovered by sampling the MHC-I immunopeptidome with mass spectrometry and

use this database to train random forest classifiers (ForestMHC) to predict presentation by MHC-I.

Results: As measured by precision in the top 1% of predictions, our method outperforms NetMHC and NetMHCpan

on test sets, and it outperforms both these methods and MixMHCpred on new data from an ovarian carcinoma cell

line. We also find that random forest scores correlate monotonically, but not linearly, with known chemical binding

affinities, and an information-based analysis of classifier features shows the importance of anchor positions

for our classification. The random-forest approach also outperforms a deep neural network and a convolutional neural

network trained on identical data. Finally, we use our large database to confirm that gene expression partially

determines peptide presentation.

Conclusions: ForestMHC is a promising method to identify peptides bound by MHC-I. We have demonstrated

the utility of random forest-based approaches in predicting peptide presentation by MHC-I, assembled the

largest known database of MS binding data, and mined this database to show the effect of gene expression

on peptide presentation. ForestMHC has potential applicability to basic immunology, rational vaccine design,

and neoantigen binding prediction for cancer immunotherapy. This method is publicly available for applications and

further validation.
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Background
Identification of peptides presented by major histocom-
patibility complex class I (MHC-I) is important for mul-
tiple applications in immunology and cancer therapy. One
especially promising area is neoantigen-based immuno-
therapy for cancer: for example, one patient with cholan-
giocarcinoma experienced a partial response lasting at

least 2 years after infusion of tumor-infiltrating lympho-
cytes specific to a neoantigen in her tumor [1]. To select a
suitable peptide target, investigators must identify im-
munogenic peptides that the patient’s MHC-I types are
likely to present. Human leukocyte antigen (HLA) A, B,
and C, the genes coding for MHC-I, are highly poly-
morphic, and each variant of MHC-I has a distinct prefer-
ence for one or more binding motifs. Hence, the patient’s
specific alleles determine the set of possible peptides pre-
sented. Further understanding is needed to identify which
peptides MHC-I presents.
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Mass spectrometry (MS) is one approach to deter-
mine peptide presentation by MHC-I. For example,
MS can be used to sample the tumoral immunopepti-
dome after elution of MHC-peptide complexes. This
method is highly accurate and thorough—indeed, it is
the most reliable way to determine the peptides com-
prising the immunopeptidome. However, it is too
costly and time-intensive for routine clinical use. Fur-
thermore, it requires a relatively large amount of sam-
ple from the patient (up to 1cm3), which cannot
always be obtained [2]. Computational methods, which
are less costly and do not require samples, are thus
valuable to predict which peptides a given allele of
MHC-I will bind. Multiple predictors are publicly
available to predict peptide presentation.
Multiple machine learning approaches have been taken

toward predicting peptide presentation by MHC-I. Artifi-
cial neural networks (ANNs) are widely employed; they
capture nonlinear information about the higher-order in-
teractions among amino acids within the peptides [3]. A
number of methods are based on ANNs, including
NetMHC [4, 5]. NetMHC predicts the affinity of peptides
for MHC-I alleles and is trained on chemical affinity data
from in vitro assays. A related predictor, NetMHCstabpan,
is trained on the half-life of the MHC-peptide complex in
vitro [6]. Training data should represent the cases on
which the predictor will be applied as much as possible,
and the reliance of NetMHC and NetMHCstabpan on
chemical affinity data limits their applicability to predic-
tion of actual presentation in vivo by MHC-I. This is be-
cause peptide presentation is also contingent on other
processes unrelated to chemical affinity. For example, pro-
teasomal processing, abundance of proteins containing
specific sequences, and biological half-life are important
for peptide presentation but are not encoded within the
affinity data used to train these predictors [7, 8]. Hence,
NetMHC and NetMHCstabpan are suboptimal for exten-
sion to predicting peptide presentation in vivo because
their training data are limited in biological relevance.
Mass spectrometry datasets are more suitable to train

