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Abstract

Protein-protein interactions are involved in many diverse functions in a cell. To optimize
functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions
are conventionally classified into permanent and transient, where the former denotes tight binding
between proteins that result in strong complexes, while the latter compose of relatively weak
interactions that can dissociate after binding to regulate functional activity at specific time point.
Knowing the type of interactions has significant implications for understanding the nature and
function of protein-protein interactions. In this study, we constructed amino acid substitution
models that capture mutation patterns at permanent and transient type of protein interfaces, which
were found to be different with statistical significance. Using the substitution models, we
developed a novel computational method that predicts permanent and transient protein binding
interfaces in protein surfaces. Without knowledge of the interacting partner, the method employs a
single query protein structure and a multiple sequence alignment of the sequence family. Using a
large dataset of permanent and transient proteins, we show that our method performs very well in
protein interface classification. A very high Area Under the Curve (AUC) value of 0.957 was
observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy
was achieved with an AUC of 0.991 when actual binding sites were classified. The developed
method will be also useful for protein design of permanent and transient protein binding
interfaces.
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Introduction

Protein-protein interactions (PPI) mediate many essential functions of the cell 1-4. Proteins
interact with each other with different affinities for specific functional reasons. For example,
enzyme-inhibitor, antigen-antibody, and large oligomeric enzyme complex structures are
composed of proteins that are required to bind tightly and permanently (permanent
interaction). In contrast, some proteins involved in signaling pathways 5-8 have a mechanism
for dissociation after binding, thus help regulate protein activity at specific times (transient
interaction). In a recent review, it was estimated that transient interactions make up a
significant portion of protein-protein interaction networks 9-11. Distinguishing between the
two interaction types provide clues for functions of interacting proteins and have important
implications for furthering the understanding the functional diversity exhibited in protein-
protein interaction networks. Permanent and transient interactions are distinguished by the
strength of the interactions, thus, in principle, can be associated with the dissociation
constant (Kd) as long as two proteins dissociate. Dissociation constants of strongly
permanent complexes are typically determined to be in the nM range (1×10-9 M) or
lower12-14, while transient complexes commonly show Kd in the µM range or higher (1×10-6

M)15-17. Further detailed discussion of this common range of dissociation constants between
permanent and transient protein-protein interactions can be found in the recent reviews18, 19.

There are several studies conducted in the past to understand differences in permanent and
transient protein interaction sites9, 19-21. Permanent interaction sites are more conserved than
transient interfaces and tend to have more hydrophobic residues, while transient interfaces
consist of more polar residues22-24. Further, permanent interfaces tend to have fewer gaps in
multiple sequence alignments of protein families than transient interfaces 25. In terms of the
size of protein interfaces, transient complexes form smaller interfaces than permanent
interfaces23. Using physical and chemical properties, classification of crystal structures of
bound protein complexes into permanent or transient types was attempted24, 26, 27. These
methods require a known structural complex and thus their applications are limited to
protein complexes whose structures have been experimentally determined.

In this work, we introduce a new method that predicts permanent and transient protein-
protein interaction sites on a protein surface. The difference between the aforementioned
existing methods and our method is that while the existing methods need an experimentally
solved structure of protein complex and use actual interface residues as input data, our
method uses the single protein structure only and make predictions of permanent and
transient interface regions on the protein surface. Thus, prior knowledge of the interacting
proteins nor interface regions is not needed. To the best of our knowledge, our method is the
first of its kind.

In our previous work, we developed a computational method, called BindML, for predicting
the protein binding interface (PBI) of a protein with unknown interacting partners18.
BindML estimates the likelihood that a phylogenetic tree of a local surface region follows
the amino acid substitution patterns of PBIs and non-PBIs. Through a comprehensive
benchmark across a diverse set of protein structures, BindML was shown to perform better
compared to alternative state-of-the-art methods, ProMate28 and cons-PPISP 29, that
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combine various sequence and structural information into machine learning frameworks, for
protein binding interface prediction.

