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Abstract—Customizable programs and program families pro-
vide user-selectable features to allow users to tailor a program
to an application scenario. Knowing in advance which feature
selection yields the best performance is difficult because a direct
measurement of all possible feature combinations is infeasible.
Our work aims at predicting program performance based on
selected features. However, when features interact, accurate
predictions are challenging. An interaction occurs when a
particular feature combination has an unexpected influence
on performance. We present a method that automatically
detects performance-relevant feature interactions to improve
prediction accuracy. To this end, we propose three heuristics
to reduce the number of measurements required to detect
interactions. Our evaluation consists of six real-world case stud-
ies from varying domains (e.g., databases, encoding libraries,
and web servers) using different configuration techniques (e.g.,
configuration files and preprocessor flags). Results show an
average prediction accuracy of 95 %.

I. INTRODUCTION

There are many ways to customize a program. Commonly,

a program uses command-line parameters, configuration files,

etc. [1]. Another way is to derive tailor-made programs at

compile-time using product-line technology. In product-line

engineering, stakeholders derive tailored programs by means

of a program generator to satisfy their requirements [2]. The

generation process is based on features, where a feature is a

stakeholder-visible behavior or characteristic of a program [2].

By mapping features to implementation units, a generator

produces a program based on a user’s feature selection. In

this paper, we use product-line terminology and call any

customization option that stakeholders can select at compile-

time or load-time a feature of a program.

Stakeholders are also interested in non-functional prop-

erties of a program. For example, a database management

system is usually customized to achieve maximum perfor-

mance when used on a server, but is customized differently

for low energy consumption when deployed on a battery-

supplied system (e.g., on a smartphone or sensor node).

Besides the target platform, other factors influence non-

functional properties of a program. Database performance

depends on the workload, cache size, page size, disk speed,

reliability and security features, and so forth. Non-functional

properties can be customized by selecting a specific set of

features, called a configuration, that yields a valid program.

However, finding the best configuration efficiently is a hard

task. There can be hundreds of features resulting in myriads of

configurations: 33 optional and independent features yields a

configuration for each human on the planet, and 320 optional

features yields more configurations than there are estimated

atoms in the universe. To find the configuration with the best

performance for a specific workload requires an intelligent

search; brute-force is infeasible.

We aim at predicting a configuration’s non-functional

properties for a specific workload based on the user-selected

features [3][4]. That is, we aggregate the influence of each

selected feature on a non-functional property to compute the

properties of a specific configuration. Here, we concentrate

on performance predictions only. Unfortunately, the accuracy

of performance predictions may be low, because many

factors influence performance. Usually, a property, such as

performance, is program-wide: it emerges from the presence

and interplay of multiple features. For example, database

performance depends on whether a search index or encryption

is used and how both features operate together. If we

knew how the combined presence of two features influences

performance, we could predict a configuration’s performance

more accurately. Two features interact if their simultaneous

presence in a configuration leads to an unexpected behavior,

whereas their individual presences do not [5][6].

Today, developers detect feature interactions by analyzing

the program (e.g. source code or control flow) or specification

of features [7]. These and similar approaches require sub-

stantial domain knowledge, exhaustive analysis capacities, or

availability of source code to achieve the task. Furthermore,

each implementation technique (e.g., configuration options,

#ifdef statements, generators, components, and aspects)

requires a specialized solution. To the best of our knowledge,

there is no generally applicable approach that treats a

customizable program as a black box and detects performance

feature interactions automatically.

We improve the accuracy of predictions in two steps: (i)

we detect which features interact and (ii) we measure to

what extent they interact. In our approach, we aim at finding

the sweet spot between prediction accuracy, generality in

terms of a black-box approach, and measurement effort.
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The distinguishing property of our approach is that we

neither require domain knowledge, source code, nor complex

program-analysis methods, and we are not restricted to

special implementation techniques, programming languages,

or domains. Overall, we make the following contributions:

• An approach for efficient (in terms of measurement

complexity) automated detection and quantification of

performance feature interactions to enable an accurate

prediction of a configuration’s performance.

• An improved tool, called SPL Conqueror [8], to measure

performance, detect feature interactions, and predict

performance in an automated manner.

• A demonstration of practicality and generality of our

approach with six customizable programs and product

lines from different domains, programming languages,

and customization mechanism.

• A 95 percent prediction accuracy when feature interac-

tions are included, which is a 15 percent improvement

over an approach that takes no interactions into account.

In contrast to our previous work [3][8], we (1) do not

rely on domain knowledge, (2) reduce the effort for pair-

wise measurement, (3) measure and predict performance

instead of footprint size, (4) incorporate higher-order feature

interactions, and (5) evaluate our approach with additional

industrial product lines.

II. A MODEL OF FEATURE INTERACTIONS

Our work relies on a recent model of feature composi-

tion [9]. If program P consists of features a, b, and c, we

write: P = a · b · c where · denotes the associative and

commutative composition of features. Evaluating a · b · c
generates P .1

Features interact: Features that perform one way in

isolation may behave differently when other features are

present; interactions may affect semantics as well as (in our

case) performance of the overall system. A classic example

is a flood-control (fc) sensor working with a fire-alarm (fa)

sensor [10]. If only one of fc or fa is present, the behavior is

unambiguous: Water is turned on when fire is detected and

turned off when a flood is detected. When fc and fa are both

present, there is an interaction fc#fa that turns water off

after the fire sensor turned water on to prevent a fire. In code,

we make this interaction explicit such that we can control

this interaction with an appropriate behavior. Nevertheless,

the interaction is present whether we handle it or not.