predictors of peptide binding: because these data describe
epitopes actually presented in vivo, they encapsulate infor-
mation about both chemical affinity and the aforemen-
tioned biological processes required for presentation.
Furthermore, sampling the immunopeptidome does not
require a priori peptide synthesis or selection, and this re-
duces the bias introduced by the investigator [7]. Immu-
nopeptidomic surveying by mass spectrometry is thus
more directly relevant than chemical affinities of
investigator-selected peptides for predicting presence of a
peptide in the immunopeptidome. Two other publicly
available methods are trained on MS datasets: NetMHC-
pan and MixMHCpred. NetMHCpan is based on artificial
neural networks—like others in the NetMHC family—and

its training data include both measurements of chemical
affinity and mass spectrometry elution data [9].
MixMHCpred is based on position weight matrices
(PWMs) describing preferred peptide sequences estab-
lished for each allele by a mixture model, and it is trained
on mass spectrometry elution data alone [2]. The training
data of these two predictors is highly biologically relevant,
and they thus are more suitable for application to predict-
ing presentation by MHC-I.
However, there remain unexplored applications of

models to mass spectrometry datasets. A variety of fea-
tures can be extracted from peptides, including categor-
ical encodings of each residue, binary representations of
certain functional groups, and continuous measurements
of biophysical properties. There is an increasing reliance
upon computationally complex deep neural networks in
applications of machine learning to the biomedical sci-
ences, yet these complex models do not always outper-
form simpler ones in highly diverse feature spaces [10].
Random forest models are well suited for classification
in feature spaces including these different types of infor-
mation. In prediction of peptide presentation, there is a
heavy reliance upon artificial neural network models for
classification and upon BLOSUM encoding as features
[9]. Additional biochemical features and sequence repre-
sentations have the potential to improve performance,
and alternate machine learning frameworks such as ran-
dom forests have the potential to outperform complex
ANNs in these feature spaces. Herein, we use publicly
available MS data to develop feature encodings and ma-
chine learning approaches toward optimizing prediction
of peptide binding.

Results
Database characteristics

The total number of peptides collected from the Prote-
omics Identifications Database (PRIDE), SysteMHC
Atlas, and other published data (see methods) was
1.03E6. To our knowledge, this is the largest database
of its type to date. Of these peptides, 5.7E5 (55%) are
nine amino acids in length (Additional file 1: Figure
S1). This corroborates the known preference of MHC-I
for peptides of length nine and makes peptides of
length nine the priority for classification. Of these non-
amers, 2.9E5 (51%) were reported in polyallelic samples.
We deconvoluted these peptides using MixMHCpred,
with 2.8E4 peptides discarded due to unavailable pre-
dictions for the given alleles and 4.3E4 peptides dis-
carded due to a confidence in allele assignment of less
than 95%. We then pooled the peptides by allele, mer-
ging the deconvoluted peptides with the peptides from
monoallelic sets and from datasets already presented as
deconvoluted using NetMHC. During this pooling, we
included only unique peptides (3.3E5 peptides were
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duplicates). The total number of unique nonamers
assigned to alleles was 1.6E5.
The cell lines in the database spanned B-cell lympho-

blasts, breast cancer, leukemia, lymphoma, glioblastoma,
melanoma, fibroblasts, embryonic kidney cells, and
colon carcinoma. The clinical samples included periph-
eral blood mononuclear cells, melanoma, meningioma,
and lung cancer. The number of MHC-I alleles was 82,
including 65 alleles resolved to four digits and 17 alleles
resolved to two digits. We had 26 HLA-A alleles, 40
HLA-B alleles, and 16 HLA-C alleles.

Feature selection

We began by finding the optimal combination of fea-
tures considered. Namely, we considered hydropathy,
blosum62 sequence encoding, one-hot (sparse) sequence
encoding, presence of an aromatic residue, mass, and
charge at physiological pH. We chose these features by a
combined review of biochemical and MHC-I binding
predictor literature [2, 5, 11]. In particular, we chose the

aromatic feature due to experimental evidence of allo-
steric networks regulating the conformation of MHC-I
binding grooves in a selected allele [2].
To identify the optimal feature combinations, we built

random forest classifiers for all 82 alleles across 63 pos-
sible feature subsets, sizes one to six. For the training
set, we used a 1:1 ratio of randomly generated nonamers
from SwissProt to true binders. For the test set, we used
a 99:1 ratio of these random decoys to true binders. We
employed precision in the top 1% of predictions
(Prec1%) and area under the precision recall curve
(AUPRC) to measure performance, and we calculated
mean performance across 82 alleles on the test set
(Fig. 1). We report performance on this withheld test set
because it is less subject to overfitting than performance
on the training set.
A number of feature sets yielded excellent performance,

with sparse encoding present in all ten of the top ten fea-
ture sets for both AUPRC and Prec1%, and with blosum62
encoding present in 0/10 for both. Hydropathy was