Here, we extend the BindML framework for investigating mutation patterns of permanent
and transient PBI sites. We built transient-PBI and permanent-PBI specific substitution
models from a large dataset of permanent and transient protein complexes. Subsequently, we
developed a multi-step procedure that is based on the BindML framework for predicting
permanent and transient PBIs in a given protein surface. The method first predicts PBI sites
in a protein surface, followed by discrimination of the sites either to permanent or transient
PBI sites. It was shown that our method was able to distinguish between permanent or
transient sites of PBI predictions with a very high accuracy of an Area Under the Curve
(AUC) of 0.957. Moreover, the accuracy in classification of permanent and transient PBIs
was raised to an AUC of 0.991 when actual PBI sites were provided. Overall, it was shown
that the different functional requirements for permanent and transient PBI sites reflect to
their mutation patterns, which can be used for distinguishing them. The method, named
BindML+, is made available for the academic research community as a web server at http://
kiharalab.org/bindml/plus/.

Methods

Dataset of Permanent and Transient Protein Complexes

Known permanent and transient protein complexes were used to construct amino acid
substitution models and to benchmark the performance of protein-protein interface
predictions and classifications. We initially considered 90 permanent interacting protein
structures (from 39 permanent complexes) 30 and 145 transient protein structures (from 45
complexes), in which we designate as the Jones, Nooren, and Thornton (JNT) dataset31.
Further, we added 161 permanent structures (71 permanent complexes) defined as those
with dissociation constant (Kd) values of 1.0 × 10-9 or lower and 78 transient structures (33
transient complexes) as those with weak Kd values of 1.0 × 10-6 and higher from the
Affinities dataset1. The Affinities dataset is a database of protein complexes with assigned
Kd values that have been experimentally determined. A summary of the Kd value ranges and
the associated number of complexes in the Affinity dataset is shown in Table I. Protein
complexes with a Kd value between 10-9 and 10-6 are not used because there is no cutoff
value that clearly distinguishes permanent and transient complexes, because classification
between the two classes has been often done by considering other information, such as the
functions of the complexes (e.g. pathways the proteins belong to).

Next, we combined the JNT and Affinities dataset together and removed redundant
structures with 30% sequence identity, proteins that are annotated as monomers by PISA5,
and proteins that do not have PFAM9 assignments in the dataset. Our final accumulative
non-redundant dataset contains 110 permanent and 72 transient structures shown in Tables
S1 and S2 in the supplementary materials.
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Computing Interface Specific Substitution Models

We constructed amino acid substitution models (matrices) of permanent and transient PBI
(termed PERM and TRAN, respectively) and non-PBI (non-permanent, NPERM; and non-
transient, NTRAN). The amino acid substitution models reflect the ratio of pairwise amino
acid substitutions observed in multiple sequence alignments (MSAs) of proteins against
amino acid pairs appearing by chance. We use the same procedure as we described in our
previous work18, which is described as follows.

Given each protein structure in our permanent and transient protein dataset, we used the full
set of sequences taken from the PFAM database9. Sequences from PFAM and the query
sequence from the PDB structure 2-4, 32 were then used to construct a MSA using
MUSCLE6-8, 33. Protein surface residues were defined as those which have larger than 10%
of the relative solvent accessible area in comparison with the value in the tripeptide with
glycines on both sides10, 11, 34. Among the protein surface, residues at the interface (either
permanent or transient) were defined as those that are closer than 5.0 Å to any residues in
the protein docking partner, otherwise residues were defined as non-binding interface
(NPERM or NTRAN). The observed substitutions were counted at gapless positions in the
set of pairwise set of alignments following the JTT procedure19, 35. The values in the
substitution matrices were calculated using the BLOSUM method19-21, 36. The resulting log
odds matrices generated for PERM, NPERM, TRAN, and NTRAN are given in Table II.

Algorithm for Predicting Permanent and Transient Protein Interaction Sites

Our algorithm, BindML+, predicts permanent and transient protein interfaces of a query
protein in two steps. The first step is to identify PBI in the protein surface. Subsequently, the
PBI is classified to either permanent or transient interface. Figure 1 illustrates the whole
procedure.

The first step identifies potential PBI sites employing the BindML algorithm developed in
our previous work18, 22 (Upper half of Figure 1). Input data are a PDB structure of a query
protein and a MSA of its family including the query sequence. For each surface residue, a
surface patch is defined as neighboring residues that are within the sphere of 15Å. The β-
carbon of a given amino acid (α-carbon is used for glycine) is selected as the representative
point when computing the distance between amino acids. For a patch, columns in the MSA
that correspond to residues in the patch are concatenated together to form a “mini” MSA
(patch MSA).