More generally, if a program P contains features a and b,
it should also include the interaction a#b. Basic mathematics

encodes these ideas. When a stakeholder wants features a
and b, (s)he also wants their interaction a#b (because a#b
says how a and b are to work correctly together, e.g., keeping

water on when fire and flood are detected). The associative

1Henceforth, capital letters denote compositions of one or more terms,
lowercase letters a are terms (features or feature interactions).

and commutative operation × expands a given configuration

to all feature terms and all feature-interaction terms:2

a× b = a#b · a · b (1)

That is, a program does not only contain the behavior of

each individual feature, but also the interaction behaviors

among all features. Many of these feature interactions have

no observable effect; only some of them are relevant. In

this paper, we propose heuristics to detect only the relevant

performance feature interactions.

To relate the above abstract model to performance pre-

diction, we state that performance of a feature composition

Π(a · b) be the sum of their individual performance values:3

Π(a · b) = Π(a) + Π(b) (2)

From (1) and (2), we estimate P ’s performance as follows:

Π(P ) = Π(a× b× c)

= Π(a · b · c · a#b · a#c · b#c · a#b#c)

= Π(a) + Π(b) + Π(c) +

Π(a#b) + Π(a#c) + Π(b#c) + Π(a#b#c)

To improve prediction accuracy, we need to determine

the influence of an interaction on performance. We use a

basic result that follows from (1) and (2). If we can measure

a performance value for Π(a) and Π(b), we certainly can

measure the value of Π(a× b). We therefore know the value

of Π(a#b):

Π(a#b) = Π(a× b)−Π(a)−Π(b) (3)

Here is the challenge: a product of n features yields

O(2n) terms. We cannot compute a value for each term,

as this is infeasible for anything beyond programs with few

features. Furthermore, (3) assumes that we can measure the

performance influence of each feature in isolation. This is

not always possible. We avoid both problems by composing

multiple terms that cannot be separately measured as a

single term, called a delta. Given a base configuration C,

we compute the impact of a feature a on C’s performance

as the performance delta induced by feature a:

ΔaC = Π(a× C)−Π(C) (4)

From (4) and (1), an equivalent definition of ΔaC is:

ΔaC = Π(a× C)−Π(C) // (4)

= Π(a#C) + Π(a) + Π(C)−Π(C) // (1)

= Π(a#C) + Π(a) (5)

That is, ΔaC is the performance contribution of a by itself

plus the performance contributions of a’s interaction with all

2Commutativity and other axioms of sequential, interaction, and product
composition are spelled out in [9]; details beyond what is presented here
are non-essential to this paper.

3As a limitation of this approach, we require additivity of performance
measurements.



terms in C. (If C is the empty set, then ΔaC = Π(a)). If

C is a product of i features, ΔaC is a sum of O(2i) terms.

As we demonstrate in subsequent sections, knowing ΔaC
for some C is often sufficient to accurately predict the

performance of programs that include a. We do not need to

assign values to each of ΔaC ’s terms; we measure only two

variants of (4) instead of 2i terms. Herein lies the key to the

efficiency and practicality of our approach.

III. PREDICTING PERFORMANCE

We predict performance (and other non-functional prop-

erties) by measuring the influence of each feature, its delta,

and summing the deltas for all relevant features. With few

measurements (linear complexity in the number of features),

we can predict performance of all configurations (exponential

in the number of features). Although the approach is simple,

it yields surprisingly good results.

The general concept of quantifying the influence of each

feature on performance is as follows: For each feature

a, we find a configuration min(a) that is minimal in the

number of features such that min(a) does not contain a and

both min(a) and a×min(a) are valid configurations.4 We

determine each feature’s delta as:

Δamin = Π(a×min(a)) − Π(min(a))

Consider the feature model in Figure 1, which has five

features. The minimal configuration for each feature is:5

Feature min()
b {}
i b
t b
e b
d b× e

We need only five measurements to determine the influence

of each feature (all values in our example are measured in

transactions per second):

Δbmin = Π(b)− 0 = 100

Δimin = Π(b× i)−Π(b) = 15

Δtmin = Π(b× t)−Π(b) = − 10

Δemin = Π(b× e)−Π(b) = − 20

Δdmin = Π(b× e× d)−Π(b× e) = − 10

4Features may not be independent, such that we cannot measure arbitrary
configurations. We explored calculating deltas in the presence of complex
domain dependencies previously [3]. It is outside the scope of this paper.

With constraints between features, in principle, there can be multiple
minimal configurations (for example, in the presence of mutually exclusive
features). In this case, we use any minimal configuration. Furthermore,
we admit the empty or null program as a minimal configuration when
determining the performance of a root feature.

5A feature model, a standard idea in product-line engineering [2],
defines features and their relationships. Features are decomposed into a
hierarchical structure and are marked as mandatory, optional, or mutually
exclusive. To select a child feature, the parent feature must be selected.
A configuration is valid if its feature selection fulfills all constraints (i.e.,
arbitrary propositional formulas) of the feature model.
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Figure 1. Measuring deltas for features and interactions.