Fig. 1 Performance across all combinations of investigated features on withheld test sets. We compared performance across 63 feature subsets

for all alleles, with a showing Prec1% and b showing AUPRC for each feature combination. (H- hydropathy, A- presence of aromatic, C- charge at

physiological pH, M- mass, S- sparse encoding, B- blosum62 encoding)
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present in 7/10 for both, and mass, charge, and aromati-
city were present in 6/10 for both. Based on this analysis,
we chose the combination of hydropathy, presence of aro-
matic rings, sparse encoding, and mass (HASM): this
combination yields performance within the top 1% of
maximal Prec1% values and AUPRC values, and it has one
fewer feature than the top performer of hydropathy,
charge, presence of aromatic rings, sparse encoding, and
mass (HCASM), reducing the likelihood of overfitting.
The final random forest classifiers use the HASM feature
combination.

Comparison to existing predictors on test data

Using the combination of hydropathy, presence of an
aromatic ring, sparse encoding, and mass features, we
trained a random forest model for each allele. For these
models, we used 1000 trees, gini impurity, and the
square root of the total number of features as a max-
imum. Decoy peptides of length nine were again gener-
ated randomly from SwissProt for a 1:1 class balance
during training and 99:1 class balance during testing.
Our final set of random forest (RF) classifiers achieved

an average Prec1% of 0.69 and AUPRC of 0.73 across test
sets by five-fold cross validation. We compared the per-
formance of our RF classifiers to other publicly available

classifiers—NetMHC (Prec1% 0.54, AUPRC 0.51),
NetMHCpan (Prec1% 0.64, AUPRC 0.65), NetMHCstab-
pan (Prec1% 0.46, AUPRC 0.41), and MixMHCpred
(Prec1% 0.70, AUPRC 0.74). The results across all alleles
by five-fold cross-validation on the test sets are shown in
Fig. 2. By the Mann-Whitney U Test, our RF-based
method outperformed NetMHC, NetMHCpan, and Net
MHCstabpan. There was no significant difference between
the RF method and MixMHCpred.
It was expected that, by this methodology of testing,

the performance of our method could not exceed that of
MixMHCpred for two reasons. First, many of the data in
our database also were used to train MixMHCpred
(MMP). Hence, some peptides assigned to our test set
(drawn at random from the data) were likely included in
the training set during the development of MMP. Sec-
ond, we relied upon MMP to deconvolute 51% of our
peptides, and we discarded all peptides without available
MMP predictions or with a confidence of less than 95%
in the assignment. Thus, the test dataset is biased in
favor of high-certainty peptides for MMP and also con-
tains peptides included in the training of MMP. Given
these conditions, it is remarkable that this new method
performs at a level that is statistically indistinguishable
from MMP.

Fig. 2 RF-based method outperforms existing predictors on unbalanced data. a AUPRC and b Prec1% on withheld test dataare greater for RF

compared to NetMHC, NetMHCpan, and NetMHCstabpan, with no significant difference between MixMHCpred and RF (p > 0.01). P values are by

Mann-Whitney U Test compared to ForestMHC. Data for this figure are provided in Additional file 4
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Feature importance analysis

We next wondered about the information content of
each feature. To measure this, we calculated the mean
reduction in Gini impurity at nodes using each feature
across all trees in each ensemble. We then averaged this
quantity arithmetically across all classifiers (Fig. 3). In-
formation is higher, on average, in the hydropathy and
mass features than the sparse encoding. Positions two
and nine contain substantially more average information
within the hydropathy, aromaticity, and mass features,
and the information for one-hot encoding is higher for
positions two and nine compared to other positions. Fu-
ture work must investigate the relative importance of
features for each allele individually: this information
could yield insight into the particular preferences of each
type of MHC. To rule out the potentially confounding
influence of deconvolution, we repeated the analysis
using only mono-allelic data: findings were similar (Add-
itional file 2: Figure S2). The importance of these fea-
tures is corroborated biologically: most known MHC-I
alleles prefers characteristic amino acids found at two
and nine, the canonical anchor residues [12].