Then, a modified PHYML program is used to compute the likelihood that a patch MSA
comes from PBI (involving permanent or transient binding sites) and non-PBI by
constructing phylogenetic trees with either of the substitution models for PBI residues
(PERM or TRAN) or NPBI residues (NPERM or NTRAN). PHYML computes the
likelihood of having the input patch MSA and a tree topology using the PBI/NPBI
substitution model. Finally, the difference of the likelihood under the PBI and NPBI
substitution models provides a score that a center residue in the patch belongs to PBI. More
concretely, for a patch MSA, Pi, which has residue i at the center, the log likelihood that the
center residue i of the patch Pi is at non-PBI is
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(1)

Similarly, the likelihood that the center residue i of the patch Pi is at PBI is

(2)

where MNPBI and MPBI is the substitution model of NPBI and PBI, respectively, and
TNPBI(i) and TPBI(i) are trees generated with MNPBI and MPBI, respectively, for the input
patch MSA that has residue i at the center. Note that TNPBI(i) and TPBI(i) are not necessarily
identical.

Finally, the difference between the log likelihood of the patch MSA being NPBI and PBI,
the distance likelihood (dL) score, is used for prediction:

(3)

Once the dL scores for all surface patches in the query protein are computed, these scores
are recast into Z-scores and a threshold is placed. A lower (negative) Z-score indicates larger
likelihood of PBI mutation patterns, while a higher Z-score corresponds to less likelihood of
following the PBI substitution model. Any center residue of a patch with a dL score that is
equal to or smaller than a given Z-score threshold value is predicted to be included in a PBI
site.

As the PBI and NPBI substitution models, we used PERM and NPERM models and also
TRAN and NTRAN models. Specific dL-scores for permanent (dLp) and transient (dLt)
predictions are calculated using equations 4 and 5, respectively.

(4)

(5)

The second step of BindML+ is to discriminate a predicted PBI site into either the
permanent or the transient type using a Logistic Regression Model (LRM) (Bottom half of
Figure 1). LRM performs binary classification by fitting a set of features using a logit
function23, 37, 38. Features used in the LRM are based on difference between LPERM(i) and
LTRAN(i) score, which is named the interface type likelihood (tL) score, computed for each
residue in a predicted PBI site:

(6)

Further, tL-scores are recast into Z-scores. A residue with a tL Z-score above zero it is more
likely to be permanent, while a lower value below zero suggest that it is more likely to be
transient.
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A predicted PBI site in the previous step would consist of several surface patches, each of
which contains 25 residues on average. We calculate the average tL Z-score of each patch in
the predicted PBI site to identify two distinct patches: (1) a patch with the lowest average tL
Z-score (min-patch) and (2) a patch with the highest average tL Z-score (max-patch). For the
min-patch and the max-patch of the predicted PBI site, we compute the following five
features each, thus ten features in total:

1. Average tL Z-score of residues in the min-patch/max-patch

2. Average tL Z-score of residues scoring above or equal to zero in the min-patch/
max-patch

3. Average tL Z-score of residues scoring below zero in the min-patch/max-patch

4. The number of residues with tL Z-scores above or equal to zero in the min-patch/
max-patch

5. The number of residues with tL Z-scores below zero in the min-patch/max-patch

The first three features concern average values of the tL Z-score and the latter two consider
the number of residues with a certain range of tL Z-score in a patch. We performed leave-
one-out cross-validation to train a LRM and make a prediction to a query protein with a
predicted PBI that is left out from the training set. Several combinations of input features
were tested. A probability computed by the LRM that is greater than or equal to a threshold
value will classify a protein with a PBI that would be involved in permanent interaction.
Otherwise, the probability that is lower than the set constant threshold value will classify a
query protein as one that would participate in a transient interaction.