To predict the performance of a configuration, we simply

add the deltas of all relevant features. For example, for

configuration b×t×i, we predict Δbmin+Δtmin+Δimin =
100− 10 + 15 = 105.

Unfortunately, this prediction scheme is inaccurate. As

mentioned earlier, when measuring feature deltas, we might

obtain very different results when using different config-

urations. Consider Figure 1b, which computes the delta

for feature t for a different configuration. Our first value,

computed above, was Δtmin = −10, whereas the newly

computed value is Δtb×i = −5. Consequently, predictions

for the same configuration b× t× i will differ when using

Δtmin (105) or Δtb×i (110). The difference is due to

feature interactions. Detecting and quantifying the influence

of interactions allows us to overcome the differences among

different deltas leading to consistent predictions. The question

is: Which features interact that cause this discrepancy?

If we know that two features interact, we can improve

our prediction by measuring the delta for their interaction.

Suppose configuration C has both features a and b. The

contribution of the interaction of a and b to C is:

Δ(a#b)C = Π(a#b× C)−Π(C)

= Π(a#b#C) + Π(a#b) + Π(C)−Π(C)

= Π(a#b) + Π(a#b#C) (6)

Similar to the delta of a feature, the delta of interaction a#b
includes the interaction a#b and all interaction terms of a#b
with terms in C.

In Figure 1c, we illustrate such a measurement for



interaction i#t. Knowing the interaction’s delta improves

our predictions: in our example, it patches the value of

Δtmin. If more than two features interact (a.k.a., higher-

order interactions [11]), we proceed in a similar way. The

challenge is how to find interactions that actually contribute

to performance out of an exponential number of potential

interactions.

IV. AUTOMATED DETECTION OF FEATURE INTERACTIONS

Our goal is to identify feature interactions automatically

using a small number of measurements. Our approach

consists of two steps: (1) identifying features that participate

in some interactions (called interacting features) and (2)

finding minimal combinations of features that actually cause

a feature interaction. We use the setting from Figure 1 as

our running example.

A. Detecting Interacting Features

Our first step is to identify features that interact. The

rationale is to reduce our search space. For example, suppose

a program has 16 features, in which 4 features interact, the

rest do not. We have to look only at 24 = 16 instead of

216 = 65536 configurations to detect interactions.

In the presence of interacting features, the delta for a

feature a differs depending on which base configurations it

was measured with. We say a is not an interacting feature
if ΔaC is the same for all possible base configurations C
(within some measurement accuracy). Conversely, if ΔaC
changes with different configurations of C, we know that a
is interacting. We express this as:

a interacts ⇔ ∃ C, D | C �= D ∧ ΔaC �= ΔaD

To avoid measuring ΔaC for a potentially exponential

number of configurations of C, we use a heuristic. We

determine the deltas of a that are most likely to differ,

because it is affected by the largest number of feature

interactions: We compare Δamin, the delta for the minimal

configuration, with Δamax, a delta for a configuration with

most features selected. Let max(a) and a×max(a) be two

valid configurations, such that max(a) does not contain a
and is a maximal set of features that could be composed

with a. We call max(a) a maximal configuration.6 Δamax

is their performance difference:

Δamax = Π(a×max(a)) − Π(max(a))

The rationale of determining max(a) is that it maximizes

the number of features that could interact with a. Conse-

quently, if Δamin and Δamax are similar, then a does not

interact with the features that are present in max(a) but not

in min(a). Otherwise, a interacts with those features (we

do not know yet with which features and to what extent).

Thus, with at most four measurements per feature (two for

6We allow the empty set as a valid configuration. This is necessary to
create a maximal configuration for mandatory features.

Δamin using Π(a×Min) and Π(Min), and two for Δamax

using Π(a×Max) and Π(Max)), we discover interacting

features.7

In our running example, we determine the following max-

imal configurations and assume the following corresponding

measurements:8

Feature max() Π(max())
i b × t × e × d 60
t b × i × e × d 85
e b × i × t 110
d b × i × t × e 90

Note max(e) does not include d, as d requires e for

a valid configuration (Figure 1). With these additional

measurements, we compute the additional deltas as follows

with six measurements:

Δimax = Π(i×max(i))−Π(max(i)) = 20

Δtmax = Π(t×max(t))−Π(max(t)) = −5

Δemax = Π(e×max(e))−Π(max(e)) = −20

Δdmax = Π(d×max(d))−Π(max(d)) = −10

We conclude that features i and t are interacting:

Δimin �= Δimax since 15 �= 20

Δtmin �= Δtmax since − 10 �= −5

Δemin = Δemax since − 20 = −20

Δdmin = Δdmax since − 10 = −10

We know that feature i interacts with a feature in the set

max(i)\min(i). From these candidate features, we can

exclude features b, e, and d, because their deltas do not

change. Feature t remains the only candidate for interaction.

The same conclusion is reached had we analyzed feature

t (concluding feature i is the only possible interaction

candidate). In this way, we found the feature combination

that causes an interaction. Note that if we find more than two

interacting features, we have no information which feature

combination causes an interaction. This is the goal of the

next step.