Validation on never-before-seen data

A more rigorous, realistic test is the application of classi-
fiers to data that is both new (never seen by any classi-
fier) and polyallelic (requiring ranking while considering
multiple alleles). We performed an experiment to elute
ligands bound to MHC-I in an ovarian carcinoma cell
line (SK-OV-3), identify them using mass spectrometry

(see Methods). This cell line was not included in the
training data. We obtained 694 high-confidence pep-
tides. We mixed the 534 resultant nonamers computa-
tionally with a 99-fold excess of random decoys. To each
classifier, we provided the HLA alleles (obtained from
Adams et al.) and the list of mixed true peptides and
random decoys [13]. Prec1%—calculated with five differ-
ent sets of decoys mixed in—was higher than all other
methods tested (Fig. 4). Our classifier outperformed
MixMHCpred, NetMHC, NetMHCstabpan, and
NetMHCpan. These results demonstrate the promise of
RF and these features to supercede existing methods of
epitope prioritization.

Comparison with other machine learning methods

We evaluated several other methods of machine learn-
ing, including deep artificial neural networks, but we
consistently noted lower performance than random for-
ests (Additional file 3: Figure S3). All classifiers were
trained on the same database and tested on our new
data from ovarian carcinoma cells with 99-fold excess of
random decoys, using the established four feature sets
(HASM). ForestMHC consistently performed better,
with a mean Prec1% of 0.59 across five different sets of
random decoys. Deep neural networks (mean Prec1%
0.41), convolutional neural networks (mean Prec1%
0.34), and support vector machines (mean Prec1% 0.07)
did not perform as well. Note that the base rate for this
classification problem is 0.01 because of the 99:1 ratio of
classes. These results should be interpreted as a general

Fig. 3 Mean information by feature mirrors canonical anchor residues. The mean information (reduction in Gini impurity) across all classifiers is

shown, with the inset showing only the feature subset of sparse encoding. Note that the information is higher at positions two and nine for the

sparse encoding features (each a 20-dimensional encoding of each amino acid). For the nine-dimensional features of hydropathy, aromaticity,

and mass, the mean information content at positions two and nine is substantially higher than at other positions. Data for this figure are

provided in Additional file 5
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comparison among the machine learning frameworks:
that is, one cannot rule out the possibility that further
optimization of the hyperparameters would improve per-
formance of DNN- and CNN-based methods. The espe-
cially low performance of the SVM is expected given the
importance of nonlinear interactions among residues in
establishing the specificity for binding by MHC-I.

Correlation of RF score with affinity

We next wondered how the RF scores related to experi-
mentally measured affinity data. Using all nonamers with
available IC50 data on the Immune Epitope Database, we

generated RF scores using our predictors and assessed
the correlation with IC50 values (Fig. 5). The relation is
of moderately high monotonicity, with a mean Spear-
man’s coefficient of − 0.59 (range: − 0.16, − 0.79) across
22 alleles, weighted by number of entries. The relation-
ship is weakly linear, with a mean Pearson’s coefficient of
− 0.27 (range: − 0.09, − 0.73).
This type of relationship—monotonic, but not neces-

sarily linear—is sensible for these two quantities: while
the IC50 measurements contain only information about
ligand binding, MS elution datasets contain information
about whether the peptide is actually found bound to
MHC-I biologically. The latter process is complex and
depends on proteasomal processing and abundance of
source proteins, among other factors. Furthermore,
chemical affinity data require a priori selection of epi-
topes to test, which limits the space of the immunopep-
tidome explored [7].