Evaluating PBI Site Prediction

The prediction performance of PBI residues was evaluated mainly using the Area Under the
Curve (AUC) of Receiver Operating Characteristic (ROC) 24, 26, 27, 39 that plots sensitivity
and specificity across multiple thresholds. The sensitivity is the fraction of correctly
predicted PBI residues over all the true PBI residues. The specificity is the fraction of true
negatives among all residues predicted to be NPBI. Using true positives (TP), which are the
true PBI residues predicted correctly, true negatives (TN), which are non-PBI residues
correctly classified, false positives (FP), which are false predictions of PBI site residues, and
false negatives (FN), which are residues at PBI sites that are not predicted, the sensitivity
and the specificity are define as

(7)

(8)
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Evaluating PBI Site Classification

In evaluating PBI site classification, we considered the AUC of a plot of the true permanent
classification rate (PCR) relative to the true transient classification rate (TCR). This is
analogous to an AUC, where we compute the PCR (Eqn. 9) instead of the sensitivity (Eqn.
7) and the TCR instead of specificity. Concretely, we used the following equations to
calculate PCR and TCR:

(9)

(10)

where, TPerm and FPerm represent the number of true and false permanent interfaces
classified, respectively. TTrans and FTrans represent the number of true and false transient
interfaces classified, respectively.

Results

Amino Acid and Secondary Structure Composition of Permanent and Transient Interfaces

To begin with, we compared the composition of amino acid frequencies of multiple
sequence alignments (MSAs) of PBI sites and other surface regions (Fig. 2). Statistical
significance of differences of amino acid fraction was tested by two-sample proportion test.
Using the p-value cutoff of 0.05, the difference of fraction of almost all the amino acids
were considered to be statistically significant, except for five amino acids, cysteine, leucine,
glutamine, arginine, and valine (C, L, Q, R, V), at protein binding interfaces (Fig. 2A) and
two amino acids, isoleucine and lysine (I, K), at non-protein binding interfaces (Fig. 2B).
There are several notable differences as reported in a previous study18, 23. There is a clear
bias in glycine and proline (G, P) composition at permanent interfaces compared to transient
interfaces (Fig. 2A). Aromatic residues, tyrosine, tryptophan and phenylalanine residues (Y,
W, P) are more abundant at permanent interfaces (Fig. 2A). The difference of amino acid
proportion between permanent and transient proteins tends to be larger in binding interface
(Fig. 2A) than in non-binding interface (Fig. 2B).

We further analyzed the secondary structure composition of permanent, transient binding
interfaces as well as non-protein binding surfaces (Fig. 3). Protein surface consists of more
loops (others), which is consistent with a work by Ansaris & Helms23, 30. We performed
statistical tests to examine the statistical significance of the differences in fractions of
secondary structures for the permanent, transient and non-interface observed in Figure 3. For
the three classes of secondary structure, α-helices, β-strands, and others (loop), we
performed the two-sample proportion test between pairs of permanent, transient, and non-
interface surfaces. Statistical significance was observed secondary structure content of
permanent interfaces. Using the p-value cutoff of 0.05, α-helix fraction in permanent
interfaces is significantly lower than transient interfaces. For β-strands, difference of
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permanent interfaces and non-interface was significant. Permanent interfaces contain
significantly more coils than transient interfaces and non-interfaces.

Analysis of Substitution Models

Next, we compared the constructed amino acid substitution matrices (Table II) using the
Spearman rank correlation and the Kolmogorov-Smirnov (KS) distribution test 31, 40. We
found that PERM and TRAN have low correlation (r: 0.774) with each other, and is
significantly different in their distribution (D: 0.105, p-value: < 0.05). On the other hand, as
expected, NPERM and NTRAN matrices are not significantly different (D: 0.075, p-value:
0.211), which shows that mutations of residues on other surfaces (NPBI sites) in permanent
and transient complexes are very similar. Further, the PERM with NPERM are significantly
different shown by the KS test (D: 0.110, p-value: < 0.05).

Prediction of Permanent and Transient Interfaces

Using the PERM/NPERM and TRAN/NTRAN substitution models, we predicted PBI sites
on the permanent and transient complexes in the JNT dataset (Fig. 4). The procedure
employed was the first half of the entire procedure of BindML+ in Figure 1. A two-fold
cross validation was carried out, i.e. for either permanent or transient protein sets in the
combined JNT and Affinities dataset (mentioned in the Methods section), half of them were
used to compute the substitution models (all protein sequences in the training set was used),
which were then applied to the remaining half of the protein set to predict PBI sites. This
procedure was repeated two times so that the two subsets of the dataset are handled as the
testing set. Figure 4A shows the ROC curves on the permanent binding proteins, while
prediction results on the transient proteins were shown in Figure 4B. For each case,
predictions are performed using PERM/NPERM and TRAN/NTRAN substitution models.

