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Abstract: Personality is associated with variation in all kinds of mental faculties, including
affective, social, executive and memory functioning. The intrinsic dynamics of neural
networks underlying these mental functions are reflected in their functional connectivity
at rest (RSFC). We therefore aimed to probe whether connectivity in functional
networks allow predicting individual scores of the five-factor personality model and
potential gender differences thereof.
We assessed nine meta-analytically derived functional networks, representing social,
affective, executive and mnemonic systems. RSFC of all networks was computed in a
sample of 210 males and 210 well-matched females and in a replication sample of 155
males and 155 females. Personality scores were predicted using relevance vector
machine in both samples. Cross-validation prediction accuracy was defined as the
correlation between true and predicted scores.
RSFC within networks representing social, affective, mnemonic and executive systems
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significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness
and Openness. RSFC patterns of most networks, however, predicted personality traits
only either in males or in females.
Personality traits can be predicted by patterns of RSFC in specific functional brain
networks, providing new insights into the neurobiology of personality. However, as
most associations were gender-specific, RSFC-personality relations should not be
considered independently of gender.
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Authors’ Response to the Review Comments 

Journal:   Brain Structure and Function  

Title of Paper:  Predicting Personality from Network-based Resting-State Functional 

Connectivity 

Authors:  Alessandra D. Nostro, Veronika I. Müller, Deepthi P. Varikuti, Rachel N. 

Pläschke, Felix Hoffstaedter, Robert Langner, Kaustubh Patil and Simon 

B. Eickhoff  

Dear Editor, 

Please find enclosed the revised version of our manuscript entitled “Predicting Personality from 

Network-based Resting-State Functional Connectivity”. We appreciate the time and efforts by 

the editor and referee in reviewing this manuscript.  

We have carefully analyzed the requests of Reviewer 3, and concluded that they seem not to be 

applicable for our methods. The nature of the HCP, mainly composed of related individuals, 

together with the required independence assumptions on both input and target values, do not 

offer a proper setting for carrying out the analysis on the entire HCP sample. We, however, have 

tested in an extended HCP sample (N = 740) prediction performances of the previous significant 

results as further validation of their stability and now included them as supplementary material. 

With regards to the other “new” results discovered in this analysis, we would refrain from 

consider them as truly generalizable in a new population. This can be explained by the high 

chance for them to be driven especially by related individuals (most dramatic case of 

monozygotic twins sharing 100% of genetic makeup) and considering the vast literature showing 

heritability effects on both personality and brain imaging. 

As for the second comment, the formulation of Relevance Vector Machine algorithm, simply 

does not allow the suggested approach of the Reviewer.   

We are confident that our approach provides already a quite large sample, which at the same 

time is also very controlled on kinship and demographic factors. We, therefore, believe that these 

results represent a great improvement in understanding how personality is associated to brain 

function and hope to have reached the journal publication requirements. 

Authors response letter to Reviewers Click here to download Authors' Response to Reviewers'
Comments Nostro_ResponseLetter_Personality&RSFC.docx
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Please note that the edited parts of the manuscript are now marked in yellow. If the entire section 

was modified, we marked its title.  

 

Response to Comments from Reviewer 3 

We would like to thank the Reviewer 3 for careful and thorough reading of this manuscript and 

for the thoughtful comments and constructive suggestions.  

 

Comment 1: 

Dividing the HCP data into two separate samples is not optimal. Although it seems appealing to 

show replication across two samples, this is rendered unnecessary by the authors' use of 10-fold 

validation, which already provides an index of the generalizability of the results to new data. 

Further, there is a serious loss of statistical power entailed by splitting the sample to run the 

analyses. In the current setup, neither subsample is sufficiently large to yield optimally stable 

correlations, especially when considering gender groups separately, which is something that the 

authors emphasize. The authors should redo their analyses in a single combined analysis of the 

whole HCP sample. (If this involves keeping subjects who are related, the authors should simply 

mention in a footnote whether excluding these subjects changes their conclusions. Further, it 

should be noted that the dependencies introduced by such subjects would affect estimates of 

confidence intervals but would not bias the parameter estimates themselves.) There is no good 

reason to analyze the sample in two pieces rather than whole, especially given the use of 10-fold 

validation. 

 

Response: 

We agree with the reviewer that this might be a potential limitation and acknowledge that the use 

of a bigger sample would provide much higher statistical power. However, there is major 

argument against this procedure, which is the specific nature of the sample. The HCP “s1200” 



dataset is composed of 1125 of related individuals, with 581 twins and 534 not twins siblings, 

and only 76 of unrelated individuals. With regards to the effects of genetic mechanisms 

modulating personality traits, a vast number of studies agreed on accounting up to 40-60 % of 

the variance in the traits as heritable (Jang et al. 1996; Bouchard and McGue 2003; Verweij et al. 

2012; Power and Pluess 2015). Also brain function was shown to be highly heritable (van den 

Heuvel et al. 2013; Colclough et al. 2017; Ge et al. 2017; Ktena et al. 2017). Of important note, 

two of these studies were carried out on the HCP sample itself, showing in one case (Colclough 

et al. 2017) that connectivity patterns of RS fMRI networks are progressively more similar as the 

strength of relationship is increased, from unrelated subjects, through siblings and dizygotic 

twins to monozygotic twins. In the other study (Ge et al. 2017), stable components of functional 

connectivity within and across large-scale brain networks were revealed as considerably 

heritable. Importantly, an increasing number of studies starts showing shared genetic influences 

in brain-personality relationships (Hulshoff Pol et al. 2006; Ge et al. 2018).  

Given that both functional connectivity and personality traits have been shown to be heritable 

(see above) we thus selected only one member per family. That is, as pooling related subjects 

would have biased the assessment of generalizability and to avoid leakage between training and 

test samples from the same family, cross-validation was explicitly on unrelated individuals. 

Without controlling for kinship, siblings / dizygotic (Dz) / monozygotic (Mz) would be randomly 

assigned to the subsamples, thus predicting personality trait on, for example in case of Mz twins, 

an individual with nearly the same genetic makeup. To avoid overly optimistic predictions due to 

a relationship between subjects, we hence made use of the largest amount of unrelated 

participants by selecting one member per family and performed a replication analysis.  

We would thus refrain from favoring the whole sample over the two “unrelated” samples.  

Being aware of the issues that the related individuals might introduce, we still performed an 

analysis over the entire pooled sample and present in in the supplement. When performing the 

same modelling and cross-validation procedure on the pooled sample, i.e. 740 individuals, we 

noticed that our findings were well replicated (see Table S4). This evidently could be expected 

given the findings in the sub-samples making up the pooled cohort.  We also found a number of 

significant predictions that were not found in the unrelated samples. Importantly, however, it is 

impossible to disentangle, whether these additional results were driven by the higher power due 



to the larger number of subjects or the optimism-bias introduced by including related subjects, 

i.e., an overestimation of generalizability. 

In summary, we thank the Reviewer for raising this important issue and have changed the 

manuscript based on this comment in two ways. First, we introduce the issue of related subjects 

and the potentially ensuing bias in the cross-validation more clearly in the main manuscript. 

Second, we now present the pooled analysis, including related subjects, in the supplement. 

 

In the main manuscript, paragraph 2.1 Participants, line 24 page 8:  

“Additionally, Sample 1 and Sample 2 were combined to form the largest group of subjects 

available from the HCP data that is gender-balanced and matched for age and education (Sample 

3). This allowed us to investigate the stability of the results discovered in the two unrelated 

samples (i.e. that did not contain related individuals) and screen for additional relationships. The 

latter, however, need to be taken with caution, as the pooled sample does systematically contain 

closely related individuals (siblings and twins). Please refer to the supplementary material for a 

more detailed overview of the sample and the results of this analysis.” 

 

In the main manuscript, paragraph 4.1 Methodological considerations and limitations, line 17, 

page 19:  

“A last important methodological reflection is that, although it might be tempting to make use of 

the entire HCP sample (which, if requiring an equal number of males and females, and if 

considered the matching factors of age, education and twin status, would yield about 800 

individuals), it systematically consists of related subjects (siblings and twins). And there is 

considerable evidence for genetic influence on both personality (Jang et al. 1996; Bouchard and 

McGue 2003; Verweij et al. 2012; Power and Pluess 2015) and brain function (van den Heuvel 

et al. 2013; Colclough et al. 2017; Ge et al. 2017; Ktena et al. 2017). Consequently, the 

relationship structure in the HCP data is a critical aspect to this work, as the inclusion of related 

subjects would potentially hurt the model fitting but even more importantly would introduce an 

(optimistic) bias into the cross-validation. As a result, we thus performed our analyses primarily 

in the largest possible set of matched, unrelated subjects, replicate it in the then largest possible 



independent set of matched, unrelated subjects and only in a supplementary analysis pooled both 

of these sets for the analysis of around 750 subject.” 

 

In the supplementary material, paragraph Predictions based on the pooled sample 

Subjects Selection 

From the “s1200” release, Sample 1 and Sample 2 were generated by selecting only one member 

per family and then matching the male and female subgroups by age, years of education and 

twin-status. To perform the analysis on the largest (balanced and matched) possible set of HCP 

subjects (henceforth Sample 3), we combined the two unrelated samples, noting that now 

virtually all subjects will have a close relative in the sample. This procedure was preferred over 

the use of the entire HCP sample (n = 1096 participants with FIX-denoised RS-fMRI data and 

personality measurements) in order to keep the gender-ratio balanced and maintain control over 

age, education and twin status, which is still matched between male and female. Thus, Sample 3 

resulted in a total of 740 subjects: 370 males (196 non-twin, 174 twin subjects; aged 22-37 years, 

mean: 28.3 ± 3.5; years of education: 14.8 ± 1.8) and 370 females (196 non-twin, 174 twin 

subjects; aged 22-36 years, mean: 28.7 ± 3.5; years of education: 14.9 ± 1.8).  

Results of the Relevance Vector Machine in Sample 3. 

The analysis on the pooled Sample 3 revealed that the majority of the predictions discovered in 

the two unrelated samples could be well replicated (see Table S4). This can be easily explained 

by the fact that whenever a prediction truly reflected an association between trait and brain 

network, the presence of related individuals in the training and in the test groups would not harm 

the prediction, but rather lead to an overestimation of the performance of the model due to the 

genetic shared variance between twins (100% between Mz twins, 50% between Dz). On the 

other hand, introducing related subjects in the analysis (Sample 3) yielded a consistent number of 

predictions not found in the unrelated Samples 1 and 2 (Table S5). However, it is impossible to 

disentangle, whether these additional results were driven by the higher power due to the larger 

number of subjects or the optimism-bias introduced by including related subjects. 

Table S4: Comparison of the significant predictions across the three samples 

 



   Replication- 

analysis results 

Pooled- 

analysis results 

Predicted 

Trait 

Predicting 

Network 

Group r  

Sample

1 

p-value 

Sample

1 

r 

Sample 

2 

p-value 

Sample

2 

r 

Sample 

3 

p-value 

Sample     

3 

O VA All 0.12 0.006 0.17 0.001 0.1 0.004 

O Pain All 0.1 0.018 0.2 0.0 0.16 0.0 

O Rew Women 0.17 0.006 0.2 0.006 0.11 0.017 

O Pain Women 0.12 0.048 0.29 0.0 0.15 0.018 

E Face Men 0.18 0.005 0.14 0.04 0.01 0.4 

E Rew Women 0.14 0.02 0.23 0.002 0.1 0.03 

E Conn Women 0.29 0.0 0.23 0.002 0.13 0.01 

A AM All 0.1 0.018 0.18 0.001 0.12 0.0 

N Conn All 0.14 0.018 0.14 0.04 0.07 0.06 

N Conn Men 0.17 0.0 0.38 0.0 0.12 0.02 

N Emo Men 0.2 0.002 0.42 0.0 0.05 0.1 

 

Predicted Trait: O: Openness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: autobiographic memory; 

Face: face perception; Conn: whole-brain network; Emo: emotional processing.  

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 in both samples 1 

and 2 (Replication-analysis results), compared with the performance of the same network-trait association in 

Sample 3 (Combination-analysis results). In red, predictions that resulted significant at p < 0.05 also in Sample 3. 