Effect of gene expression on peptide presentation

Previous studies have demonstrated that peptides de-
rived from proteins coded by highly expressed genes are
more likely to be presented by MHC-I [8, 14]. Using our
large database, we sought to validate this claim. Using
mRNA gene expression data for each cell line and clin-
ical sample, or for its closest proxy, we compared the ex-
pression of genes that code for peptides presented by
MHC-I to those that do not (Fig. 6). The mean Cliff ’s d
value was 0.60 (range: 0.47, 0.76) when unweighted and
0.59 when weighted by the number of genes successfully
mapped from proteins. Hence, mining our large database
corroborates previous findings that gene expression has
a large positive effect on presentation by MHC-I. These
data may prove useful as features in future iterations of
ForestMHC.

Fig. 4 New method outperforms existing classifiers on never-before-

seen MS data. Precision in the top 1% of predictions for our method is

superior compared to Prec1% of existing methods on newly generated

data from ovarian carcinoma cell culture. P values are by Student’s t-test

Fig. 5 RF score correlates monotonically with IC50 affinity. a Example plot shows data from HLA-A68:01. b Spearman coefficients for IC50 vs RF

score by allele; box plot shown is unweighted and shows IQR within box and median by line within
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Discussion
Herein, we have applied a random-forest approach to
predict peptide presentation by MHC-I. The method
yields greater precision than NetMHC and NetMHCpan
on withheld test sets by cross validation. Note that For-
estMHC performs indistinguishably from MixMHCpred
during cross validation—in interpreting this result, one
must recall two advantages that MixMHCpred has in
this comparison. First, MixMHCpred was used for de-
convolution of polyallelic datasets, and we discarded
data that was not deconvoluted with high confidence.
Second, MixMHCpred and ForestMHC share much of
the same training data. There are therefore peptides in
each withheld testing set that were present in the train-
ing set of MixMHCpred.
Our method outperforms MixMHCpred, NetMHC,

and NetMHCpan when tested on new ovarian carcin-
oma data not found in the training set of any classi-
fier. This is consistent with the notion that a random
forest model has the potential to outperform artificial
neural networks for classification based upon a di-
verse set of binary, categorical, and continuous bio-
physical features. Further validation is needed on
other independent samples, but this high performance
on new data highlights the promise of ForestMHC, a
random forest model, in epitope binding prediction.
In our analysis of feature importance, the relatively
higher importance of features at positions two and
nine dovetails well with existing knowledge about an-
chor positions for MHC-I. It will be of interest in the
future to examine the feature-wise information con-
tent for individual ForestMHC predictors to identify
MHC-I types with atypical binding preferences.

The random forest scores correlate monotonically with
IC50 values, which further validates the predictions of For-
estMHC. The lack of linear correlation is interesting, and
we hypothesize that it is absent because MS data is only
partially dependent on chemical affinity data. Further ana-
lysis should strive to identify other explicative factors
within MS data. For example, analysis of our large database
corroborates the positive effect of gene expression on pres-
entation of peptides derived from those genes. This dem-
onstrates just one advantage of training classifiers with MS
data: they intrinsically depend on gene expression, while in
vitro chemical affinity data for synthetic peptides do not.
Future performance improvements might be gained by in-
tegrating MS data with other data sources, such as gene
expression and proteasomal cleavage signatures [9].
ForestMHC outperforms other machine learning ap-

proaches with identical training data, including a deep
neural network and convolutional neural network. The
most significant advances herein are the development of
a new predictor of peptide binding available for public
use, the demonstration of random forests’ utility in pre-
diction of presentation by MHC-I, the assembly of a
large training dataset of MS data, and investigation of
both biochemical and sequence-based features. Though
the majority of peptides presented by MHC-I are of
length nine, future work must also include support for
peptides of other lengths. Furthermore, ForestMHC has
the potential to be extended to identify neoantigens
from tumoral specimens: this extension and validation
thereof will require functional T-cell assays to establish
immunogenicity of bound peptides. Finally, there are in-
sufficient MS data to train classifiers for many HLA
class I alleles, and we did not train any classifiers to pre-
dict binding to HLA class II. As more MS data become
available, we will continue to extend the coverage of
ForestMHC.