The overall performance of the prediction was better on the permanent protein dataset (Fig.
4A) in comparison to the transient protein dataset (Fig. 4B). This result indicates that
transient interfaces are more challenging to predict than permanent binding interfaces. The
performance of PERM/NPERM substitution models and TRAN/NTRAN are similar, but the
former showed slightly higher AUC than the latter for PBI site prediction for both
permanent (Fig. 4A) and transient complexes (Fig. 4B). Interestingly, the permanent model
performs better than transient models for the transient dataset (Fig. 4B) as well, by three
percent AUC. Given that the permanent models performed better in both cases, in the
following sections, we use the permanent substitution models to predict protein-protein
interfaces in the first step of BindML+.

Examples of prediction of permanent and transient binding residues

In this section, we show examples of PBI site prediction and permanent- and transient-
binding residues by BindML+. A permanent complex, cytoplasmic malate dehydrogenase
(PDB code: 4MDH-A), is used as the first example. Figure 5A and 5B show the PBI site
prediction for this protein. To detect the PBI site, PERM/NPERM substitution models were
used in PHYML to calculate the dL score (Eqns. 3, 4). Residues with a negative dL score are
predicted to be in the PBI site of the protein (Fig. 5A) and the predicted PBI site residues are
mapped in black on its tertiary structure in Figure 5B.
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The binding residue prediction is fairly successful for this protein with an AUC value of
0.828. In Figures 5C and 5D, the predicted binding residues are further classified into
permanent or transient binding residues by applying the tL Z-score (Eqn. 6). Values above or
equal to zero are permanent binding residue predictions (blue in Fig. 5D), whereas lower
scores are predicted as transient binding residue predictions (red). Out of 103 predicted
binding residues, 84 were classified as permanent binding residues, where as only 18 are as
transient type. Thus, the majority of the residues are classified correctly as permanent;
particularly, majority of actual binding residues are classified as permanent.

Four additional examples are shown in Figure 6. First two are examples of permanent
complexes, while the latter two are transient complexes. The first protein is ascaris pepsin
inhibitor-3 bound to porcine pepsin (PDB: 1F34). The PBI site of the pepsin inhibitor was
reasonably well predicted with an AUC of 0.788. 56 predicted binding residues are
dominated by permanent predictions (50 residues shown in blue) in agreement with the
permanent nature of the interaction. Next example (Fig. 6B) is another permanent interface
from staphostatin-staphopain complex (PDB: 1PXV). The AUC of the prediction for
cysteine protease is 0.836. Among 73 residues predicted as binding, 63 were classified as
permanent, whereas 10 are classified as transient residues. Actual binding residues are
dominated as permanent prediction, and the misclassified 10 residues locate mainly far from
the actual PBI sites.

The third example is a transient complex, a solution structure of cdc42 in complex with the
GTPase binding domain of Wiskott-Aldrich Syndrome protein (PDB: 1CEE), whose binding
interface is predicted with a specificity of 0.625 and an AUC of 0.607. In this transient
example, we see much more transient type predictions at PBI sites as compared with the
previous two examples (nine transient and eighteen permanent residue predictions). There
are eight out of nine transient type residues in contact with the interacting partner. The last
one is another transient complex, bovine β-lactoglobulin (PDB: 1BEB). 30 and 27 residues
are predicted as transient and permanent, respectively. The overall PBI site prediction of this
example has an AUC of 0.734. It is observed that predicted transient residues are clustered
around the true interface, despite an appreciable mixture of permanent residue predictions at
the periphery of the correct binding interface.

As we see in the examples in all the cases, both permanent and transient binding residues are
predicted for permanent binding and transient binding proteins. However, permanent and
transient binding proteins have difference in distributions of predicted residues. For
permanent docking interfaces, a dominant number of residues are predicted as permanent
(e.g. 81.8 to 86.3 % in Figs. 6A and 6B) and actual interfaces are occupied by the permanent
type predictions. In the case of transient interfaces, residues that are predicted to participate
in transient interaction do not share a dominating fraction in a true PBI, but are still clustered
at the actual binding interface. The last step of BindML+ attempts to capture these
differences and makes the final classification of a query protein to have either permanent or
transient type interactions.
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Classification of Protein-Protein Interface Predictions

Next, we discuss the results of the classification of permanent and transient protein
interfaces, which is the second step of the BindML+ algorithm (Fig. 1). The final
classification is made by employing LRM using the features computed for the max-patch
and the min-patch (the patch which has the largest/smallest tL Z-score) in the predicted PBI
site in a query protein. The performance shown in Figure 7 and Table II was computed by a
leave-one-out cross-validation.