 

Table S5: Results of the Relevance Vector Machine in Sample 3 

Predicting 

Network 

Predicted 

Trait 

Group r  

Sample 3 

p-value 

Sample 3 

AM O All 0.09 0.01 

AM O Men 0.17 0.00 



AM O Women 0.15 0.00 

Emo O Women 0.11 0.02 

Emp O All 0.07 0.04 

Emp O Women 0.13 0.01 

Face O Women 0.21 0.00 

Pain O All 0.16 0.00 

Pain O Men 0.06 0.04 

Pain O Women 0.15 0.00 

Rew O All 0.10 0.00 

Rew O Men 0.07 0.03 

Rew O Women 0.11 0.02 

SM O All 0.07 0.03 

SM O Men 0.13 0.00 

VA O All 0.10 0.00 

VA O Women 0.18 0.00 

WM O Women 0.11 0.02 

Face C Women 0.13 0.01 

Conn C All 0.10 0.00 

Conn C Men 0.10 0.03 

WM C Women 0.12 0.01 

AM E Women 0.13 0.01 

Pain E Women 0.09 0.04 

Conn E All 0.16 0.00 

Conn E Women 0.13 0.01 

Rew E All 0.11 0.00 

Rew E Women 0.10 0.03 

AM A All 0.12 0.00 

AM A Men 0.12 0.00 

AM A Women 0.13 0.01 

Emp A Men 0.15 0.00 

Face A All 0.06 0.05 

Rew A All 0.14 0.00 

SM A All 0.12 0.00 



SM A Men 0.11 0.00 

VA A Men 0.14 0.00 

WM A All 0.09 0.01 

Emp N Women 0.18 0.00 

Face N All 0.08 0.02 

Conn N All 0.07 0.03 

Conn N Men 0.12 0.01 

Rew N Men 0.09 0.01 

 

Predicted Trait: O: Openness; C: Conscientiousness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: AM: Autobiographic Memory; Emp: Empathy; Emo: Emotional processing; Face: Face 

perception; Pain: Pain processing; Rew: Reward; SM: Semantic Memory; VA: Vigilant Attention; WM: Working 

Memory; Conn: Connectome. 

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 Sample 3. 

 

 

Comment 2: 

The authors emphasize gender differences in the abstract and in the analyses, but they do not use 

the optimal procedure to test for these differences. They split the sample(s) into male and female 

and run separate analyses, then test for differences in the strength of effects between groups. 

This is backwards from the way the analyses should be run. First, they should compute 

interaction terms, using personality scores multiplied by a dummy variable for gender; then 

gender, personality, and their interactions should be used simultaneously to predict connectivity 

values in the whole sample. Only when the interaction terms are significant predictors should 

they then characterize the interaction by running the analyses separately in each gender group. 

This will prevent the situation that they describe in the following sentence: "Notably, not all 

associations that were only found predictive in one subgroup showed significant differences in 

predictability between males and females." There is no reason to even report any associations 

that do not show significant differences in predictability between males and females, and this can 

be avoided by testing for these differences in the whole sample first, using interaction terms. The 

approach I recommend here also has greater statistical power than their approach.  



Response: 

We are sorry for the apparent confusion and if we were not clear enough that connectivity 

measures are predicting personality scores, not the other way around, as suggested by this 

comment. Unfortunately, this very interesting idea will not be feasible in the current setting for 

the following reasons. 

1. Using interactions terms between gender dummies and personality traits does not apply 

given the fact that personality in our models represents, as said above, the dependent 

variable which is predicted by RSFC features.  

2. Using interaction terms between gender dummies and RSFC features could have been a 

viable approach to assess group differences, but this would have required that personality 

traits were modelled with a linear model. However, this is not the case as Relevance 

Vector Machine does not estimate a coefficient for each feature as in a linear model, but 

the coefficients are associated to the subjects (because of the dual formulation of the 

model). Therefore, the significance of the interaction terms' coefficients is not defined 

and cannot be statistically tested. 

3. A last but more fundamental consideration is that the group differences that we aim to 

outline using out-of-sample predictions, do not to reflect differences in the strength of the 

associations between two variables (for example correlations between RSFC and 

personality traits). With this approach, we compare across groups the strength of 

prediction performances of the same network – trait combination resulted significant in at 

least one group. As a result, correlations are used to statistically testing the capability of 

the algorithm to predict and generalize across genders, not gender differences in the 

associations between RSFC and personality.  

We thank the reviewer for the in-depth analysis and useful comments. We are sorry if the 

responses could not fully satisfy the requests, but believe that an open and honest discussion 

about these points have certainly benefit the authors and hopefully the reviewer. We would be 

glad to respond to any further questions and comments that you may have. 
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Abstract 

Personality is associated with variation in all kinds of mental faculties, including affective, social, 

executive and memory functioning. The intrinsic dynamics of neural networks underlying these 

mental functions are reflected in their functional connectivity at rest (RSFC). We therefore aimed to 

probe whether connectivity in functional networks allow predicting individual scores of the five-

factor personality model and potential gender differences thereof. 

We assessed nine meta-analytically derived functional networks, representing social, affective, 

executive and mnemonic systems. RSFC of all networks was computed in a sample of 210 males 

and 210 well-matched females and in a replication sample of 155 males and 155 females. 

Personality scores were predicted using relevance vector machine in both samples. Cross-validation 

prediction accuracy was defined as the correlation between true and predicted scores. 

RSFC within networks representing social, affective, mnemonic and executive systems significantly 

predicted self-reported levels of Extraversion, Neuroticism, Agreeableness and Openness. RSFC 

patterns of most networks, however, predicted personality traits only either in males or in females.  

Personality traits can be predicted by patterns of RSFC in specific functional brain networks, 

providing new insights into the neurobiology of personality. However, as most associations were 

gender-specific, RSFC–personality relations should not be considered independently of gender. 
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1. Introduction 1 

Interindividual differences in personality permeate all aspects of life, from affective and cognitive 2 

functioning to social relationships. One of the most comprehensive and most widely recognized 3 

models of personality is the Five Factor Model (FFM; Costa & McCrae, 1992), consisting of five 4 

broad dimensions: Openness to experience/Intellect, Extraversion, Neuroticism, Agreeableness, and 5 

Conscientiousness. Openness to experience/Intellect reflects the engagement with aesthetic/sensory 6 

and abstract/intellectual information, as well as the degree of appreciation and toleration for the 7 

unfamiliar (Nicholson et al. 2002; Fleischhauer et al. 2010; Fayn et al. 2015). Extraversion relates 8 

to approach behavior of driving toward a goal that contains cues for reward, and tendency to 9 

experience positive emotions given by the actual attainment of that goal (Depue and Collins 1999; 10 

DeYoung 2015). Neuroticism relates to a person’s emotional life and reflects the tendency to 11 

heightened emotional reactivity to negative emotions (Goldberg and Rosolack 1994; Rusting and 12 

Larsen 1997; Gray and Mcnaughton 2000). Agreeableness relates to interpersonal behavior and 13 

reflects the degree of avoidance of interpersonal conflicts (stability between individuals) (Graziano 14 

et al. 2007; Butrus and Witenberg 2013). Conscientiousness reflects the degree to which individuals 15 

perform tasks and organize their lives, exhibiting a tendency to show self-discipline, act dutifully, 16 

and aim for achievement (stability within individuals) (Ozer and Benet Martínez 2006; Roberts et 17 

al. 2009) (cf. for more details McCrae and Costa 2004; DeYoung and Gray 2009). 18 

Since the FFM of personality is based on language descriptors of adjectives applied to human and 19 

human behaviour in English lexicon, rather than neurobiological features, many attempts have been 20 

made to explore the neural bases of these five factors. At first, each trait has been associated to its 21 

most crucial and characterizing psychological functions (e.g. Neuroticism and Extraversion to 22 

sensitivity to punishment and reward respectively, Agreeableness to social processes, 23 

Conscientiousness to top-down control of behaviour and Openness cognitive flexibility), and 24 

hypotheses have been developed about the associations between brain systems supporting those 25 
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psychological functions, and the respective trait, paving the way for a biology of personality traits 1 

(c.f. DeYoung and Gray 2009). It has, therefore, been suggested that Neuroticism is associated 2 

(functionally or structurally) to affective regions that had been linked to respond to threat and 3 

punishment like amygdala, hippocampus, cingulate cortex and medial prefrontal cortex (Kumari 4 

2004; Cremers et al. 2010; DeYoung et al. 2010; Tzschoppe et al. 2014; Madsen et al. 2015; Pang 5 

et al. 2016). Extraversion has been linked to regions responding to reward-related stimuli like 6 

nucleus accumbens, striatum, amygdala and orbitofrontal cortex (DeYoung et al. 2010b; Adelstein 7 

et al. 2011; Pang et al. 2016, c.f. Lei et al. 2015). Conscientiousness has been related to the lateral 8 

prefrontal cortex (Asahi et al. 2004; Passamonti et al. 2006; DeYoung et al. 2010; Kunisato et al. 9 

2011), deputed to the planning, following complex rule and voluntarily control of behavior. 10 

Similarly, Openness has also been associated to the functions of the lateral PFC (DeYoung et al. 11 

2005; Kunisato et al. 2011), but in contrast to Conscientiousness, more because of its role in 12 

attention, working memory and cognitive flexibility. Finally, Agreeableness has been associated to 13 

regions involved in the processing of social information, such as temporo-parietal junction, superior 14 

temporal gyrus and posterior cingulate cortex (Hooker et al. 2008; DeYoung et al. 2010; Adelstein 15 

et al. 2011). However, the associations between brain systems underlying specific mental functions 16 

and personality traits might be more complex than such one-to-one mapping; instead, it is much 17 

more plausible that the mapping between traits and brain systems is rather many-to-many (c.f. 18 

Yarkoni 2015; Allen and DeYoung 2016). One example is provided by Neuroticism, which has not 19 

only been associated to affective regions, but also to regions exerting cognitive functions, e.g. 20 

dlPFC (Kunisato et al. 2011; Pang et al. 2016), or behavioural performances probing attention 21 

(MacLean and Arnell 2010), working memory (Studer-Luethi et al. 2012), verbal fluency (Sutin et 22 

al. 2011) and explicit memory (Pearman 2009; Denkova et al. 2012). It is therefore possible that 23 

these systems (affective and executive) both contribute in explaining variance in Neuroticism. The 24 

potential contribution of other regions rather than the ones originally suggested also holds for other 25 

traits. For example, increasing evidence points to a link between Openness and the functional 26 
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organization and global efficiency of the default mode network (DeYoung 2014; Sampaio et al. 1 

2014; Beaty et al. 2016). Similarly, even if not directly investigating the trait of Agreeableness, 2 

there is evidence (Gazzola et al. 2006; c.f. Iacoboni 2009) showing a possible association between 3 

one of its facet, empathy, with the mirror neuron system. 4 

Furthermore, one of the major challenges of using functional studies for the association between 5 

personality traits and brain systems is the fact that the latter can only be based on specific 6 

implementations such as behavioural tests or paradigms used in experimental research. Moreover, 7 

there is a general consensus that mental functions arise from the coordinated activity within 8 

distributed networks rather than any individual brain region (Eickhoff and Grefkes 2011). 9 

Therefore, relating a personality trait to a particular function only because a brain region correlates 10 

with both is problematic. These considerations have prompted a network-centred perspective of 11 

brain organization (c.f. De Vico Fallani et al. 2014), highlighting the importance of functional 12 

integration for mental processes and their inter-individual differences. However, this approach, 13 

which requires a priori defined seeds, suffers from an important methodological limitation. That is, 14 

by choosing pre-defined nodes from a single task-based fMRI study, the findings might be biased 15 

toward that particular paradigm operationalization. Furthermore, task-based fMRI literature often 16 

suffers from low statistical power and low reproducibility, due to the small sample sizes typically 17 

used and considerable heterogeneity in the analysis pipeline (cf. Samartsidis et al. 2017). To solve 18 

the problem of a more objective definition of relevant nodes in a given functional network, 19 

quantitative meta-analyses of task-based neuroimaging studies aggregate the findings of many 20 

individual task-activation studies into a core network representing those locations that are reliably 21 

recruited by engaging in a given kind of mental process (cf. Fox, Lancaster, Laird, & Eickhoff, 22 

2014). The investigation of RSFC in meta-analytically defined networks representing specific 23 

social, affective, executive, or memory functions, therefore, provides a viable approach to capturing 24 

the complex intrinsic neural architecture underlying personality (Adelstein et al. 2011; Sampaio et 25 

al. 2014).  26 
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Given that network connectivity data are almost inevitably high-dimensional, consisting of many 1 

correlated features, univariate analyses of associations between connectivity measures and 2 

phenotypical traits such as personality may not represent an optimal strategy (Orrù et al. 2012). 3 

Moreover, univariate analyses will likely fail to elucidate associations that depend on the pattern of 4 

connectivity within a network rather than any specific individual connection. On the other hand, 5 

machine learning and multivariate pattern analysis (MVPA), suitable for analysing neuroimaging 6 

data (cf. Oktar & Oktar, 2015; Gael Varoquaux & Thirion, 2014), provide an approach that 7 

overcomes these limitations by searching for patterns in the connectivity matrix that allow the 8 

prediction of a continuous target variable (Doyle et al. 2015). In this article, the term “prediction” 9 

refers to the out-of-sample evaluation of a statistical model’s ability to predict the personality score 10 

for previously unseen individuals based on their RSFC. The potential of such approaches to predict 11 

behavioural scores from resting-state connectivity data has already been demonstrated with respect 12 

to sustained attention (Rosenberg et al. 2016), autistic traits (Plitt et al. 2015) and impulsivity in 13 

economic decision-making (Li et al. 2013). Conversely, personality traits have been predicted from 14 

cyber records such as personal web sites (Marcus et al. 2006) or social networks (Golbeck et al. 15 