B. Identifying Feature Combinations Causing Interactions

After detecting all interacting features, we have to find the

specific, valid combinations that actually have an influence

on performance. Suppose we know that features a, b, and c
are interacting. We have to identify which of the following

interactions have an influence on performance: a#b, a#c,
b#c, or a#b#c. Again, we do not want to measure all

combinations (whose number is exponential in the number

of interacting features).

7Of course, there is an obvious situation that we can not detect: when
two interactions cancel each other (e.g., one has influence +4 and another
one −4), we will not detect them. We have no evidence that this situation
is common, but we are aware of its existence.

8Surprisingly, max(b) is an empty configuration, because feature b is
mandatory; the only valid configuration without feature b is the empty set.



We use three heuristics. Each makes an assumption under

which it can detect interactions (thus improving performance

prediction) with a few additional measurements. Some

heuristics are based on the experience we gained during

the manual analysis of feature interactions (i.e, searching the

source code for nested #ifdef statements, using domain

knowledge, etc.) for the prediction of a program’s binary

footprint [3]. Other heuristics are based on assumptions we

make due to analyses of source-code feature interactions and

on related work (see Section VI). We explore in our evaluation

whether our heuristics actually reduce measurement effort

and improve accuracy of our predictions.

Auxiliary – Implication Graph: In all three heuristics,

we reason about feature chains in an implication graph.

An implication graph is a graph in which nodes represent

features and directed edges denote implications between

features. Using implications, we conclude that Δamin always

includes the influence of all interactions with features

implied by a (i.e., all features in a’s implication chain).

For example, if feature a always requires the presence of

feature b, then we have implicitly quantified the influence of

interaction a#b when computing Δamin . This mechanism

reduces computation effort in all heuristics, especially, for

hierarchically-deep feature models and for feature models

with many constraints.

Heuristic 1 – Pair-Wise Interactions (PW): We assume

that pair-wise (or first-order) interactions are the most

common form of performance feature interactions.

We justify this assumption as follows: Related research

often uses a similar approach: The software-test commu-

nity often uses pair-wise testing to verify the correctness

of programs [12][13]. Pair-wise testing was also applied

successfully to test feature interactions in the communication

domain [14] and to find bugs in product-line configura-

tions [15]. Furthermore, analysis of variability in 40 large-

scale programs showed that structural interactions are mostly

between two features [16]; although structural interactions do

not necessarily cause performance feature interactions, we

assume that this distribution also holds for performance,

because the additional code may have some affect on

performance.

Within the set of interacting features, we use this heuristic

to locate pair-wise interactions first (as they are the most

common). We search for higher-order interactions with the

remaining heuristics.

Heuristic 2 – Composition of Higher-Order Interactions
(HO): We assume that second-order feature interactions

(i.e., interactions among three features) can be predicted

by analyzing already detected pair-wise interactions.

The rationale is, if three features interact pair-wise in

any combination, they likely also participate in a triple-wise

interaction. That is, if we know that two of these three

interactions {a#b, b#c, a#c} are non-zero, then and only

then will we check whether a#b#c has an influence on

performance. For example, if both a#b and b#c allocate

1 GB RAM, then it is likely that there is an interaction

a#b#c that results in a lower performance (because 2 GB

RAM was allocated). We experienced this phenomenon in

previous work on measuring and predicting footprint [3]. A

different footprint may also indicate a possible impact on

performance, because either functionality is added (increased

footprint) or is removed (decreased footprint). This added or

removed functionality can cause performance deviations.

We do not consider other higher-order interactions to save

a huge number of measurements. Thus, we might miss some

interactions in attempt to balance measurement effort and

accuracy.

Heuristic 3 – Hot-Spot Features (HS): Finally, we

assume the existence of hot-spot features. We experienced

that there are usually a few features that interact with

many features and there are many features that interact

only with few features. High coupling between features or

many dependencies can impact the performance of the whole

system, because both features strongly interact with each

other at the implementation level.

These observations are analogous to previous work

on coupling in feature-oriented and object-oriented soft-

ware [17][18], and footprint feature interaction [3]. We

anticipate the same distribution for performance feature

interactions, following a power law[18].

Using this heuristic, we perform additional measurements

to locate interactions of hot-spot features with other inter-

acting features. Specifically, we attempt to locate second-

order interactions for hot-spot features, because they seem to

represent a performance-critical functionality in a program.

We do not identify interactions with an order higher than

three, because this increases measurement effort substantially.

C. Realization

So far, we described a general approach to (1) detect

interacting features and (2) to find feature combinations that

cause interactions. Next, we detail how we implemented

these techniques and heuristics in our tool SPL Conqueror:

http://fosd.de/SPLConqueror

As an underlying data structure, we use an implication

graph, as described earlier. We can easily generate this

graph from a feature model using a SAT solver [19]. To

locate pair-wise interactions (PW heuristic), we consider

only pair-wise interactions between interacting features of

different implication chains. We do not need to determine

interactions of features belonging to the same implication

chain, because the interaction is already included in Δamin .

Furthermore, the order of the measurements is crucial. Our

algorithm starts from the top of one implication chain and

determines the influence of interacting features with the

interacting features of another chain, also starting from

the top. Afterwards, we continue with the next chain. For

example, in Figure 2, the order we use to detect pair-wise



F2

F3

F4

F1 F5

F7

F8

F6

F9

F11

F12

F10

FBase

Implication chains

interacts

implies

F1

Interacting
Feature

F2

Non-interacting
Feature

Figure 2. Implication chains with interacting features.

interactions is F1#F6, F1#F7, F4#F6, F4#F7, F6#F11,

F7#F11,F1#F11, F4#F11.