Conclusions

Identifying peptides presented by MHC-I is critical to
extend our knowledge of the immunopeptidome and for
applications such as neoantigen-based cancer immuno-
therapy strategies. Herein, we have assembled the largest
known MS database of peptides bound to MHC-I and
used a filtered subset of it to train random forest classi-
fiers for our ForestMHC method. ForestMHC yields im-
proved precision by cross-validation over NetMHC and
NetMHCpan, and it outperforms MixMHCpred, Net
MHC, and NetMHCpan on new MS data from an ovar-
ian carcinoma cell line not included in the training data.
We also have shown that random forest scores gener-
ated by ForestMHC correlate with chemical affinity data
and have analyzed peptide information content to cor-
roborate the canonical importance of residues at posi-
tions two and nine. Finally, we have mined our large

Fig. 6 Gene expression has a modestly large positive effect on

peptide presentation. The Cliff’s d values shown here are for pooled

cell lines and clinical samples within the database
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databased to confirm previous reports that gene expres-
sion has a large effect on the presentation of derived
peptides. ForestMHC is a promising predictor of peptide
presentation by MHC-I.

Methods

Dataset and pre-processing

We acquired publically available mass spectrometry pep-
tide elution datasets from PRIDE (https://www.ebi.ac.uk/
pride/archive/) [15, 16], SysteMHC (https://systemhca-
tlas.org/) [17], and supplementary files of individual pub-
lications, for a total of 24 distinct data sets [2, 7, 18–35].
Only datasets with false discovery rates of 5% or lower
were included. We excluded peptides if their length was
not nine amino acids or if they included any amino acids
outside of the standard set of 20. We pooled
mono-allelic data by allele and deconvoluted poly-allelic
data using MixMHCpred with a p value threshold of
0.05 before pooling [8]. We discarded entries for which
MixMHCpred predictions were unavailable, and we also
discarded duplicate entries for a given allele. We trained
classifiers only for alleles with 50 or more peptides from
MS datasets. For class balance during training, we added
randomly generated nonamers from SwissProt for a 1:1
ratio (uniprot.org). For testing, the ratio of decoys to
true binders was 99:1 ratio.

Machine learning frameworks

We trained one classifier for each individual allele. For
the random forest approach, we used 1000 trees, allowed
the square root of the total number of features at each
decision node, and performed bootstrapping. For the
convolutional neural network approach, we used a modi-
fied version of the approach taken by Hu & Liu [36]. We
encoded each amino acid in 20 channels representing
the standard amino acids. By layer, we convolved this in-
put with 512 filters (kernel size: 2, stride: 1), derived the
max pool (kernel size: 2, stride: 2), convolved with 512
filters again (kernel size: 3, stride: 1), flattened, proc-
essed by a fully-connected layer (400 units, ReLU acti-
vation function), discarded using a dropout layer (40%
dropout), and finally fed this result into two logits. We
used cross entropy with softmax to calculate loss. For
the deep neural network approach, we used two fully
connected layers of 500 and 100 units. For the
C-support vector classification, we used the radial basis
function kernel with gamma of 4.83e-3 and with a
shrinking heuristic.

Feature engineering

We chose features from among blosum62 encoding,
sparse encoding, hydropathy score, indicator of presence
of an aromatic ring, molar mass, and charge of the
amino acid at physiological pH. To determine the

optimal subset, we conducted an exhaustive search of all
possible subsets of sizes from one to six, inclusive. We
defined information per feature as reduction in Gini im-
purity at nodes using each feature (averaged across all
trees in the ensemble), and we averaged this quantity
across all classifiers.

Performance metrics

To measure performance of our classifiers, we calculated
Prec1% after mixing true binders with a 99-fold excess
of random decoys from SwissProt. This metric has been
used by others in the development of classifiers, and it is
attractive because of its encapsulation of real-world ap-
plications for the classifiers [7, 8]. That is, the classifiers
produced herein are designed for prioritization of puta-
tive neoantigens for experimental testing by immuno-
logic assays. The best measure of a useful classifier, thus,
is its ability to prioritize truly bound peptides over the
noise of random sequences. Furthermore, the range of
possible values for Prec1% with a 99:1 class ratio in-
cludes 1.0 for a perfect classifier and 0.01 for a random
classifier. There must always be a user-defined cutoff for
classifiers to delineate positive predictions from negative
predictions, and we label the top 1% of ranked peptides
as our predicted positives and the remaining 99% as our
predicted negatives. Hence, we established Prec1% as the
principal metric.
As a secondary metric, we chose the AUPRC. Though