2011; Bachrach et al. 2012) but not yet from neuroimaging data.  16 

Bringing together the different aspects outlined above, the current study explored whether 17 

individual levels of five major personality traits can be predicted from RSFC profiles in a priori 18 

defined brain networks representing specific cognitive functions. The selection of the networks used 19 

a priori knowledge based on the associations reported in literature between psychological functions 20 

(and deputed networks) with personality. Accordingly, we chose functional networks associated to 21 

affective (emotion processing, reward and pain) functions given their main associations with both 22 

Extraversion and Neuroticism, social (empathy and face processing) functions in relation to 23 

Agreeableness, executive functions as linked to Conscientiousness and Openness (vigilant attention 24 

and working memory to represent respectively rigid control and flexibility) and memory 25 

(autobiographic and semantic) functions as many traits were also found to be associated with them. 26 
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However, it is important to note that we refrained from having hypotheses about network – 1 

predicted traits associations, since we believe that multiple brain systems, among the selected ones, 2 

can contribute to explaining inter-individual variance in one trait (e.g. Openness being predicted 3 

from networks outside the executive domain). We additionally used a network with whole-brain 4 

coverage consisting of 264 nodes (we here refer to it as Connectome; Power et al. 2011) to predict 5 

the five personality traits in order to test if personality can be better predicted by specific functional 6 

networks or a rather unspecific whole-brain network. Additionally, in light of previous findings of 7 

sexual dimorphism in the relationships between brain structure and personality traits (Nostro et al. 8 

2016) as well as gender differences in RSFC (Allen et al. 2011; Filippi et al. 2013; Hjelmervik et al. 9 

2014; Weis et al. 2017) and personality (Yang et al. 2015), these analyses were performed in a 10 

gender-mixed sample as well as separately in male and female subsamples.  11 

 12 

2. Materials and methods 13 

2.1 Participants 14 

All data were obtained from the Human Connectome Project (HCP) WU-Minn Consortium as 15 

provided in the current “S1200” release (http://www.humanconnectome.org  (Van Essen et al. 16 

2013). The HCP was funded by the 16 NIH Institutes and Centers that support the NIH Blueprint 17 

for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington 18 

University. Our analyses of the HCP data were approved by the ethics committee of the Heinrich 19 

Heine University Düsseldorf.  20 

 21 

The HCP sample is composed of monozygotic and dizygotic twins as well as not-twins, the latter 22 

including siblings of twins, just siblings, and only-children (including those that have an as-yet not 23 

scanned sibling but not twin). Given this structure of related and unrelated subjects, we paid 24 

particular attention to select a well-matched sample of males and females that was as large as 25 



 8 

possible while at the same time controlling for possible effects of heritability by creating a sample 1 

of only unrelated subjects. Evidently, we first selected all participants from the HCP sample for 2 

whom resting-state fMRI volumes and personality data were available. Out of this sample, we then 3 

selected groups of unrelated males and females (i.e. only one representative of a given family), 4 

matched for age, year of education and twin-status. This last match (twin or not twin) was preferred 5 

over the match for zygosity (not twin, dizygotic or monozygotic) as it enabled us to select a higher 6 

number of participants while not introducing dependencies in the sample. In fact, Kolmogorov-7 

Smirnov test showed that zygosity does not lead to any significant difference in the five scores 8 

distribution, cf. supplementary Table S1. Importantly, we created a first main sample (Sample 1), 9 

where we aimed for the highest number of participants according to the inclusion criteria, but since 10 

a considerable number of individuals were left out from the first selection, we additionally created a 11 

“replication” sample, (Sample 2). Sample 2 was thus created by removing the subjects belonging 12 

to the Sample 1 from the main release (S1200) and re-applying the selection criteria on the 13 

remaining participants.  14 

The final selection procedure of Sample 1 resulted in a total of 420 subjects: 205 males (119 non-15 

twins, 91 twin subjects; aged 22-37 years, mean: 28.3 ± 3.5; years of education: 14.9 ± 1.8) and 205 16 

females (117 non-twins, 93 twin subjects; aged 22-36 years, mean: 28.8 ± 3.5; years of education: 17 

15.0 ± 1.8).  18 

From the remaining subjects not selected for Sample 1, Sample 2 was obtained resulting in a 19 

sample of 302 subjects: 151 males (75 non-twins, 76 twins subjects; aged 22-36 years, mean: 28.2 ± 20 

3.4; years of education: 14.8 ± 1.8) and 151 females (76 non-twins, 75 twin subjects; aged 22-35 21 

years, mean: 28.9 ± 3.5; years of education: 15.0 ± 1.8). For an overview on the samples selection, 22 

see Fig 1. 23 

Additionally, Sample 1 and Sample 2 were combined to form the largest group of subjects 24 

available from the HCP data that is gender-balanced and matched for age and education (Sample 3). 25 

This allowed us to investigate the stability of the results discovered in the two unrelated samples 26 
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(i.e. that did not contain related individuals) and screen for additional relationships. The latter, 1 

however, need to be taken with caution, as the pooled sample does systematically contain closely 2 

related individuals (siblings and twins). Please refer to the supplementary material for a more 3 

detailed overview of the sample and the results of this analysis. 4 

Figure 1 about here please 5 

 6 

2.2 Self-report data  7 

Personality was assessed using the English-language version of the NEO Five Factor Inventory 8 

(NEO-FFI; McCrae and Costa 2004). The NEO-FFI consists of 60 items in the form of statements 9 

describing behaviours that are characteristic for a given trait, 12 for each of the five factors 10 

(Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism). Each factor is 11 

assessed by aggregating individual responses given on five-point Likert-type ratings scales, yielding 12 

sum scores between 0 and 60 for each factor. Data were analysed using SPSS 20 (IBM Corp. 13 

Released 2011); scores of males and females were compared via t-tests (p < 0.05, Bonferroni-14 

corrected for multiple comparisons) for each personality trait. In case of significant group 15 

differences, we estimated effect sizes by using Cohen’s d measure (Cohen 1988). Furthermore, 16 

correlations among factors were calculated and tested for significance (Bonferroni-corrected) 17 

separately for males and females (for details, see supplementary material). Importantly, as 18 

reported on the HCP listserv (https://www.mail-archive.com/hcp-19 

users@humanconnectome.org/msg05266.html), the Agreeableness factor score in the HCP database 20 

was erroneously calculated due to item 59 not reversed. We addressed this issue by reversing it and 21 

using the correct score of Agreeableness. 22 

 23 

2.3 Meta-analytically derived networks 24 

2.3.1 Selection of networks 25 

https://www.mail-archive.com/hcp-users@humanconnectome.org/msg05266.html)
https://www.mail-archive.com/hcp-users@humanconnectome.org/msg05266.html)
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We selected nine meta-analytic networks representing regions consistently activated by various 1 

social, affective, executive and memory functions. Specifically, we used two networks related to 2 

social cognition:  empathy (Emp; Bzdok et al., 2012) and static face perception (Face; Grosbras, 3 

Beaton, & Eickhoff, 2012); three networks related to affective processing: reward (Rew; Liu, 4 

Hairston, Schrier, & Fan, 2011), physiological stress/pain (Pain; Kogler et al., 2015) and perception 5 

of emotional scenes and faces (Emo; Sabatinelli et al., 2011); two networks related to executive 6 

functions: working memory (WM; Rottschy et al., 2012) and vigilant attention (VA; Langner & 7 

Eickhoff, 2013); two networks related to long-term memory: autobiographic memory (AM; Spreng, 8 

Mar, & Kim, 2008) and semantic processing (SM; Binder, Desai, Graves, & Conant, 2009).   9 

 10 

2.3.2 Selection of coordinates 11 

From each meta-analysis, we selected the reported coordinates of the networks to include in our 12 

analyses and modelled a 6-mm sphere around each coordinate. This ensured that all nodes were 13 

represented by region of interest of equal size (ROIs) within and across networks. Within each 14 

single network, we only selected peaks that either represented different anatomical regions, 15 

preventing multiple representations of a single region, or were at least 15 mm apart from each other 16 

(according to the SPM anatomy toolbox 2.1; (Eickhoff et al. 2005, 2007)). In cases of multiple 17 

peaks within an anatomical region that were closer to each other, we included the peak showing the 18 

highest Z-score. Please note, these criteria were only applied for multiple regions within a single 19 

network, while we did not exclude any regions that were found also in another network. That is, 20 

even if different networks featured peaks at the same location, these presumably shared nodes were 21 

retained. Given that little is yet known about the effect of the networks’ sizes on the outcome 22 

predictability, we also had to consider the size of the networks (i.e. number of nodes) to make sure 23 

that possible differences in their predictive power were not due to the number of nodes included. As 24 

a result, the size of the networks ranged between 16 (VA) and 24 (Emo) nodes. Further details on 25 
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the meta-analytic networks can be found in Table 1, supplementary Table S3 and supplement 1 

Fig S1. 2 

Table 1 about here please 3 

 4 

2.4 Connectome analysis 5 

In addition, we employed a brain-wide network of 264 functional areas from Power and colleagues 6 

(Connectome; Power et al. 2011) to compare the predictive power of RSFC from the whole-brain 7 

and from meta-analytic networks. For the coordinates of this Connectome, please refer to the 8 

supplementary Table S2 of Power et al. 9 

 10 

2.5 Resting-state fMRI data: Acquisition, preprocessing and functional connectivity analyses 11 

As part of the HCP protocol (Glasser et al. 2013), images were acquired on a Siemens Skyra 3T 12 

Human Connectome scanner (http://www.humanconnectome.org/about/project/MR-hardware.html) 13 

using a 32-channel head coil. Resting-state (RS)-BOLD data (voxel size= 2 x 2 x 2 mm³, FoV= 208 14 

x 180 mm², matrix = 104 x 90, 72 slices in a single slab, TR = 720 ms; TE= 33.1 ms, flip angle = 15 

52°) were collected using a novel multi-band echo planar imaging pulse sequence that allows for 16 

the simultaneous acquisition of multiple slices (Xu et al. 2013). RS-fMRI data were then cleaned of 17 

structured noise through the Multivariate Exploratory Linear Optimized Decomposition into 18 

Independent Components (MELODIC) part of FSL toolbox (www.fmrib.ox.ac.uk/fsl). This process  19 

pairs independent component analysis  with a more complex automated component classifier 20 

referred to as FIX (FMRIB's ICA-based X-noisifier) to automatically remove artefactual 21 

components (Salimi-Khorshidi et al. 2014).  22 

The FIX-denoised RS-fMRI data were further preprocessed using SPM12 (Statistical Parametric 23 

Mapping, Wellcome Department of Imaging Neuroscience, London, UK, 24 

http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab R2016a (Mathworks, Natick, MA). For 25 

each participant, the first four EPI images were discarded prior to further analyses. Then EPI 26 

images were corrected for head movement by affine registration using a two-pass procedure: in the 27 

http://www.fmrib.ox.ac.uk/fsl)
http://www.fil.ion.ucl.ac.uk/spm/
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first step, images were aligned to the first image, and in the second step to the mean of all volumes. 1 

Next, the mean EPI image was spatially normalized to the non-linear MNI152 template (Holmes et 2 

al. 1998) by using the “unified segmentation” approach in order to account for inter-individual 3 

differences in brain morphology (Ashburner and Friston 2005). Finally, images were smoothed with 4 

an isotropic Gaussian kernel (full-width at half-maximum = 5 mm). 5 

The activity time series of each voxel was further cleaned by excluding variance that could be 6 

explained by mean white-matter and cerebrospinal-fluid signal (Satterthwaite et al. 2013). Data 7 

were then band-pass filtered with cut-off frequencies of 0.01 and 0.08 Hz. 8 

In order to identify participants with aberrant RSFC patterns, we computed each subject’s entire 9 

connectome sampled on a 1-cm grid. We then computed the pairwise Euclidean distance between 10 

the subjects and identified the nearest neighbour for each subject. We excluded the subjects whose 11 

distance to their nearest neighbour was in the highest 2.5% and at least 3 SD away from the average 12 

distance. This procedure was done separately for men and women (Sample 1: 5 males, 5 females; 13 

Sample 2: 4 males, 4 females). No subjects were excluded due to outlier motion parameters 14 