To identify whether two features a and b interact, we

compare the measured performance Π(a× b) with the per-

formance prediction of the same configuration that includes

all known feature interactions up to this time. If the result

of Δa#bC exceeds a threshold (e.g., we use the standard

deviation of measurement bias as a threshold), we record it.

Next, we search for second-order interactions among

features that interact in a pair-wise fashion (HO heuristic).

Again, we perform additional measurements and compare

them to the predicted results. For example, if we noticed that

F1 interacts with F7 and F7 interacts with F14, we would

examine whether interaction F1#F7#F14 has an influence

on performance.

Finally, we search for further second-order interactions

involving hot-spot features (HS heuristic). We count the

number of interactions per feature identified so far. Next,

we compute the average number of interactions per feature.

We classify all features that interact above the arithmetic

mean as hot-spot features (other thresholds are possible, too).

With hot-spot features, we search (with the usual mechanism:

additional measurements, comparing deltas) for interactions

involving (1) a hot-spot feature, (2) a feature that already

interacts with this hot-spot feature, and (3) an interacting

feature that does not interact pair-wise with the hot-spot

feature.

V. EVALUATION

Our approach to performance prediction is simple. But it

is the simplicity that makes it practical. We demonstrate this

with six real-world case studies.

The goal of our evaluation is to judge prediction accuracy

and the utility of our heuristics. That is, we analyze how we

detect performance feature interactions with additional mea-

surements and how detected interactions improve prediction

accuracy. To that end, we compare predictions with actual

performance measurements.

A. Experimental Setting

We selected six existing real-world programs (i.e., three

customizable programs and three product lines) with different

Project Domain Lang. LOC Features Configs

Berkeley DB CE Database C 219,811 18 2560
Berkeley DB JE Database Java 42,596 32 400
Apache Web Server C 230,277 9 192
SQLite Database C 312,625 39 3,932,160
LLVM Compiler C++ 47,549 11 1024
x264 Video Enc. C 45,743 16 1152

Table I
OVERVIEW OF SAMPLE PROGRAMS USED IN THE EVALUATION

characteristics to cover a broad spectrum of scenarios (see

Table I). They are of different sizes (45 thousand to 300

thousand lines of code, 192 to millions of configurations),

implemented in different languages (C, C++, and Java), and

configurable with varying mechanisms (such as conditional

compilation, configuration files, and command-line options).

The programs we selected have usually under 3 000

configurations. The reason is that, this way, we can actually

measure all configurations of these programs in a reasonable

time. Hence, even though it required over 60 days of

measurement with multiple computers, we could actually

perform the brute-force approach and determine accuracy of

our prediction over all configurations.

1) Setup: We measure all configurations of all programs

that affect performance (i.e., that are invoked by a benchmark).

The exception is SQLite in which we measure only the

configurations needed to detect interactions and additionally

100 random configurations to evaluate the accuracy of

predictions. We identified features in each case study and

created a feature model describing their dependencies. All

feature models and measurement results are available online

at the tool’s website.

We automated the process of generating programs accord-

ing to specific configurations and running the benchmark.

Since Berkeley DB C and Java and SQLite use compile-

time configuration, we compiled a new program for each

configuration that includes only the relevant features. For

Apache, LLVM, and x264, we mapped the configuration to

command-line parameters. We used five standard desktop

computers for the measurements.9

We repeated each measurement between 5 to 20 times

depending on the measurement bias. It is known that

measurement bias can cause false interpretations and are

difficult to control [20], especially for performance [21]. The

width of the 95 % confidence interval is smaller than 10 %

of the according means. We used a range between 2 to 10 %

to specify the threshold for detecting performance feature

interactions. We use the mean of all measurements of a single

configuration C as Π(C).
2) Benchmarks: We use standard benchmarks either deliv-

ered by the vendor or used in the community of the respective

9Intel Core 2 Quad CPU 2.66 GHZ, 4GB RAM, Vista 64Bit; AMD
Athlon64 2.2GHz, 2GB RAM, Debian GNU/Linux 7; AMD Athlon64
Dual Core @2.0GHz, 2GB RAM, Debian GNU/Linux 7; Intel Core2
Quad @2.4GHz, 8GB RAM, Debian GNU/Linux 7. Each program was
benchmarked on an individual systems.



application. We did not develop our own benchmark to avoid

bias and uncommon performance behavior caused by flaws

in benchmark designs.

Since performance predictions are especially important in

the database domain, we list three database product lines:

Berkeley DB’s Java and C version (which differ significantly

in their implementation and provided functionality) and

SQLite. For each program, we use the benchmark delivered

by the vendor. For example, we use Oracle’s standard

benchmark to measure the performance of Berkeley DB. The

workload produced by the benchmarks is a typical sequence

of database operations.

Furthermore, we selected the Apache Web server to

measure its performance in different configurations. We used

the tools autobench and httperf to produce the following

workload: For each server configuration, we send 810 requests

per second to a static HTML page (2 KB) provided by the

server. After 60 seconds, we increase the request rate by

30 until 2700 requests per seconds are reached. After this

process, we analyzed at which request rate the Web server

could no longer respond or produced connection errors.