the AUPRC is less directly translatable to the intended
use of these classifiers, the metric also is useful to evalu-
ate the relative proportion of true positives within pre-
dicted positives [37]. Furthermore, the AUPRC better
reflects a classifier’s ability to separate highly unbalanced
datasets compared to the area under the receiver operat-
ing characteristic curve (AUROC). While the AUROC
has a value of 0.5 for a random classifier no matter the
ratio of negatives to positives, the AUPRC’s value for a
random classifier is the ratio of the positives to negatives
[37]. Hence, with our ratio of cases and controls, the
AUPRC value would be 0.01 for a random classifier.
Mean Prec1% and AUPRC were calculated by five-fold

stratified cross validation on the test set. Specifically, over
five iterations, 25% of the MS data was chosen at random
and withheld from the training of RF classifiers. After
training with the other 75% of data, the withheld data was
used to test all classifiers, namely MixMHCpred 1.1,
NetMHCpan 4.0, NetMHC 4.0, and NetMHCstabpan 1.0.
The test set consisted of the MS data along with a 99-fold
excess of decoys from SwissProt.

SK-OV-3 MHC-I peptide identification methods

Cell line and antibody

We characterized the HLA class I peptidome of an ovar-
ian carcinoma cell line, SK-OV-3 (ATCC HTB-77),
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which we purchased directly from the American Type
Culture Collection. W6/32 monoclonal antibody (Bio X
Cell, Catalog #BE0079) was cross-linked to Protein-A
Agarose (Santa Cruz sc-2001) beads using dimethyl
pimelimidate (D8388 Sigma).

Purification of HLA class I complexes

We conducted the experiment in accordance with the
procedure outlined by Bassani-Sternberg et al. [8]. Briefly,
we lysed a single pellet of 3E7 SK-OV-3 cells with 0.25%
sodium deoxycholate, 0.2 mM iodoacetamide, 1 mM
EDTA, 1:200 Protease/Phosphatase inhibitors (Thermo),
1 mM PMSF, and 1% octyl-β-D glucopyranoside (Sigma)
in PBS at 4 °C for one hour. The lysate was cleared for one
hour at 20,000 x g prior to immunoaffinity purification of
HLA class I molecules with the cross-linked W6/32 anti-
body. We then washed beads with 10 x bead volume of
150mM NaCl, 20mM Tris.HCl (buffer A), 10 volumes of
400mM NaCl, 20mM Tris.HCl, 10 volumes of buffer A
again, and lastly with seven volumes of 20mM Tris.HCl,
pH 8.0. Next, we eluted HLA class I molecules by the
addition of 500 μl of 0.1 N acetic acid at room temperature
in two steps following a five-minute incubation each time.

Purification and concentration of HLA class I peptides

We loaded HLA complexes and eluted HLA class I pep-
tides onto a pre-equilibrated Sep-Pak tC18 column (Wa-
ters, Milford, MA) and washed with excess 1% formic
acid. Bound peptides were eluted with 70% acetonitrile
(ACN) and 1% formic acid before being lyophilized.

LC-MS/MS analysis of HLA class I peptides

Peptides were reconstituted in 5% formic acid and ana-
lyzed by LC-MS/MS on a Thermo Orbitrap Fusion Mass
Spectrometer. We separated peptides by reverse-phase
HPLC on a hand-packed column (packed with 40 cm of
1.8 μm, 120 Å pores, Sepax GP-C18, Sepax Technolo-
gies, Newark, DE) using a 75 min gradient of 5–25% buf-
fer B (ACN, 0.1% FA) at a 350 nl/min. Peptides were
detected using a Top20 method. For each cycle, we ac-
quired one full MS scan of m/z = 375–1400 in the Orbi-
trap at a resolution of 120,000 at m/z with AGC target
= 5 × 105. Each full scan was followed by the selection of
up to 20 of the most intense ions for CID and MS/MS
analysis in the linear ion trap. Selected ions were ex-
cluded from further analysis for 40s. We also rejected
ions with unassigned charge or charge of + 1. Maximum
ion accumulation times were 100 ms for each full MS
scan and 35 ms for MS/MS scans, and all scans were
collected in centroid mode.