(DVARS and FD both displaying zero-centered values) (Salimi-Khorshidi et al. 2014; Varikuti et 15 

al. 2016; Ciric et al. 2017). For RSFC analyses, the subject-specific time series for each node of 16 

each network were computed as the first eigenvariate of the activity time courses of all grey matter 17 

voxels within 6 mm of the respective peak coordinate. We then computed pairwise Pearson 18 

correlations between the eigenvariates of all nodes in each network, which then were transformed 19 

using the Fischer’s Z scores and adjusted (via linear regression) for the effects of age and 20 

movement.  21 

 22 

2.6 RSFC-based prediction of personality traits by Relevance Vector Machine learning 23 

We examined if the RSFC patterns within each network predicted personality scores by means of 24 

statistical learning via the Relevance Vector Machine (RVM; Tipping, 2001) as implemented in the 25 

SparseBayes package (http://www.miketipping.com/index.htm). The RVM is a machine learning 26 

http://www.miketipping.com/index.htm
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technique that can learn to predict a continuous target value given explanatory variables (also called 1 

features). In our case the features were the RSFC values between all nodes of a meta-analytic 2 

network, while the score of a specific personality factor scale was the target value.  3 

Briefly, RVM is a multivariate approach that was developed from the Support Vector Machine 4 

(SVM) in order to induce sparseness in the model’s parameters. The RVM, in contrast to SVM, 5 

implements a fully probabilistic Bayesian framework: for each possible value of the input vector 6 

(e.g. set of FC values), the RVM algorithm provides a probability distribution of the predicted 7 

target value (e.g. FFM personality score), unlike a point estimate obtained by the SVM.   8 

�̂�(𝑥, 𝑤) = 𝑤0(0; 𝜎0) +∑ 𝑤𝑖𝑛𝑖=1 (0; 𝜎𝑖)𝐾𝜎(𝑥𝑖, 𝑥), 9 

In the RVM formulation above, the kernel K is a multivariate zero-centered Gaussian with standard 10 

deviation σ (estimated by the algorithm) and every parameter wi, assigned to each subject xi in the 11 

training set, is assumed to follow a Gaussian with mean zero and standard deviation σi. The 12 

standard deviations σi that describe the probability distribution of the parameters wi are iteratively 13 

estimated from the training data in order to maximize the likelihood of the model. Sparseness is 14 

achieved by discharging parameters wi converged to zero. Once σ0 and σi have been estimated, the 15 

trained model can be used to predict the target value (e.g., FFM personality score) from a 16 

previously unseen input vector (RSFC data from participants that were not part of the training data) 17 

by computing the predictive distribution (for a more detailed description, see Tipping, 2001). 18 

In our study, we implemented the RVM algorithm with a 10-folds cross-validation. That is, the 19 

sample was randomly split into 10 equally sized groups of which 9 were used for training while one 20 

was held back and used for assessing the performance of the prediction in previously unseen data. 21 

Holding out each of the 10 groups in turn then allowed computing the prediction performance 22 

across the entire dataset. Importantly, this procedure was repeated 250 times using random initial 23 

splits of the data to obtain robust estimates of the RVM performance for predicting a given NEO-24 

FFI score from a particular network’s RSFC pattern. For each subject, the predicted values resulting 25 
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from each cross-validation (i.e. one replication) were averaged over the 250 replications and 1 

ultimately correlated with the real score. 2 

As we performed 250 replications of a 10-fold cross-validation, in total 2500 models were 3 

computed to predict each trait. We thus quantified the contribution of each connection by the 4 

fraction of these 2500 models in which the weight for the respective connection was non-zero. The 5 

connections that had a non-zero weight in at least 80% of all models were identified as the 6 

connections that were most robustly part of the predictive model. The brain networks were 7 

visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al. 2013). 8 

 9 

For both the “main” (Sample 1) and “replication” (Sample 2) samples, predictions were first 10 

carried out for all subjects with males and females combined (AllSample1: n = 410 AllSample2: n = 11 

302), and then separately for the male (MenSample1: n = 210; MenSample2: n = 151) and female group 12 

(WomenSample1: n = 210; WomenSample2: n = 151) in order to assess gender differences in 13 

predictability. Predictive power was assessed by computing Pearson correlations between real and 14 

predicted NEO-FFI scores and mean absolute error (MAE). Importantly, results were only regarded 15 

as significant when they were significant at a threshold of p < 0.05 in both samples (Sample 1 and 16 

Sample 2). The p value was computed via permutation testing between real and predicted values 17 

with 10.000 runs. For each run, we shuffled the predicted scores across subjects in either the entire 18 

sample (for “All”) or in the gender-groups (for “Men” and “Women”) without replacement. From 19 

here, the definition of the p value as the fraction of runs when the correlation between real and the 20 

shuffled predicted score was higher than the one obtained between the real and the original 21 

predicted value.  22 

For all significant results in either “All”, “Men” or “Women”, we further tested for significant 23 

differences in prediction performance (i.e. correlation between real and predicted value) between 24 

males and females in the main sample. Pearson correlation coefficients (r) were transformed into 25 

Fisher’s Z and the difference between ZMen and ZWomen calculated and then 95% confidence intervals 26 
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(CI) were computed based on these difference scores. The difference in correlation coefficients 1 

between males and females were regarded as significant if the 95% confidence interval did not 2 

contain zero (Lane 2013).  3 

 4 

3.  Results 5 

3.1 NEO-FFI scores 6 

Subjects scored in the same range as reported by McCrae and Costa (McCrae and Costa 2004) in 7 

both the samples. 8 

Correlations between factors were calculated separately for males and females and in the entire 9 

sample (see supplementary Table S2 for more detailed information). Most of them were 10 

significant at p < 0.05 (Bonferroni-corrected) in both males and females and the entire sample. 11 

Openness, however, was found to be independent of most of the other factors, except for 12 

Agreeableness (in Sample 1 for All, Men and Women), and Conscientiousness (in All for both 13 

Sample 1 and Sample 2). Furthermore, Neuroticism was the only factor correlating negatively with 14 

almost all the others (except for Openness in Men of Sample 1 and in All, Men and Women of 15 

Sample 2). 16 

Comparison of the scores for the five personality traits between Men and Women revealed a 17 

significant difference for Agreeableness in both samples (Sample 1: t407 = −4.95; p < 0.05, d = -18 

0.49; Sample 2: t299 = −2.2; p < 0.05, d = -0.27), with females scoring higher than males. For 19 

Neuroticism, Women significantly scored higher than Men in Sample 1 (t407 = −2.8; p < 0.05, d = -20 

0.28), while in Sample 2 this difference only showed a trend (t299 = −1.93; p = 0.055, d = -0.2). For 21 

Openness (Sample 1: t407 = 0.1; p = 0.9; Sample 2: t299 = 1.64; p = 0.1) and Extraversion (Sample 22 

1: t407 = 1.1; p = 0.3; Sample 2: t299 = -0.68; p = 0.5) no significant gender differences were found. 23 

For Conscientiousness, Women significantly scored higher than Men in Sample 2 (t299 = −2.11; p < 24 

0.05, d = -0.245), while in Sample 1 Women scored higher than Men, but not significantly (t407 = -25 

0.41; p = 0.15). 26 
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 1 

3.2 RVM: Predicting personality traits based on RSFC 2 

Results are only be reported if they were significant both in the main (Sample 1) and in the 3 

replication sample (Sample 2). 4 

3.2.1 Predictions in the entire sample (balanced males & females) 5 

In the entire sample, the RSFC pattern of four networks significantly predicted personality factors: 6 

Pain and VA predicted Openness, AM predicted Agreeableness and Connectome predicted 7 

Neuroticism (see Table 2, Fig 2 for an overview of the results and Fig 3 for the correlation plots). 8 

Figure 2 & 3 about here please 9 

Table 2 about here please 10 

 11 

3.2.2 Predictions of personality traits in the gender-split groups 12 

In the gender-split groups, we also found a significant prediction of Openness scores based on FC 13 

patterns within the Pain network in Women as well as prediction of Neuroticism based on the 14 

Connectome FC in Men. In contrast, the VA and AM-related networks did not significantly predict 15 

Openness and Agreeableness in either subgroup. However, in the gender-specific groups additional 16 

significant predictions were observed: in males, Extraversion was predicted by the RSFC patterns 17 

of Face and Neuroticism by Emo networks (Table 2, Fig 2-3). In females, Openness was predicted 18 

by Rew network. Furthermore, in females, Extraversion was predicted by Rew network and the 19 

Connectome (Table 2, Fig 2-3).  20 

 21 

3.3 Gender differences in personality predictability 22 

For all the predictions that were significant in at least one group (All/Males/Females), we tested if 23 

prediction performance was significantly different between the male and female subgroups. 24 
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Significantly better predictability in Men than Women was found for Neuroticism predicted from 1 

Emo network (Table 3, supplementary Fig S2). In Women compared with Men, Openness was 2 

significantly better predicted from Rew network and Extraversion from the entire Connectome 3 

(Table 3, supplementary Fig S2).  4 

Notably, not all associations that were only found predictive in one subgroup showed significant 5 

differences in predictability between males and females. In particular, no gender differences were 6 

found in predicting Openness from Pain, and VA networks, Neuroticism from Connectome, 7 

Agreeableness from AM, and Extraversion from Face and Rew networks (Table 3, supplementary 8 

Fig S2). 9 

Table 3 about here please 10 

4. Discussion 11 

 12 

Here we report associations between major dimensions of personality and RSFC in functional brain 13 

networks. In particular, individual scores of various personality traits of the Five-Factor Model 14 

(McCrae and Costa 2004) could be predicted from patterns of RSFC in specific meta-analytically 15 

defined networks as well as from the whole-brain FC pattern. In assessing the generalizability of 16 

our findings, we focused on the predictions that replicated in two different samples within the HCP 17 

dataset.  18 

These results capitalize on the as-yet largely untapped potential (though cf. Schilbach et al., 2016; 19 

Varikuti et al., 2016) of neuroimaging meta-analyses to provide robust, functionally specific ROIs 20 

to investigate individual task-free data (Lee et al. 2012). These can help to constrain the otherwise 21 

vast feature space for statistical learning on resting-state data in a functionally meaningful and 22 

anatomically specific manner (Wang et al. 2010). As we demonstrate here, combining meta-analytic 23 

network definitions with statistical learning approaches allows, at a moderate level, not only 24 

predicting complex individual characteristics such as personality traits, but also the characterization 25 
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of functional brain networks by their capability to do so. Nonetheless, our results of prediction of 1 

personality based on whole-brain FC pattern highlight that for some traits it might be crucial to 2 

consider the global connectivity as well. 3 

In the overall (gender-mixed) sample, RSFC within networks representing affective and executive 4 

brain systems predicted Openness, RSFC within mnemonic network predicted Agreeableness, while 5 

RSFC from the whole brain predicted Neuroticism. In the gender-split samples, however, the 6 

prediction of Openness from the executive network VA and of Agreeableness from the mnemonic 7 

network AM were not replicated in any of the two subgroups, an effect likely related to the 8 

moderate effect present in the overall sample not specifically driven by a particular sex. In contrast, 9 

the prediction from the affective network Pain was also predicted in the female-only subsample, 10 

indicating that more information on the respective phenotypes can be gained from RSFC data in one 11 

gender. The gender-specific analyses revealed further constellations in which personality traits 12 

could be predicted from particular networks (see Fig 2). In fact, none of the network–trait 13 

combination was predictive in both female and male subsamples, but several functional networks 14 

were found to differentially predict personality traits in females versus males. Additionally, 15 

Connectome successfully predicted Extraversion (in Women) and Neuroticism (in the entire 16 

sample, but then also in Men only). This underlines the notion that gender is a fundamental factor 17 

with regard to brain–personality relationships. 18 

 19 

4.1 Methodological considerations and limitations 20 

In our analysis, we combined a priori selection of networks of interest, built upon the existing 21 

literature (cf. Kennis et al. 2013, Hu et al. 2011, DeYoung 2010), together with a data-driven 22 

approach for learning of the predictive models. The benefits of this approach were two-folds: on the 23 

one hand, with the a priori selection of networks, we could narrow down the networks of interest, 24 

which allowed us for a better functional interpretation of the results as the nodes represent brain 25 

regions robustly associated with the respective mental functions; on the other hand, the data-driven 26 
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predictive models allowed for an explanatory analysis investigating which networks were 1 

informative in predicting a single trait, assuming therefore that many biological systems could 2 

contribute in explaining its inter-individual variance (Yarkoni 2015). Given that if only meta-3 

analytically defined functional networks were employed, less consistently linked yet potentially 4 

critical regions might have been left out, we included also a purely explorative analysis employing 5 

the whole-brain FC.  6 

In addition, as noted above, using a sparsity inducing method (RVM) which yielded compact 7 

regional modes has the advantage of providing regionally specific prediction models. As outlined 8 

above, our procedure provided a biologically informed feature reduction, as only the most relevant 9 

connections were taken in account in the prediction models. This has the advantage of reducing the 10 

complexity of the models avoiding overfitting (Hastie et al. 2009).  11 

With respect to the prediction model, we here employed Relevance Vector Machine (RVM), which 12 

in contrast to support vector regression or ridge regression, yields considerably sparser solutions 13 