LLVM is a modular compiler infrastructure. For our

benchmarks, we use the opt-tool that provides different

compile-time optimizations. We measure the time LLVM

needs to compile its standard test suite (i.e., with differ-

ent optimizations, such as inline functions and combine

redundant instructions enabled). In this case, the workload

is the program code from the LLVM test suite that has to

be compiled with the enabled optimizations.

x264 is a command line tool to encode video streams into

H.264 and MPEG-4 AVC format. The tool provides several

options, such as parallel encoding on multiple processors. We

measured the time needed to encode the video trailer Sintel
(735 MB). This trailer is used by different video-encoding

projects as a standard benchmark for encoders.

B. Results

We compute a fault rate of our prediction as the rela-

tive difference between predicted and actual performance:
|actual−predicted|

actual and accuracy as 1-fault rate in percent. As

said, we measure each program several times. From these

measurements, we compute the average performance (i.e.,

arithmetic mean) and the standard deviation. We use the

average performance to compute the delta of a feature. We

use the standard deviation to set the threshold at which we

identify a feature interaction, because we consider every

unexpected performance behavior above the measurement

error as an interaction.

1) Accuracy and Effort: In Table II, we show the results

of our six case studies: For each approach, we depict the

required number of measurements, the time needed for these

measurements, and the number of identified interactions.

Furthermore, we show the distribution of the fault rate of

our predictions with box plots. Finally, we show for each

approach the mean fault rate of all predictions including the

standard deviation. Note that, when adding a new heuristic,

we keep the previous heuristic working, because they are

successively applied to a program.

The feature-wise (FW) approach does not use a heuristic

and does not account for feature interactions. We achieve

good predictions for programs in which interactions have

no substantial influence on performance. For example, our

predictions have an average error rate of less than 8 % for

all LLVM configurations. In contrast, we usually have a

high fault rate (e.g., over 44 % for BerkeleyDB C version)

when no interactions are considerd. The average accuracy of

performance prediction is 79.7 %.

Using the pair-wise heuristic (PW) usually improves predic-

tions significantly (91 %, on average), because the majority of

interactions are pair-wise. The benefit of implication chains

compared to the common pair-wise measurement is that

it reduces the number of measurements. For example, we

require 81 measurements to detect first-order interactions for

x264 (see Table II), which is 82 less than 163, which would

be needed to measure all pairs of features.

With the higher-order (HO) heuristic, we achieve an aver-

age accuracy of 93.7 % for all case studies. Interestingly, for

LLVM, we could not find a feature combination that satisfies

our preconditions to search for higher-order interactions. It

is important to note that this heuristic usually doubles the

number of measurements. For Apache the fault rate increases,

because measurement bias over the determined threshold lead

to a false detection of interactions. We detected these false

positives when we search for third-order feature interactions,

as we do with the hot-spot heuristic.

Finally, the hot-spot heuristic (HS) (including the other

two heuristics) improves accuracy again to 95.4 % on

average. Considering that the measurement bias for a single

measurement of the case studies Apache, LLVM, and x264

is 5 %, for SQLite it is 1 %, and for Berkeley C and Java

version it is 2 % our predictions are as accurate as the bias

of a single measurement.

2) Influence of Heuristics: Since all our heuristics are

consecutively applied, we can visualize the trade-off between

additional measurements and error rate of predictions as

in Figure 3. Dashed lines represent the average error rate

of our predictions and straight lines depict the percentage

of measurements, compared to the maximum number of

measurements. As expected, with an increasing number of

measurements the fault rate decreases. The results show

that the relative number of measurements strongly differ to

achieve the same accuracy for different programs. Further

note that we have to measure approximately 0.1 % of all

variants of SQLite, which demonstrates the scalability of our

approach.

Pair-Wise vs. Higher-Order Interactions: Look at the

Apache case study (which is similar to others): A higher-order

interaction usually improves predictions. We detected 18 first-



Effort Fault Rate (in %)

Program Appr. Measurements Time (in h) Interactions Distribution Mean±Std

Berkeley CE FW 15 (0.6 %) 3 0 44.1±42.3

PW 139 (5.4 %) 23 14
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●

3.9±5.3

HO 160 (6.3 %) 27 22
●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

2.8±3.7

HS 164 (6.4 %) 27 22
●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

2.8±3.7

BF 2 560 (100 %) 426 - −40 −20 0 20 40−40 −20 0 20 40

Berkeley JE FW 10 (3 %) 8.4 0 17.7±19.6

PW 48 (12 %) 40 24
●● ●●●● ●● ●●●●

8.5±9.6

HO 16 (4 %) 97 51
● ● ●●●●●●● ●●●●●●●● ● ●●●●●●● ●●●●●●●

3.8±5.7

HS 162 (40.5 %) 137 69
● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●●● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●●