We compared the prediction performance of three sets of features for LRM: Using the
average tL Z-scores of the max- and min-patches (i.e. the first three features listed in
Methods section); the residue number count features of the max- and min-patches (i.e. the
last two features in the list); and all the features. When the classification was applied to
predicted PBI sites (Fig. 7A), using only the residue number features (the dotted line in the
plot) showed a highly accurate prediction with an AUC of 0.957. It achieved a permanent
classification rate (PCR) (Eqn. 9) of 0.941 and the transient classification rate (TCR) (Eqn.
10) of 0.907 when a tL score cutoff of 0.593 was used. Using all features (the solid line), a
lower performance with an AUC of 0.793 was observed. The prediction with the average tL
Z-score features showed lowest AUC value (0.725) among the three combinations.

We further tested the classification when the true protein interface is known (to assume that
the interface residues are experimentally identified or perfectly predicted). Remarkably, all
three combination features performed near perfect classification for permanent and transient
interfaces with AUC at least greater than 0.950 (Table IV). In contrast to classification using
the predicted interfaces (Table III), the tL Z-score based features performed with the near
perfect classification (AUC: 0.991), while use of the residue counts feature performed
slightly worse but still showed a significantly high AUC value (0.951). The near perfect
classification for the cases when the true interface residues are known a priori vividly
demonstrate that our strategy of using interaction type-specific substitution models is
effective for differentiating permanent and transient interfaces.

Figure 8 illustrates the typical situation involving the min- and the max-patch as well as the
other residues on the protein surface. The top panels (Figs. 8A and 8B) are results for
tryptophan synthase complex, a permanent interaction complex. All patch tL Z-scores are
mapped on to each representative surface residue shown is shown Fig 8A, where tL Z-score
above zero (potential permanent residues) are colored cyan and tL Z-score values below zero
(potential transient residues) are colored pink. Fig 8B shows that a subset of these residues
that form the min-patch, which includes only four residues with transient predictions (red),
whereas the max-patch contains 14 residues predicted as permanent. Eight residues in the
max-patch (blue) are in direct contact with the interacting partner, whereas the min-patch
has no contacting residues near the true interface. The bottom panels are results for a
transient interacting structure, the αL I domain in complex with ICAM-1 (Figs. 8C and 8D).
In this case, the min-patch (red) is closer to the true interface than the max-patch. There are
three residues predicted to be transient in the min-patch that are in direct contact with the
interacting partner.
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The other patches between the maximum and the minimum tL Z-score value cover the
remaining regions of predicted protein interface. In the example of the permanent interacting
protein (Fig. 8B), 17 residues had positive tL Z-scores (cyan), while only five residues show
negative tL Z-scores (pink). For permanent interacting proteins typically there are a
dominant number of residues with a positive tL Z-score. On the other hand in the transient
case (Fig. 8D), the true interface contains both permanent predictions (cyan) and clustered
transient predictions in the min-patch (red). Thus, the residues that form the most negative
scoring patch are a part of the true interface, demonstrating that the use of min-patches for
transient interface classification is advantageous, especially when mixed with nearby
residues of weaker permanent scores.

Discussion

We have developed a new computational algorithm, BindML+, which differentiates
permanent and transient interaction types of predicted PBI sites on protein surfaces. Unlike
several existing works that predict permanent or transient interaction types given a protein
complex structure, BindML+ predicts permanent or transient interface in a single protein
without knowledge of its interacting partner. Thus, BindML+ is the first method of its kind
to be developed so far. Through cross-validation benchmarks on a large dataset of
permanent and transient interacting protein complexes, our method was shown to perform
very well in classifying between the two interaction types. When applied to known PBI
sites, BindML+ classified them into two types with near perfect accuracy.

It is worthwhile to note that there are differences between permanent and transient PBIs
when considering the distribution of residues predicted to be permanent and ones predicted
to be transient by the tL-score. Both permanent and transient interacting proteins have both
types of residues, ones predicted to be permanent and those that are predicted to be transient.
In the case of permanent interacting proteins, the difference is that residues predicted to be
part of a permanent complex are dominant overall, while for transient interacting proteins,
residues predictions form local clusters on surfaces (i.e. the min-patch). Thus, capturing
these characteristic features of permanent/transient PBIs has lead to successful prediction by
BindML+.