(Tipping 2001). This allowed for identifying the most used connections and nodes (Fig 4) that 14 

mainly drove the prediction and hence enabled a more specific interpretation of its neurobiological 15 

underpinnings. In this context, it is important to note that for any given model the entire set of 16 

connections with non-zero coefficients provides information about the personality trait (Orrù et al. 17 

2012). For interpretation, however, we focused on the most consistently utilized connections (over 18 

250 replications) as key components of the given prediction.  19 

In accordance with recent recommendations, the current study used 10-folds cross-validation, which 20 

has been showed to be less susceptible to overly optimistic estimates as compared with a leave-one-21 

out approach (LOO-CV) (Varoquaux et al. 2016). Moreover, we repeated the cross-validation 22 

procedure 250 times, averaging the prediction performance over all replications to obtain robust and 23 

generalizable estimates of the capability of different brain networks to predict personality scores in 24 

new individuals.  25 
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A last important methodological reflection is that, although it might be tempting to make use of the 1 

entire HCP sample (which, if requiring an equal number of males and females, and if considered the 2 

matching factors of age, education and twin status, would yield about 800 individuals), it 3 

systematically consists of related subjects (siblings and twins). And there is considerable evidence 4 

for genetic influence on both personality (Jang et al. 1996; Bouchard and McGue 2003; Verweij et 5 

al. 2012; Power and Pluess 2015) and brain function (van den Heuvel et al. 2013; Colclough et al. 6 

2017; Ge et al. 2017; Ktena et al. 2017). Consequently, the relationship structure in the HCP data is 7 

a critical aspect to this work, as the inclusion of related subjects would potentially hurt the model 8 

fitting but even more importantly would introduce an (optimistic) bias into the cross-validation. As 9 

a result, we thus performed our analyses primarily in the largest possible set of matched, unrelated 10 

subjects, replicate it in the then largest possible independent set of matched, unrelated subjects and 11 

only in a supplementary analysis pooled both of these sets for the analysis of around 750 subject. 12 

Our approach, by building upon these methodological considerations, yielded insights into the 13 

relationships between brain, behaviour and personality. However, there are some limitations which 14 

are worth consideration in the future studies. First, gender-stratified sub-analyses may reduce 15 

statistical power because of the smaller sample sizes. Further studies with a larger sample size, 16 

designed to separately analyze men and women are required, especially monitoring their hormonal 17 

levels (Arélin et al. 2015; Weis et al. 2017). Second, even though meta-analytic networks are 18 

among the most reliable ways to infer a mental function given a set of brain regions, we 19 

acknowledge that some regions of different functional networks can overlap. As a matter of fact, the 20 

employment of meta-analytically derived networks does not necessarily ensure a stringent and 21 

univocal relationship between the mental function supported by a particular network and a 22 

personality trait. Nonetheless, this approach can at least provide some confidence for the 23 

implication that a specific trait is related to a particular mental function in terms of the network that 24 

subserves them. A third consideration relates to the measurement of personality, i.e. the use of self-25 

reported questionnaires. Self-reported questionnaire might have indeed contributed in increasing the 26 
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noise in the data, as perception and report of own personality traits can be affected by many factors, 1 

e.g. men usually scoring low on Neuroticism as socialization effect (Viken et al. 1994).   2 

 3 

4.2 Predicting Openness to experience 4 

Our results indicated that self-reported Openness to experience can be linked to RSFC patterns in 5 

the networks subserving reward (Rew) and pain (Pain) processing in Women, while in the overall 6 

sample Openness was significantly predicted by RSFC in the vigilant attention (VA) network and, 7 

again, from Pain. Openness to experience has been linked to “need for cognition,” that is, an 8 

individual’s tendency to engage in effortful cognitive processing (Fleischhauer et al. 2010): high 9 

levels of Openness were found to positively affect work outcomes for highly complex jobs while 10 

increasing dissatisfaction when jobs become mechanical and unchallenging (Mohan and Mulla 11 

2013). Such monotonous and intellectually unchallenging tasks were exactly the tasks investigated 12 

in the VA meta-analysis of Langner and Eickhoff (2013), which revealed the brain network 13 

involved in dealing with sustained attentional demands in boring situations. Thus, the predictability 14 

of Openness from FC in the VA network may reflect a neural substrate of the challenge experienced 15 

by individuals scoring high on Openness when faced with repetitive tasks and standardized 16 

routines. High-Openness participants might therefore need to recruit this network differently than 17 

low-Openness individuals to keep focused on a tedious, repetitive task over time. Indeed, 18 

connections used throughout all prediction models from the VA network of Openness in both 19 

samples are between pre-supplementary motor cortex and medial prefrontal cortex (both involved 20 

in task-set re-energizing and outcome monitoring), between left inferior occipital gyrus (IOG) and  21 

right temporo-parietal junction (crucial for re-orienting the signalling), and left IOG and inferior 22 

frontal junction (known for  its contribution in the input/output transformation) (see Fig 4 for the 23 

most informative connections and Langner and Eickhoff 2013 for more details on the regions’ 24 

functions).  25 
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Behaviours associated with the trait of Openness, such as cognitive exploration, have been 1 

attributed to high dopamine (DA) functioning (DeYoung et al. 2005). This, indeed, led to the 2 

inclusion of Openness in the meta-trait “β” (or plasticity, c.f. DeYoung 2010), a higher order factor 3 

representing the shared variance between Openness and Extraversion, which are suggested to be 4 

both modulated by the dopaminergic system. DA is the main neurotransmitter modulating the 5 

reward network (cf. Berridge and Robinson 1998), and, in line with this, RSFC within the Rew 6 

network, could predict both Openness and Extraversion (in Women and in Men respectively), 7 

possibly via affecting the reactivity of the dopaminergic system. Interestingly, in predicting 8 

Openness, the weights of the nodes (i.e. number of incident edges) most used across the predictive 9 

models showed a stronger involvement of the dlPFC, corroborating previous findings that showed 10 

an association between Openness and the dopaminergic mesocortical branch, which projects 11 

directly onto the dlPFC (DeYoung 2013; Passamonti et al. 2015). On the other hand, regions like 12 

amygdala, nucleus accumbens (NAc) and orbitofrontal cortex (OFC), which constitute the other 13 

main dopaminergic branch, the mesolimbic pathway, were significantly less recruited. We would 14 

thus suggest that DA neurons populating the mesocortical branch, by encoding specifically the 15 

saliency of the stimulus (i.e. reward value of information, cf. Bromberg-Martin et al. 2010), can be 16 

potentially more informative for high-Open individuals, characterized by the automatic tendency to 17 

perceive salient information in everyday experience (DeYoung 2013). Interestingly, we found that 18 

Openness could be predicted by FC of the Rew network significantly better in Women, compared to 19 

Men (r = 0.17 in Women and r = -0.06 in Men of Sample 1). This might be explained by the fact 20 

that Rew functioning is highly influenced by the ovarian hormones estrogen and progesterone 21 

during the menstrual cycle (Dreher et al. 2007). In addition, estrogens have been related to dlPFC 22 

functioning, going along with cognitive decline which follows the drop of estrogens in menopause 23 

(Shanmugan and Epperson 2014). Despite the lack of studies exploring a direct relationship 24 

between females’ hormonal cycling and the trait of Openness, there is evidence for its indirect 25 

modulation by estrogen. That is, the catechol-O-methyltransferase gene, which is associated with 26 
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the trait of Openness (Konishi et al. 2014), is influenced by estrogen (Harrison and Tunbridge 1 

2008). We thus suggest that the influence of ovarian hormones on RSFC in the Rew network as 2 

well as on perceived Openness induces joint intra-individual variation (i.e. shared variance), which 3 

in turn increases the strength of the neural and phenotypical association across women. This should 4 

then result in the observed higher predictability of Openness in female participants.  5 

Across the entire sample, but then also in the female sub-group only, Openness could additionally 6 

be predicted in both samples based on FC within the pain network (Pain). Relationships between 7 

pain and Openness have been demonstrated in terms of a higher threshold for pain tolerance 8 

(Yadollahi et al. 2014) and as protective factor in migraine occurrence (Magyar et al. 2017) in 9 

individuals reporting higher levels of Openness. However, very little is known about the association 10 

between this trait and the neural correlates of pain. Indirect evidence, however, comes from 11 

research in avoidance learning, which suggests that the successful avoiding of an aversive stimulus 12 

is experienced as an “intrinsic” reward (Kim et al. 2006). Endogenous opioid peptides, which are 13 

highly dense in the pain network (Baumgartner et al. 2006), were indeed found to modulate the 14 

dopaminergic system in response to aversive stimuli, resulting in the enhancement of a pleasure 15 

feeling boosted by DA (Sprouse-Blum et al. 2010). We thus suggest that high- and low-Open 16 

individuals differ in their ability to detect possible aversive stimuli (via diverse reactivity of the 17 

Pain network) and, by avoiding them, differently experience “intrinsic” reward.  18 

In summary, the predictions from the Rew, VA and Pain networks of Openness might, therefore, 19 

jointly point to the importance of saliency processing of stimuli, which can be rewarding (Rew), 20 

monotonous (VA) or aversive (Pain), turning high Open-individuals as highly receptive and 21 

permeable to relevant information. Ultimately, connections between regions specially targeted by 22 

ovarian hormones (e.g, dlPFC), might underlie the significant gender difference in the predictability 23 

of Openness from FC in Rew network (Fig 4).  24 

Figure 4 about here please 25 

4.4 Predicting Extraversion  26 
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Extraversion was predicted by the RSFC patterns within the networks of reward (Rew) in Women 1 

and face perception (Face) in Men. Moreover, in Women, this trait was also significantly predicted 2 

by the whole-brain (Connectome) RSFC. Extraversion is generally described as behavioural 3 

exploration and sensitivity to specific rewards. Importantly, a distinction has been also made 4 

between “Agentic Extraversion”, reflected in assertiveness, dominance, and ambition aspects, and a 5 

“Affiliative Extraversion” which is more related to sociability and affiliative social bonding 6 

(DeYoung et al. 2007; c.f. Allen and DeYoung 2016).  7 

As discussed previously in paragraph 4.3, the traits of Extraversion and Openness exhibit a shared 8 

variance, known as “β” factor and are genetically influenced by the dopaminergic system (c.f. Allen 9 

and DeYoung 2016). Notably, while for Openness, Rew’s most used nodes encompassed the 10 

mesocortical pathway (see above), for Extraversion, it was regions along the mesolimbic branch 11 

that were mostly used (amygdala, NAc and OFC). Thus, we suggest that even though FC of Rew 12 

predicts both Openness and Extraversion, the functional connectivity of two different subsystems of 13 

the Rew network are informative for the two different traits, namely the mesocortical and 14 

mesolimbic pathway respectively. In favour of this distinction, extraverts were shown to be more 15 

sensitive toward the motivational content of the reward stimulus, encoded by DA neurons along the 16 

mesolimbic pathway (Bromberg-Martin et al. 2010; DeYoung 2013). We thus believe that the 17 

prediction of Extraversion from the FC within Rew might well-capture the “Agentic” dimension of 18 

Extraversion, given the motivational value of the rewarding stimuli and drive toward a goal 19 

prompted by the dopaminergic mesolimbic system. 20 

While extraversion in Women was found to be associated to FC of Rew, relationships of this trait, 21 

in Men, were found with FC in Face network. Faces are arguably the most important social stimuli 22 

for humans and it has been shown that extraverts compared to introvert, by spending more time on 23 

people, are significantly better at recognizing faces (Li and Liu 2010). Extraversion’s hedonic 24 

experience of goal achievement is enclosed in the “Affiliative” component (DeYoung et al. 2007; 25 

c.f. Allen and DeYoung 2016) and its genetic variation has been also pointed to the opiate system, 26 
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due to its involvement in the hedonic response to the stimulus (Peciña et al. 2006). It is therefore 1 

possible that the endogenous opioid system via modulation of amygdala and medial prefrontal 2 

cortex (Tejeda et al. 2015; Selleck and Baldo 2017), most used regions in the connections of Face, 3 

mediate both the perception of faces (Martin et al. 2006) and the social bonding (Pasternak and Pan 4 

2013). We thus suggest that functional connectivity within the Face network in Men, is mostly 5 

related to the “Affiliative” aspect of Extraversion.  6 

The last prediction of Extraversion is based on whole-brain FC in Women (Sample 1: r = 0.29; 7 

Sample 2: r = 0.23, both p < 0.05; for gender comparison in Sample 1, Cohen’s q = 0.323, p < 0.05). 8 