1.7±3.5

BF 400 (100 %) 335 - −40 −20 0 20 40−40 −20 0 20 40

Apache FW 9 (4.7 %) 10 0
●●● ●● ●● ●●●●● ●● ●● ●●

14.9±24.8

PW 29 (15.1 %) 32 18
● ●●●●● ●● ● ●● ●●● ●●●●● ●● ● ●● ●●

7.7±11.2

HO 80 (41.7 %) 89 44
●● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●● ●

11.6±22.7

HS 143 (74.5 %) 159 73
●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●

5.3±10.8

BF 192 (100 %) 213 - −40 −20 0 20 40−40 −20 0 20 40

SQLite FW 26 (0 %) 2.1 0 7.8±9.2

PW 566 (0 %) 47 2
●●●●●● ●●●●●●●● ●●

9.3±12.5

HO 566 (0 %) 47 3
●●

7.1±9.1

HS 569 (0 %) 47.4 3
●●

7±9

BF 3 932 160 (100 %) 327 680 −40 −20 0 20 40−40 −20 0 20 40

LLVM FW 11 (1.1 %) 2 0 7.8±9

PW 62 (6.1 %) 12 27
● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●

7.4±10.2

HO 62 (6.1 %) 12 27
● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●● ● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●●●● ●●●●

7.4±10.2

HS 88 (8.6 %) 17 38
●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●

5.7±7

BF 1 024 (100 %) 202 - −40 −20 0 20 40−40 −20 0 20 40

x264 FW 12 (1 %) 2 0 29.6±22

PW 81 (7 %) 16 13 17.9±27.2

HO 89 (7.7 %) 17 17
● ●● ●

5.1±15.1

HS 89 (7.7 %) 17 17
● ●● ●

5.1±15.1

BF 1 152 (100 %) 224 - −40 −20 0 20 40−40 −20 0 20 40

Table II
EVALUATION RESULTS FOR SIX CASE STUDIES; APPROACHES (APPR.): FEATURE-WISE (FW), PAIR-WISE (PW), HIGHER-ORDER (HO), HOT-SPOT (HS),

BRUTE FORCE (BF). MEAN: MEAN FAULT RATE OF PREDICTIONS, STD: STANDARD DEVIATION OF PREDICTIONS.

order interactions and 55 higher-order interactions. Using

the PW heuristic, we have some features that interact with

many other features (e.g., KeepAlive) and other features that

interact only with one or two features (e.g., ExtendedStatus).

Although without using the hot-spot heuristic, we observe

that some features are more likely to interact. Additionally,

we found two features (Base and InMemory) that do not

interact which substantially decreases the search space.

C. Threats to Validity

Internal Validity: Regarding SQLite, we cannot measure

all possible configurations in reasonable time. Hence, we

sampled only 100 configurations to compare prediction and

actual performance values. We are aware that this evaluation

leaves room for outliers.

Also, we are aware that measurement bias can cause false

interpretations [20]. Since we aim at predicting performance

for a special workload, we do not have to vary benchmarks.

Additionally, we determined the width of a 95 % confidence
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Figure 3. Comparing percentage of measurements (straight lines) with
average error rates of predictions (dashed lines) for each heuristic.

interval of our measurements smaller than 10 % of the

according means.

External Validity: We aimed at increasing external

validity by choosing programs from different domains with

different configuration mechanisms and implemented with

different programming languages. Furthermore, we used

programs that are deployed and used in the real-world. Nev-

ertheless, we are aware that the results of our evaluations are

not automatically transferable to all configurable programs.

In addition to our sample program selection, the strong and

exhaustive evaluation (over 60 days of measurement with 5

computers) indicate that our heuristics hold for many practical

application scenarios.

D. Discussion

Although we use a simplistic performance model, we

demonstrated that the approach is feasible. With an average

accuracy of 95 %, we achieve predictions that even stay in the

range of the observed measurement bias for the case studies.

It is important to note that we experienced large differences

in accuracy when we changed the threshold at which a

performance feature interaction is detected. Having a too

small threshold causes many false detections of interactions.

The fault rate increases, because we sum the influence of

measurement bias instead of the influence of interactions.

We observed that we need a relatively large number

of measurements when many alternative features exist

compared to independent features, because having many

alternative features limits the number of valid configura-

tions substantially. For example, we can only generate

400 configurations in Berkeley DB Java, though it has 32

features. This number is below quadratic. Hence, already

the detection of interacting features require a relatively large

number of measurements. However, having programs with

a small number of valid configurations make a brute-force

approach feasible, which is not our intended application

scenario.

Furthermore, we do not consider performance behavior

of a program independently of the workload. We can

make accurate statements for any configuration given a

specific workload. That is, we address end-users that have

a certain application scenario in mind but do not know

which configuration performs best. Measurements can be

performed on a live system in a real environment, which

produces more suitable performance predictions than stan-

dard benchmark results in a synthetic environment. For a

new customer or a new workload, we have to repeat the

measurements. We believe that many interactions still exist,

though the values of the interactions will change. This,

however, means that we may save additional measurements

for new customers, since we already know which features

interact.

We believe that our approach is not limited to the detec-

tion of non-functional feature interactions for the property

performance, but also for other quantifiable and additive
non-functional properties, such as binary footprint, memory

footprint, and bandwidth.

VI. RELATED WORK

A. Performance Prediction

There are several approaches that aim at predicting

performance of a customizable program or a product line.

Abdelaziz et al. provide an overview of component-based

prediction approaches [22]. Typically, the approaches belong

to one of three categories: model-based, measurement-based

(as we use in this paper), and mixed.