The approach we developed here may also aid in the design of novel permanent or transient
protein-protein interactions, particularly, changing permanent docking interfaces to transient
type or vice versa by introducing interface mutations. Further, our methodology has broad
applications in terms of classifying other type of interaction sites, such as those that are
involved in protein-RNA, protein-DNA or protein-membrane binding. Further, specific
substitution models computed for various types of ligand binding sites, such as those that
bind metals or small chemical ligands or cofactors, such as ATP, NAD, or GTP can be used
in our framework for their prediction and classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flowchart of the BindML+ method for classifying protein interface predictions.
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Figure 2.
Amino acid frequencies of A, interface and B, non-interface regions in permanent and
transient complexes.
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Figure 3.
Comparison of secondary structure composition of permanent and transient interfaces. The
statistical significance of the two-sample test for proportions of amino acids and the standard
errors were computed assuming the secondary structure fraction follows the normal
distribution.
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Figure 4.
The ROC curve for the interface prediction benchmark results on the combination of the

JNT and Affinities dataset. A, Permanent PBI site prediction performance is shown using

the PERM/NPERM model in open circles; B, transient PBI site prediction performance
using the TRAN/NTRAN model is shown in open triangles. The dashed line indicates
expected performance of random predictions.
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Figure 5.
Examples of binding site scores mapped to surface residues. PBI site predictions and
classification is performed for cytoplasmic malate dehydrogenase (PDB: 4MDH-A), the

structure in green, while the interacting partner in translucent grey surface. A, Distribution

of dL Z-scores, where residues predicted as interface are shown as in thick black bars; B,

predicted interface residues are shown in black spheres; C, Distribution of tL Z-scores of the
PBI site predictions, where blue are permanent site predictions while red are transient site

predictions; D, tL Z-scores mapped to the PDB structure by their corresponding colors.
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Figure 6.
Examples of tL Z-scores mapped to structures. PBI site predictions and classification is
performed on the structure in green, while the interacting partner in translucent grey surface.
Residues with a positive tL Z-score (i.e. residues predicted to be permanent interaction) is
shown in blue and those with a negative tL Z-score (i.e. transient interaction) are shown in

red. A, Permanent interaction (PDB: 1F34-B): structure of ascaris pepsin inhibitor-3 bound

to porcine pepsin; B, Permanent interaction (PDB: 1PXV-A) staphostatin-staphopain

complex, a forward binding inhibitor in complex with its target cysteine protease; C,
Transient interaction (PDB: 1CEE-B): solution structure of cdc42 in complex with the

GTPase binding domain of wasp; D, Transient interaction (PDB: 1BEB-A): bovine beta-
lactoglobulin.
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Figure 7.
ROC curves of the permanent and transient protein interface classification benchmark for A,

predicted and B, known interfaces. ROC curves using the all features are shown in solid
black curve, prediction results using average tL Z-scores are shown in gray (1-3 in the
feature list), and prediction results using the residue counts (4, 5 in the feature list) are
shown in dotted line.
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Figure 8.
A, Examples of surface residues scores and B, their corresponding in min- and max-patches

for: Tryptophan synthase complex from a hyperthermophile (PDB: 1WDW-C); C, Colored

surface residues of the predicted interface and D, min- and max-patches for: AlphaL I
domain in complex with ICAM-1 (PDB: 1MQ8-B). Residues from patches with more

positive scores are colored in cyan, whereas those with more negative scores are colored in
pink. The residues in the min-patch are colored in red, while those in the max-patch are
colored in blue for each structural example.
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Table III

Classification of predicted protein-protein interfaces.

Combination PCR TCR AUC

All tL Z-scores 0.702 0.695 0.725

All residue counts 0.941 0.907 0.957

All Features 0.762 0.746 0.793

PCR and TCR values are reported for the tL score threshold that gives the closest point to the perfect prediction of TCR=1.0 and PCR = 1.0.
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Table IV

Classification of true protein-protein interfaces.

Combination PCR TCR AUC

All tL Z-scores 1.000 0.991 0.991

All residue counts 0.917 0.955 0.951

All Features 0.958 0.991 0.960
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