However, a major issue using whole-brain connectivity patter might be the lack of anatomical 9 

localization for the most informative features, as none of them resulted to be used more than 40% of 10 

the predictive models, indicating a heterogeneous mosaic of connections which contribute to the 11 

prediction of Extraversion. The only theory in personality neuroscience which relates the 12 

functioning of entire cortex to Extraversion (and Neuroticism, see below 4.6) is Eysenck’s  13 

biological theory of personality (Eysenck 1967). Here, Extraversion is thought to depend on the 14 

variability in cortical arousal, with introverted individuals having lower response thresholds 15 

consequently more cortical arousal compared to extraverts. In favour of this hypothesis, the 16 

topological properties of whole-brain RSFC has shown that brains of more extraverted individuals 17 

behave more similarly to a “small-world” compared to a “random” network, with higher clustering 18 

coefficient compared to introverts (Gao et al. 2013). A “small-world” clustered configuration, 19 

which supports a more modularized information processing and fault tolerance, can therefore be 20 

associated with higher arousal threshold in extraverts’ cortex. We also observed that this prediction 21 

performance was significantly stronger in Women compared to Men (r = 0.29 in Women and r = -22 

0.03 in Men of Sample 1). Again, a possible cause might be the involvement of ovarian hormones, 23 

targeting specifically the most densely interconnected hub structures of the connectome (Alawieh et 24 

al. 2015) as well as influencing level of Extraversion (Jokela et al. 2009; Ziomkiewicz et al. 2012). 25 
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However, more studies are needed to prove this interaction between Extraversion, estrogen and the 1 

topographical properties of whole-brain functional connectivity.  2 

To sum up, connectivity of regions encoding the motivational value and the drive toward a goal 3 

(Rew) and the hedonic processing of the goal itself (Face), were informative to predict 4 

interindividual variability in the trait of Extraversion possibly capturing the “Agentic” and 5 

“Affiliative” aspects of the trait respectively (Fig 4). Importantly, given the modulation of ovarian 6 

hormones on both the trait of Extraversion and on the topological properties of the Connectome, we 7 

would suggest that sex hormones might be a possible mediator of this trait-network relationship, 8 

resulting in better prediction performance in Women.  9 

 10 

4.5 Predicting Agreeableness 11 

RSFC patterns in the AM network could predict the individual level of perceived Agreeableness 12 

while grouping men and women in both samples. This trait reflects a high desire to avoid 13 

interpersonal conflicts (Jensen-Campbell and Graziano 2001) and strong affect regulation (Ryan et 14 

al. 2011). In line with this, positive correlations have been demonstrated between Agreeableness 15 

and regions supporting social functioning (Hooker et al. 2008; DeYoung et al. 2010; Hassabis et al. 16 

2014) and midline regions of the default mode network (DMN), as deputed to self-referential 17 

process (Adelstein et al. 2011; Sampaio et al. 2014). Our prediction of Agreeableness from the AM 18 

network supports a crucial role of self-reference, strongly linked to autobiographical memory 19 

(Molnar-Szakacs and Arzy 2009), in how high agreeable individuals deal with social demands. 20 

Self-related cognition has been often discussed at the neural level as the product of interaction 21 

between the DMN and the mirror neuron system (MNS), the first responsible for high-level 22 

mentalizing function and the second for embodied simulation-based representation (Keysers and 23 

Gazzola 2007; Qin and Northoff 2011; c.f. Molnar-Szakacs and Uddin 2013). As a result, the 24 

privileged access to the own physical and mental states would allow a better insight into others’ 25 

physical and mental states, and consequent appropriate social responses.  26 
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Interestingly, within the AM network, most used connections that informed about the trait in both 1 

samples reflected the interaction between the DMN and MNS systems: nodes with highest weights 2 

belonged indeed to DMN subsystem, such as medial PFC, posterior cingulate cortex, medial 3 

temporal lobe (amygdala and hippocampus) and lateral parietal cortex (temporo-parietal junction). 4 

The remaining nodes with the highest weights belonged to the MNS, such as inferior frontal gyrus, 5 

precentral gyrus, inferior parietal cortex and superior temporal sulcus. Our result, hence, supports 6 

the interplay of these two subsystems in the context of self-processing (here expressed via memory 7 

recollection about past experiences, AM) and that this knowledge about the self can significantly 8 

predict Agreeableness, the trait most reflecting enhanced social skills. 9 

 10 

4.6 Predicting Neuroticism 11 

In Men, self-reported Neuroticism was predicted by RSFC within the emotional processing network 12 

(Emo). Additionally, the RSFC from the whole brain (Connectome) significantly predicted this trait 13 

across the entire sample and then specifically in Men only. Neuroticism represents a broad 14 

dimension of individual differences in the tendency to experience negative, distressing emotions. 15 

High Neuroticism scores entail the experience of fear, anger, sadness, embarrassment, the 16 

incapacity to control cravings and urges, and to cope with stress (Costa and McCrae 1987). Within 17 

this trait, it is possible to delineate two major divisions, one related to the experience of anxiety, 18 

fear and passive avoidance, and referred in literature as the aspect Withdrawal, and the other related 19 

to irritability, anger and active defensive responses, or Volatility  (DeYoung et al. 2007). 20 

Neuroticism is arguably the most studied personality trait and is an important predictor of many 21 

different mental and physical disorders (Lahey 2009). Furthermore, the two aspects of Neuroticism 22 

(Withdrawal and Volatility) highly reflect the dimension of Behavioural Inhibition System (BIS) 23 

and Fight-Flight-Freeing System (FFFS) from the Gray’s Reinforcement Theory (Gray and 24 

Mcnaughton 2000), conceptualized in term of their neurobiology. Interestingly, this distinction 25 

between the Volatility/ FFFS and Withdrawal/BIS seems to be captured by the two networks 26 
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showing predictability power for Neuroticism, Emo and Pain. Even though this last prediction 1 

(Pain) was found significant in Sample 1 (with r = 0.15, p < 0.05 in Men) but not fully replicated in 2 

the Sample 2 (with r = 0.2, p = 0.05 in Men) (Fig 4), we would still suggest that recruitment of this 3 

network in association to Neuroticism might indicate that perception of the aversive stimulus via 4 

the Pain network (Iannetti and Mouraux 2010; Hayes and Northoff 2012) could lead high-5 

Neuroticism men to inhibit their behaviours such to avoid potential threats and punishments 6 

(Withdrawal). Conversely, Emo network would trigger emotional responses for either escaping or 7 

eliminating the threat, but in both cases showing a strong emotional lability (Volatility). Beyond 8 

associations with specific networks, Neuroticism could also be predicted from the whole-brain 9 

RSFC (Connectome) in Men and across genders. This is nicely in line with graph analysis studies 10 

(Gao et al. 2013; Servaas et al. 2015) showing that the neurotic brain displays topological properties 11 

of a “random network” and overall weaker FC. Here cortisol might play a specific role, the 12 

hormone that is most closely associated with a biological reaction to stress and found to correlate 13 

with Neuroticism. However, the directionality of correlation seems to depend on gender: many 14 

studies converged in discovering that Neuroticism was positively correlated with baseline cortisol 15 

in men, but the opposite was true in women (Zobel et al. 2004; Oswald et al. 2006; DeSoto and 16 

Salinas 2015). Thus, especially in men, the overabundance of cortisol by potentiating neuronal 17 

degeneration (Sapolsky 1994), might be responsible for the overall smaller brain volume (Liu et al. 18 

2013), white-matter (Bjørnebekk et al. 2013) and gray-matter (Servaas et al. 2015) functional 19 

disconnectivity found in high-Neuroticism individuals compared to the more emotional stable. 20 

Given that all the three networks (Emo, Pain, Connectome) showed a stronger predictability in 21 

Men compared to Women (statistically significant for the first two, and a strong trend for the third, 22 

see Table 3), we suggest that gender may moderate Neuroticism’s relationship to cortisol. 23 

However, more (direct) studies are needed to better understand this intricate relationship between 24 

RSFC, cortisol, Neuroticism and gender and to shed light on the neural mechanisms that make 25 

women’s brain more susceptible to Neuroticism-related mental disorders (Jorm 1987).  26 
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 1 

4.7 Implications for the neurobiology of FFM 2 

Contrary to other important theories of personality, such as Cloninger’s Tridimensional Personality 3 

Questionnaire (TPQ) or Gray’s Reinforcement Sensitivity Theory (RST), the FFM is not based on 4 

biological grounds. However, variability in its personality factors had been associated to the brain, 5 

given that personality traits are the product of our actions, emotions and, more generally, cognitive 6 

processes. In this way, the cognitive mechanisms work as intermediate bridge between the 7 

psychometric constructs of personality and plausible biological substrates. However, the 8 

relationships among these factors (brain, behaviour and personality) can be misleading in the 9 

context of personality predictions, which, in fact, were significant only to a moderate level, 10 

compared to other findings: contrary to predictions of sustain attention (Rosenberg et al. 2016) or 11 

reading comprehension (Cui et al. 2017) which tap predictability of cognitive process itself, 12 

personality traits are mostly modulators of these cognitive processes. This may make it more 13 

difficult to find brain correlates of personality in specific networks associated with those functions. 14 

Also, the hierarchy of the FFM model might have contributed in enlarging the gap: in our findings, 15 

we highlighted the possibility that the predictions of one trait from different networks could reflect 16 

different components within this trait, also known as aspects and facet (cf. DeYoung et al. 2007; 17 

Koelsch et al. 2013; Haas et al. 2015). For example, we discussed the prediction of Extraversion 18 

from Rew and Face as potentially capturing the “Agentic” and “Affiliative” aspects respectively, or 19 

the prediction of Neuroticism from Pain and Emo as linked to Withdrawal and Volatility. 20 

Conversely, when the same network was predicting two different traits (e.g. Rew predicting 21 

Openness and Extraversion, discussed in light of the saliency and motivational contribution for the 22 

two traits), the prediction might have indeed boosted if investigating the meta-trait “β”, which 23 

reflects their shared variance within the dopaminergic system and thus more prone to be predicted 24 

by the network of reward processing (DeYoung 2013). Therefore, the level of abstraction of the five 25 

traits might not mapped well to particular brain systems, and more studies are encouraged for 26 
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testing both more specific and homogeneous sub-dimensions as well as more heterogeneous higher-1 

order factor structure. Lastly, many biological mechanisms participate in evoking the same 2 

cognitive process, e.g. changes in brain structure, function, or genetic, which are then intrinsically 3 

connected with personality. We here used RSFC as “marker” for the individual expression of 4 

personality traits, enduring across time and situations. However, a downside of FC in resting 5 

conditions might be that it has not so much to do with how personality factors come together to 6 

"produce" stable modulations of a whole range of cognitive processes. Therefore, other brain 7 

measurements (as structural connectivity, task-based functional activation, or molecular genetics) 8 

might be also useful in gaining more knowledge on the biology of personality and its relationship 9 

with specific mental functions. Keeping in mind that we cannot expect biological mechanisms to 10 

show clear-cut as the respective  psychometric dimensions (Yarkoni 2015), but conversely many 11 

biological mechanisms (function, structure, neurotransmitters) as well as many mental functions can 12 

be informative for a given personality trait, we therefore support the need for a multi-level approach 13 

in future studies as proposed by Yarkoni in order to achieve a unified description of the biological 14 

bases of personality traits. 15 

However, even though all these aspects might affect the relationship between brain function (and 16 

structure) and personality, we here do provide insights on the relation between brain and 17 

personality: when analysing the entire sample while adjusting for gender effects, only two 18 

predictions (VA predicting Openness and AM predicting Agreeableness) can be found not 19 

specifically driven by one gender-group. However, when looking at men and women separately, we 20 

observed much more and larger effects, evidence which highly remarks the importance of gender 21 

while investigating the neural correlates of personality. Specifically, the current findings propose a 22 

link between Openness and executive and affective domain. Agreeableness with memory domain. 23 

Extraversion with social and affective networks and lastly Neuroticism with the affective system. 24 

Interestingly, these last two traits could be predicted as well from the entire Connectome. An 25 

interesting consideration is that Openness could be significantly predicted by three different, barely 26 
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overlapping networks (Pain, Rew, VA), but could not be predicted from the whole-brain, which was 1 

covering the nodes of all the three at the same time. We thus argue for a better predictability of 2 

Openness from specific and separate functional networks. Contrarily, Extraversion and Neuroticism 3 

could be significantly predicted by both meta-analytic networks and the whole-brain, pointing to the 4 

importance of also global effects, besides specific functions. This is particularly true for 5 

Extraversion, which showed significantly higher prediction performance from global RSFC 6 

(Connectome) with a very vast nodes contribution, rather than from the specific networks of Rew 7 

and Face, thus favouring the global effects over the specific functions for this trait. 8 