Model-based: Model-based predictions are com-

mon [23][24]. For example, linear and multiple regression

explore relationships between input parameters (features)

and measurements. Based on such a regression model,

different estimation methods (e.g., ordinary least squares)

can be used to predict the performance for specific input

parameters. Bayesian (or belief) networks are used to model

dependencies between variables in the network [25]. They

are often used to learn causal relationships and hence may

be applicable to detect feature interactions. Furthermore,

machine-learning approaches can be used to find the corre-

lation between a configuration and a measurement (e.g.,

canonical correlation analysis [26]), which uses dataset

pairs to identify those linear combinations of variables

with the best correlation. Principal component analysis [27]

finds dimensions of maximal variance in a dataset that

can also be used to detect interactions. Ganapathi et al.

provides an analysis for different machine-learning ap-

proaches in the context of performance prediction of database

queries [28].

The feasibility of model-based approaches depends on the

application scenario and program to be analyzed. Our work

differs in that it offers a general way to produce accurate

predictions independent of the application scenario, and it

uses heuristics to significantly reduce measurement effort.



Krogmann et al. [29] combine monitoring data, genetic

programming, and reverse engineering to reduce the number

of measurements to create a platform-independent behavioral

model of components. For a platform-specific prediction,

they use bytecode-benchmark results of concrete systems

to parameterize the behavior model. We predict the perfor-

mance independently of the used programming language and

availability of bytecode.

Happe et al. present a compositional reasoning approach,

based on the Palladio component model [30]. The idea is

that each component specifies its resource demands and

predicted execution time in a global repository. The approach

is applicable only to component-based programs, whereas

we use a single approach for all customizable programs.

Also in this vein, MDE-based work uses feature models to

customize or synthesize performance models (e.g. [31]). This

line of research requires up-front and detailed knowledge

of domain-specific performance modeling, where tuning

predictions for accuracy can be difficult. Our approach avoids

these problems by directly measuring performance.

Measurement-based: Sincero et al. [4] predict a config-

urations’s non-functional properties based on a knowledge

base consisting of measurements of already produced and

measured configurations. They aim at finding a correlation

between feature selection and measurement. This way, they

can provide qualitative information about how a feature

influences a non-functional property during configuration.

In contrast to our approach, they do not actually predict a

value quantitatively, and they do not provide means to detect

feature interactions.

Chen et al. [32] use a combined benchmarking and

profiling approach to predict the performance of component-

based applications. Based on a benchmark and a Java profiling

tool, a performance prediction model is constructed for

application server components. In contrast, we correlate the

measurements to the configuration, and measure only those

configurations from which we expect to detect performance

feature interactions.

Abdelaziz et al. argue that most measurement approaches

lack generality [22], as they are applicable only to specific

application scenarios or infrastructures [32][33]. Our work

can be used for a broad range of applications of different

domains, implementation techniques, etc.

B. Feature-Interaction Detection

There is a large body of research on automated detection

of feature interactions (e.g., see Nhlabatsi et al. [6] and

Calder et al. [34] for surveys). Many approaches aim at

detecting feature interactions at the specification level. For

example, Calder and Miller use a pair-wise measurement

approach based on linear temporal logic to detect feature

interactions [7]. They specify the behavior of a product line in

Promela (a modeling language). Using a model checker, they

generate for each pair-wise combination a model checking

run to verify whether the defined properties are still valid.

Other approaches use state charts to model and detect feature

interactions [35]. For example, in [36] feature specifications

are translated to a reachability graph. The authors use state

transitions to detect whether a certain state is not exclusively

reachable in isolation (i.e. a feature interaction occurs).

There are approaches that provide means to detect semantic

feature interactions, i.e., feature interactions that change the

functional behavior of a program. Some use model checking

techniques to find semantic feature interactions [37][38].

Apel’s work uses model-checking techniques to verify

whether semantic constraints still hold in a particular feature

combination [39][40]. Other approaches aim at investigating

the code base to detect structural feature interactions. For

example, Liu et al. [9][41] propose to model feature interac-

tions explicitly using algebraic theory. In contrast to these

approaches, we focus on performance feature interactions in

a black-box fashion.

VII. CONCLUSION

We presented a method that allows stakeholders to accu-

rately predict the performance of customized and generated

programs. It detects interactions among configuration options

or features and evaluates their influence on performance. We

detect feature interactions in a step-wise manner. First, we

find features that interact. Second, we detect the combinations

of these features that cause a measurable interaction and

quantify their impact on the performance of a configuration.

The common weak spot of such an approach is the exhaustive

number of measurements required to detect interactions. We

solved this problem by means of three heuristics that reduce

the number of measurements without sacrificing precision in

predictions.

Our evaluations demonstrate that an accuracy of 95 %

is possible, on average, when using our heuristics. We

demonstrated generality by using applications of varying

domains, implemented with different programming languages

and techniques, and configured via configuration files or

compilation options.

ACKNOWLEDGMENTS

We are grateful to Janet Feigenspan for comments on an earlier
draft of this paper. The work of Siegmund and Saake is supported
by the German ministry of education and science (BMBF), number
01IM10002B. Rosenmüller’s, Apel’s, and Kolesnikov’s work is
supported by the German Research Foundation (SA 465/34-1, AP
206/2, AP 206/4, and LE 912/13). Kästner’s work is supported by
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