Mass spectrometry data analysis of HLA peptides

We searched data separately against two different data-
bases using SEQUEST [38]. One search used a set of >

200,000 previously identified MHC-I bound peptides
downloaded from the Immune Epitope Database (ied-
b.org) and a null enzyme digestion specificity: that is,
only the complete sequences as downloaded were con-
sidered as potential matches. A second search used the
complete set of reviewed human protein sequences from
Uniprot [39], including splice isoforms. This search was
performed with “no enzyme” specificity which considers
all possible peptide sequences > 6 amino acids and <
3500 Da total MH+. We used a composite database con-
taining the translated sequences of all predicted open
reading frames of the human genome and their reversed
complement to enable target-decoy filtering. We used
the following search parameters: a precursor mass toler-
ance of ±20 ppm, 1.0 Da product ion mass tolerance, no
enzyme specificity, a static modification of carbamido-
methylation on cysteine (+ 57.0214), and a dynamic
modification of methionine oxidation (+ 15.9949). We
filtered peptide spectral matches to a FDR of 1% using
the target-decoy strategy combined with linear discrim-
inant analysis (LDA) using SEQUEST scoring parameters
including Xcorr, ΔCn′, precursor mass error, and charge
state [40, 41].

Application of classifiers to SK-OV-3 dataset

We found the allele types to be A03, A68, B18, B35 C04,
and C05 in published data [13]. We mixed the true
binders with a 99-fold excess of decoys generated from
SwissProt, and then we applied the available random for-
est classifiers matching the HLA alleles (all except B35).
The rank of peptides was determined by the maximum
of their random forest scores across all six HLA alleles.
We repeated this testing five times, with different sets of
random decoys mixed in each time. No data from the
SK-OV-3 cell line were included in the training set or in
the test sets for cross-validation.

Analysis of effect of gene expression on presentation

We pooled the lists of source genes for presented pep-
tides by cell line or clinical samples across studies. Tran-
scriptomes for given cell lines and samples—or, when
unavailable, closely matched proxies—were from NCBI
Gene Expression Omnibus and EBI Expression Atlas
[42, 43]. We used the approach taken by Pearson et al.
to analyze the effect size of gene expression [14]. Cliff ’s
d value described the effect size; we included all samples
with more than 50 genes successfully mapped from pep-
tides, and we weighted the mean across samples by the
number of genes in each sample.

Correlation of affinity and RF score

From the Immune Epitope Database (IEDB, iedb.org),
we downloaded all existing IC50 data for HLA-A, B, and
C [44]. We excluded any allele with fewer than 25
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entries or for which no random forest classifier was
available. For the alleles with sufficient affinity data and
a trained classifier, we generated RF scores and corre-
lated them with IC50 values using Spearman’s correl-
ation to evaluate for monotonicity. We calculated the
mean coefficient by weighting according to the number
of entries for each allele.

Additional files

Additional file 1: Figure S1. Length distribution of peptides in database.

The majority of peptides were length nine (55%), followed by lengths ten

(18%), eleven (11%), eight (5%), and twelve (4%). This is consistent with the

known preference of MHC-I for nonamers. (TIF 3164 kb)

Additional file 2: Figure S2. Feature information for only mono-allelic

samples. As seen in analysis of all samples, information (by mean reduction

in Gini impurity) is higher for positions two and nine—both within sparse

encoding and the biochemical features (TIF 6328 kb)

Additional file 3: Figure S3. Alternative machine learning methods do

not perform as well as RF. Compared to RF, the precision in the top 1%

of predictions for SK-OV-3 data is lower for other machine learning (ML)

methods, including convolutional neural network (CNN), deep neural net-

work (DNN), and support vector machine (SVM). Black bars show standard

deviation on five-fold validation with different sets of random decoys.

(TIF 3164 kb)

Additional file 4: Individual data points comprising plotted Prec1% and

AUPRC in Fig. 2, along with AUROC values. (TXT 247 kb)

Additional file 5: Individual data points comprising plotted feature

importances in Fig. 3. (TXT 367 kb)
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