 9 

4.8 Conclusions 10 

Using multivariate machine learning, we showed that personality traits can be predicted from RSFC 11 

patterns in affective, social, executive and memory networks of the brain, as well as from the 12 

whole-brain. Our observation that for most of these networks predictive power was gender-specific 13 

complements previous morphometric findings (Nostro et al. 2016) in highlighting the crucial role of 14 

gender when trying to understand the neurobiology of personality. Additionally, the many-to-many 15 

associations between mental functions and personality traits, indicate the complexity of the 16 

biological substrates of personality, as many functional systems may contribute to the observable 17 

differences in each trait (for a critical review see Yarkoni 2015). Maybe even more fundamental are 18 

the implications for the concept of personality, given that even a trait as complex and broad as, for 19 

instance, Openness, seems to have a neurobiological underpinning in pre-defined functional 20 

networks that enables estimation of the individual level of that trait in a new subject. 21 
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Captions to figures 16 

 17 

Fig 1: Samples selection overview: first Sample 1 (or “main” sample) was created aiming for the 18 

largest number of participants. Once 430 subjects were selected for this sample, the same procedure 19 

was applied on the remaing subjects of the HCP to generate Sample 2 (or “replication” sample). 20 

The two samples result in this was related to each other (as siblings of the subjects in Sample 1 are 21 

present in Sample 2), but, within each sample, there are no subjects related to each other.  22 

Fig 2: Emp: empathy; AM: Autobiographic memory; WM: working memory; Emo: emotional 23 

processing; Face: face processing; Rew: reward; SM: semantic memory; VA: vigilant attention; 24 

Pain: pain processing.  25 

Summary of the networks for which FC patterns significantly predicted the five personality traits. 26 

For each network-trait combination in either Men or Women, here it is reported the conjunction 27 

between the correlation coefficients (i.e. minimum  r value). Only predictions with r > 0.1 are 28 

displayed. While the nine meta-analytic networks are represented as slices (triangules) of the five 29 

personality circles, the connectome is represented as well as a circle. Triangules and circles are 30 

scaled based on the r values of the predicting networks (r values reported in the axis). Meta-analytic 31 

networks are underlined if a significant prediction is detected in either Men or Women. Asterisks 32 

mark significant gender differences in Sample 1. 33 



 41 

Fig 3: Scatter plots of the predictions of personality scores significant at p < 0.05 in both samples. 1 

Continuous regression lines, dashed lines, representing the standard deviation, and mean absolute 2 

errors (MAE) are displayed. 3 

Fig 4: Summary of the most used nodes (i.e. above 80% of the models) between regions from (A) 4 

the reward (Rew), vigilant attention (VA), and pain processing (Pain) networks in the prediction of 5 

Openness, (B) the Rew and face processing (Face) networks in the prediction of Extraversion. 6 

Summary of the most used connections between regions from (C) the autobiographic memory (AM) 7 

network in the prediction of Agreeableness, (D) the Pain and emotional processing (Emo) networks 8 

in the prediction of Neuroticism. 9 
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Table 1: Description of the meta-analytic derived networks 

Domain Meta-analytic 

Network 

Abbreviation Author, 

Year 

Reference of 

the network in 

the original 

paper 

Number 

of 

included 

Nodes 

Network 

description 

Social Empathy Emp Bzdok, 

2012 

Table n.1  

(ALE meta-

analysis of 

empathy)  

22 Regions 

consistently 

activated during 

tasks referring to 

conscious and 

isomorphic 

experience of 

somebody else’s 
affective state 

Social Static Face 

Perception 

Face Grosbras, 

2012 

Table n. 7 

(Static face 

perception) 

19 Convergence 

across tasks 

consisting in 

viewing 

photographs of 

faces or viewing 

objects/ scrambled 

images 

Affective Reward Rew Liu, 

2011 

Table n. 1 23 Convergence 

across reward 

valence and 

decision stages 

contrasts 

Affective Physiological 

Stress 

Pain Kogler, 

2015 

Table n.1  

(Activation 

physiological) 

18 Regions 

consistently 

activated during 

tasks referring to 

unpleasant 

sensoric, 

emotional and 

subjective 

experience that is 

associated with 

potential damage 

of body tissue and 

bodily threat 

Affective Perception of 

emotional 

Emo Sabatinelli, 

2012 

Table n.2 

(emotional 

24 Regions 

consistently 

activated during 

Tables 1, 2, 3



scenes and 

faces 

face>neutral 

face)  

& 

Table n.3 

(emotional 

scenes>neutral 

scenes) 

tasks referring to 

discrimination of 

emotional faces> 

neutral faces 

contrast combined 

with emotional 

scenes> neutral 

scenes contrast 

Executive Working 

Memory 

WM Rottschy, 

2012 

Table n. 2 22 Regions 

consistently 

activated during 

all WM contrasts/ 

experiments 

(mainly n-back, 

Stenberg, DMTS, 

delayed simple 

matching) 

Executive Vigilant 

Attention 

VA Langner, 

2012 

Table n.1 16 Regions 

consistently 

activated during 

tasks posing only 

minimal cognitive 

demands on the 

selectivity and 

executive aspects 

of attention for 

more than 10s 

Memory Autobiographic 

Memory 

AM Spreng, 

2008 

Table n. 6 23 Convergence 

across tasks 

referring to 

autobiographical 

recall: episodic 

recollection of 

personal events 

from one’s own 
life 



Memory Semantic 

Memory 

SM Binder, 

2009 

On request to 

the author 

23 Regions 

consistently 

activated during 

all SM contrasts/ 

experiments 

(mainly words vs. 

pseudowords, 

semantic vs. 

phonological task, 

high vs. low 

meaningfulness) 

Whole-

brain 

Connectome Connectome Power, 

2011 

Supplement 

material 

264 Meta-analytic 

ROIs and FC-

mapping ROI 

merged to form a 

maximally-

spanning 

collection of ROIs. 

Meta-analytic 

ROIs were given 

preference, and 

non-overlapping 

fc-mapping ROI 

were then added 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Results of the Relevance Vector Machine 

 

Predicted Trait Predicting Network Group r 

(Sample1) 

p-value 

(Sample1) 

r 

(Sample2) 

p-value 

(Sample2) 

O VA All 0.12 0.006 0.17 0.001 

O Pain All 0.1 0.018 0.2 0.0 

O Rew Women 0.17 0.006 0.2 0.006 

O Pain Women 0.12 0.048 0.29 0.0 

E Face Men 0.18 0.005 0.14 0.04 

E Rew Women 0.14 0.02 0.23 0.002 

E Connectome Women 0.29 0.0 0.23 0.002 

A AM All 0.1 0.018 0.18 0.001 

N Connectome All 0.14 0.018 0.14 0.04 

N Connectome Men 0.17 0.0 0.38 0.0 

N Emo Men 0.2 0.002 0.42 0.0 

 

Predicted Trait: O: Openness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: 

autobiographic memory; Face: face perception; Connectome: whole-brain network; Emo: 

emotional processing.  

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 

in both samples in either across the entire sample (All), or in gender groups (Men or Women).  

 

 

 

 

 



Table 3: Gender differences in personality predictability 

Predicted  

Trait 

Predicting  

Network 

Group r  

(Sample1) 

ZMen - ZWomen 

(Cohen’s q)  

CI 

(Lower limit / Upper 

limit) 

O VA Men 0.06 
0.013 -0.176 / 0.205 

  Women 0.07 

O Pain Men 0.08 
0.039 -0.153 / 0.231 

  Women 0.12 

O Rew Men -0.06 
0.236 * 0.044 / 0.428  

  Women 0.17 

O Pain Men 0.08 
0.039 -0.153 / 0.231 

  Women 0.12 

E Face Men 0.18 
0.054 -0.138 / 0.246 

  Women 0.12 

E Rew Men 0.08 
0.055 -0.137 / 0.247 

  Women 0.14 

E Connectome Men -0.03 
0.323 * 0.131 / 0.515 

  Women 0.29 

A AM Men 0.10 
0.190 -0.002 / 0.382 

  Women -0.09 

N Connectome Men 0.17 
0.119 -0.073 / 0.311 

  Women 0.06 

N Emo Men 0.2 
0.276 * 0.084 / 0.468 

  Women -0.07 

 

Comparison of the correlation coefficients between males and females and effect size of significant 

gender differences. Confidence intervals (CI) are computed on the Z-transformed difference 

between correlations in Men and Women for each prediction. Note * marks significant gender 

difference at 95% of confidence. 



 

 



Table S1: Influence of zygosity on the traits distribution  

We performed a Kolmogorov-Smirnov (KS) test in order to verify that the distribution for each 

trait in monozygotic and dizygotic twins was not significantly different (null hypothesis). 

Therefore, from the S1200 release we selected only twin participants (N= 563) and later 

extracted a subsample of unrelated subjects (N = 262, 131 males and 131 females). All the 

statistics result not significant, i.e. the distribution of each trait in Mz and Dz does not differ. 

 

Trait K-S statistic (Mz vs Dz) P value 

Openness 0.10 0.47 

Conscientiousness 0.06 0.96 

Extraversion 0.07 0.87 

Agreeableness 0.13 0.23 

Neuroticism 0.07 0.93 

 

Table S2: Correlations between factors 

Supplementary Table 1: Intercorrelations (Pearson’s r) among the 5 personality factors 
for Sample 1 and Sample 2, across the overall samples, in males, and females. 

 

Sample 1 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 

Males 

Females 

- -0.14*/ 

-0.15/ 

-0.11 

0.07/ 

0.06/ 

0.09 

0.17*/ 

0.17*/ 

0.18* 

0.0/ 

0.07/ 

-0.08 

Conscientiousness Overall 

Males 

Females 

- - 0.27*/ 

0.32*/ 

0.24* 

0.19*/ 

0.24*/ 

0.12 

-0.35*/ 

-0.37*/ 

-0.36* 

Extraversion Overall 

Males 

Females 

- - - 0.26*/ 

0.23*/ 

0.34* 

-0.32*/ 

-0.32*/ 

-0.3* 

Agreeableness Overall 

Males 

Females 

- - - - -0.26*/ 

-0.29*/ 

-0.31* 

Neuroticism  - - - - - 
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Sample 2 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 

Males 

Females 

- -0.17*/ 

-0.11/ 

-0.2 

0.13/ 

0.09/ 

0.18 

0.13/ 

0.13/ 

0.18 

0.07/ 

0.09/ 

0.08 

Conscientiousness Overall 

Males 

Females 

- - 0.25*/ 

0.32*/ 

0.17 

0.21*/ 

0.26*/ 

0.13 

-0.47*/ 

-0.54*/ 

-0.43* 

Extraversion Overall 

Males 

Females 

- - - 0.43*/ 

0.40*/ 

0.46* 

-0.41*/ 

-0.42*/ 

-0.41* 

Agreeableness Overall 

Males 

Females 

- - - - -0.39*/ 

-0.39*/ 

-0.45* 

Neuroticism  - - - - - 

 

* Marks significance at p<0.05 (Bonferroni corrected) 

 

Table S3: Coordinates of each network included in the RS functional connectivity 

network analysis 

Empathy 

Bzdok et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

2.0 56.0 18.0 rdmPFC dmPFC Area p32 

-8.0 54.0 34.0 ldmPFC dmPFC - 

36.0 22.0 -8.0 raIns/IFG raIns - 

54.0 16.0 20.0 rIFG rIFG Area45 

50.0 30.0 4.0 rIFG (p.Tr) rIFG - 

-30.0 20.0 4.0 laIns laIns - 

50.0 12.0 -8.0 rSTG rIFG - 

-44.0 24.0 -6.0 lIFG(p.Orb) lIFG - 

-4.0 18.0 50.0 SMA SMA  



-2.0 28.0 20.0 aMCC aMCC Area 33 

-4.0 42.0 18.0 pACC rostral ACC Areap32 

-2.0 -32.0 28.0 PCC PCC Retrosplenial Area a30 

52.0 -58.0 22.0 rTPJ rTPJ Area PGp 

-56.0 -58.0 22.0 lTPJ lTPJ Area PGa 

22.0 -2.0 -16.0 rAm rAm Amygdala: SF, CM 

54.0 -8.0 -16.0 rMTG rMTG - 

52.0 -36.0 2.0 rpSTS rpSTS - 

-12.0 -4.0 12.0 laTh laTh Th:Prefrontal, 

6.0 -32.0 2.0 rpTh rpTh  

26.0 -26.0 -12.0 r Hippo rHippo Subiculum 

2.0 -20.0 -12.0 Midbrain Midbrain - 

14.0 4.0 0.0 rGP rGP Th:Prefrontal 

Face processing 

Grosbras et al., 2012 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

42.0 -78.0 -8.0 r lOcC r lOcC hOc4la 

-40.0 -82.0 -8.0 lOcC l lOcC hOc4la 

26.0 -100.0 2.0 rOcPole rOcPole hOc2 

-14.0 -98.0 -4.0 lOcPole lOcPole hOc1 

52.0 -44.0 8.0 rMTG rMTG/pSTS - 

-56.0 -58.0 36.0 lTPJ lMTG/pSTS Area PFm 

28.0 -52.0 42.0 rIPS rSPL Area hIP1 

4.0 -58.0 28.0 rPrc rPCC - 

52.0 24.0 26.0 rIFS rIFG Area45 

-46.0 20.0 22.0 lIFG lIFG IFS1/IFS2 

0.0 20.0 54.0 l pre-SMA pre-SMA - 

42.0 12.0 30.0 rIFS rMFG IFS4 

12.0 52.0 16.0 pACC rMFG Area p32 

8.0 46.0 36.0 r amSFG rmPFC - 

14.0 28.0 50.0 r pmSFG rSFG - 

-24.0 24.0 42.0 lMFG lSFG - 

36.0 2.0 42.0 rMFG rPrG - 

20.0 -8.0 -14.0 rAm rAm Am: SF 

-16.0 -6.0 -12.0 lAm lAm - 

Reward 

Liu et al., 2011 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

12.0 10.0 -6.0 rNAc rNAc NAc_fundus 

-10.0 8.0 -4.0 lPal lPal Striatum_scgp 



36.0 20.0 -6.0 raIns rIns - 

-32.0 20.0 -4.0 laIns lIns - 

0.0 24.0 40.0 aMCC dmPFC Area 32’ 

0.0 54.0 -8.0 mOFC mOFC Fp2 

24.0 -2.0 -16.0 rAm rAm Am: LB 

4.0 -14.0 8.0 rTh rTh Th: Temp 

0.0 8.0 48.0 l pre-SMA SMA - 

8.0 -18.0 -10.0 rBrainstem rBrainstem - 

2.0 44.0 20.0 rpACC rACC Area p32 

-24.0 2.0 52.0 lpMFG lMFG - 

-38.0 -4.0 6.0 lpIns lIns Area Id3 

24.0 40.0 -14.0 r SOrbG r midOFC Area Fo3 

-16.0 42.0 -14.0 lSOrbG l midOFC - 

40.0 32.0 32.0 rpMFG rMFG - 

-28.0 -56.0 48.0 lIPS lIPL hIP3 

28.0 -58.0 50.0 rIPS rAG hIP3 

0.0 -32.0 32.0 PCC PCC  

-36.0 50.0 10.0 laMFG lFP - 

-46.0 42.0 -4.0 lIFG l lOFC - 

30.0 4.0 50.0 raMFG rMFG - 

-22.0 30.0 48.0 lSFG lSFG - 

Pain 

Kogler et al., 2015 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

38.0 18.0 0.0 rIns rIns - 

52.0 12.0 -4.0 rSTG rSTG Area 44 

60.0 6.0 2.0 rIFG rTP Area 44 

22.0 0.0 -4.0 rPal rPal - 

-38.0 14.0 4.0 laIns lIns OP7 

-58.0 0.0 6.0 lfOP lOP4 OP6 

-20.0 6.0 2.0 lPut lPut Striatum_PM 

4.0 6.0 46.0 rSMA rSMA Area 24dv 

0.0 14.0 36.0 laMCC lMCC Areas 24c’v,24c’d 

-42.0 -18.0 18.0 lpOP lOP3 OP3 

-54.0 -24.0 24.0 lSMG lSMG Area PFop 

-36.0 -20.0 2.0 lpIns lIns OP7, OP6 

-14.0 -12.0 10.0 lTh lTh Th: Pref 

10.0 -18.0 4.0 rTh rTh Th: Pref 

56.0 -24.0 24.0 rSMG rSMG Area PFop 

44.0 -14.0 16.0 r pOP rOP3 OP3 

38.0 50.0 12.0 rMFG rMFG - 

-24.0 -66.0 -26.0 lCb lCb LobuleVI 



Emotion perception 

Sabatinelli et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

4.0 47.0 7.0 pACC medPFC pv24c; pd24cv; pd24cd 

42.0 25.0 3.0 rIFG rIFG  

-42.0 25.0 3.0 lIFG(p.Tr) lIFG - 

48.0 17.0 29.0 rIFJ rMFG IFJ1 

-42.0 13.0 27.0 lIFJ lMFG IFJ1 

-2.0 8.0 59.0 l pmSFG lSFG  

20.0 -4.0 -15.0 rAm rAm Amygdala: SF 

-20.0 -6.0 -15.0 lAm lAm Amygdala:SF 

-20.0 -33.0 -4.0 lHippo lPHG . 

14.0 -33.0 -7.0 rHippo rPHG Subiculum 

53.0 -50.0 4.0 rMTG rMTG - 

38.0 -55.0 -20.0 r aFFG rFFG FG3 

-40.0 -55.0 -22.0 l aFFG lFFG Lobule VI 

38.0 -76.0 -16.0 r pFFG rpFFG hOc4v 

-40.0 -78.0 -21.0 lpFFG lpFFG hOc4v 

-4.0 52.0 31.0 lamSFG medPFC - 

36.0 25.0 -3.0 rIns rOFC - 

-38.0 25.0 -8.0 lIFG(p.Orb) lOFC - 

2.0 19.0 25.0 aMCC rACC Area a24a’, a23b’ 

0.0 -15.0 10.0 lTh Th Th: Temporal 

-2.0 -31.0 -7.0 Superior Colliculus Pulvinar - 

-28.0 -70.0 -14.0 lFFG lFFG FG1 

46.0 -68.0 -4.0 r lOcC r lOcC hOc4lp 

-48.0 -72.0 -4.0 l lOcC l lOcC hOc4lp 

Working Memory 

Rottschy et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

-32.0 22.0 -2.0 l aIns laIns - 

-48.0 10.0 26.0 lIFG lIFG (p.Orb) Area 44 

-46.0 26.0 24.0 lIFS l plPFC IFS1/IFS2 

-38.0 50.0 10.0 lMFG l alPFC - 

36.0 22.0 -6.0 r aIns raIns - 

50.0 14.0 24.0 rIFG rIFG (p.Tr) Area44 

44.0 34.0 32.0 rpMFG r plPFC - 

38.0 54.0 6.0 raMFG r alPFC - 

2.0 18.0 48.0 r dmPFC pmedFC - 

-28.0 0.0 56.0 lSFG l pSFG - 



30.0 2.0 56.0 rSFG r pSFG - 

-42.0 -42.0 46.0 lIPS lIPS hIP2 

-34.0 -52.0 48.0 lSPL lSPL/IPS hIP3 

-24.0 -66.0 54.0 lSPL lpSPL Area7A 

42.0 -44.0 44.0 rIPS rIPS hIP2 

32.0 -58.0 48.0 rIPS rIPS hIP3 

16.0 -66.0 56.0 rSPL rpSPL Area7A 

-12.0 -12.0 12.0 lTh lTh Th: Pref 

-18.0 4.0 6.0 lPutament lPutamen Striatum:PoStP 

12.0 -10.0 10.0 rTh rTh Th: Pref 

-34.0 -66.0 -20.0 lFFG/Cb lCb/FFG FG2 

32.0 -64.0 -18.0 rFFG/Cb rCb/FFG FG1 

Vigilant Attention 

Langner et al., 2012 

x y z Macroanatomical 

location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

-2.0 8.0 50.0 l pre-SMA a paracentral lobule - 

8.0 32.0 46.0 r mSFG r pmed SFG - 

0.0 26.0 34.0 l MCC l/r dorsal MCC Area 32’ 

50.0 8.0 32.0 r IFJ r IFJ  

40.0 22.0 -4.0 r aIns r aIns - 

46.0 36.0 20.0 r MFG r IFS - 

-40.0 -12.0 60.0 l PrG l PrG - 

-46.0 -68.0 -6.0 l IOG l IOG hOc4lp; hOc4d; hOc3d 

-48.0 8.0 30.0 l IFJ l IFJ area 44 

62.0 -38.0 17.0 r IPL r TPJ area PF 

8.0 -12.0 6.0 r Th r a/mTh Th: temporal 

32.0 -90.0 4.0 r MOG r MOG hOc4la 

-42.0 12.0 -2.0 l aIns l aIns - 

-10.0 -14.0 6.0 l Th l a/m Th Th: prefrontal 

6.0 -58.0 -18.0 r Cb l/r Cb lobule V 

44.0 -44.0 46.0 r IPS r IPL hIP2 

Autobiographical memory 

Spreng et al., 2008 

x y z Macroanatomical 

location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

-1.0 -53.0 21.0 lPrc l/rPrc - 

-26.0 -28.0 -17.0 lHippo lHippo Subiculum 

-49.0 -61.0 31.0 lTPJ lTPJ Area PGa 

-2.0 51.0 -11.0 lFP l medPFC Fp2 

-60.0 -9.0 -18.0 lSTS lSTS/MTG - 

-50.0 27.0 -12.0 lSOrbG l vlPFC Fo5 



26.0 -33.0 -15.0 rHippo rpHippo Subiculum 

-1.0 20.0 57.0 lmSFG MFG - 

55.0 -58.0 30.0 rTPJ rTPJ Area PGa 

-47.0 9.0 46.0 lPrG l plPFC - 

-42.0 53.0 7.0 lFP l lFP - 

26.0 -14.0 -23.0 rHippo raHippo DG 

52.0 -5.0 -18.0 rMTG rTP/MTG - 

-39.0 13.0 -41.0 lTP lTP - 

-38.0 -82.0 38.0 lIPL lOC Area PGp 

-48.0 29.0 17.0 lIFG l dlPFC Area 45 

52.0 31.0 -11.0 rSOrbG r vlPFC Fo5 

-11.0 62.0 9.0 lFP lmedFP Fp1 

4.0 -8.0 2.0 rTh rTh Th: Temporal 

-4.0 39.0 16.0 lACC lrACC Area pv24c, pd24cv,  

pd24cd 

-5.0 -34.0 36.0 lPCC lPCC - 

-29.0 16.0 51.0 lSFG lSFS - 

31.0 1.0 -26.0 rAm rAm Amygdala: LB 

Semantic Memory 

Binder et al., 2009 

x y z Macroanatomical 

Location 

Original labeling 

in the Meta-

analysis 

Cytoarchitectonic 

Assignment 

-46 -70 21 lIPL lSTG 
Area PGp 

-50 -56 31 
lAG 

lSTG 
Area PGa 

-64 -44 -4 
lMTG 

lMTG 
- 

-47 -24 -17 
lMTG 

lFFG 
- 

-55 -3 -24 
laMTG 

lMTG 
- 

-7 -57 17 
lPrc 

lPCC 
- 

-20 36 44 
lSFG 

lSFG 
- 

-31 29 45 
lMFG 

lMFG 
- 

-53 26 -1 
lIFG 

lMFG 
Area 45 

-39 17 44 
lMFG 

lIFG 
- 

53 -59 29 
rAG 

rSTG 
Area PGa 

43 -72 31 
rpIPL 

rMTG 
Area PGp 

-1 51 -7 
medFP 

lACC 
Area Fp2 

-5 56 24 
lmSFG 

lSFG 
Area p32 

-31 -34 -16 
lFFG 

lParaHippo 
- 

-8 29 -10 
sACC 

lACC 
Area s32 

-46 25 23 
lIFS 

lMFG 
IFS1/IFS2 

64 -41 -2 
rMTG 

rMTG 
- 

-43 -53 55 
rIPL 

lIPL 
Area PFm 

-1 -18 40 
rMCC 

lCC 
- 

51 20 26 
rIFJ 

rMFG 
IFJ1 



64 -38 32 
raIPL 

rSMG 
Area PF 

-23 26 -16 
rFP 

lIFG 
Area Fo3 

 

x, y and z coordinates denote the center of gravity in MNI space. 

Reference for probabilistic cytoarchitectonic mapping of amygdala and hippocampus (Amunts et al. 2005)); 

superior parietal cortex (Scheperjans et al. 2008); intraparietal sulcus (Choi et al. 2006); parietal operculum 

(Eickhoff et al. 2006); ventral extrastriate cortex (Rottschy et al. 2007); dorsal extrastriate cortex (Kujovic et al. 

2013); gyrus fusiformis (Caspers et al. 2013); lateral occipital cortex (Malikovic et al. 2016); Broca’s regions 
(Amunts et al. 1999); Cingulate cortex (Palomero-Gallagher et al. 2015). Cerebellar atlas (Diedrichsen et al. 2009). 

Thalamic connectivity atlas (Behrens et al. 2003). 

 

Abbreviations: r= right; l= left; a= anterior; p= posterior; s= sub-genual; m/med=medial; Tr.= pars; 

triangularis; Orb. = pars orbitalis; dmPFC= dorso-medial prefrontal cortex; SMA= supplementary motor area; 

MCC= middle cingulate cortex; ACC= anterior cingulate cortex; PCC= posterior cingulate cortex; Am= amygdala; 

Th= thalamus; Hippo= hippocampus; GP/Pal= globus pallidus; Prc= precuneus; mSFG= superior medial gyrus; 

Nac= nucleus accumbens; Put= putamen; PrG= pre-central gyrus; Ins= insula; IFS= inferior frontal sulcus; IFJ= 

inferior frontal junction; IFG= inferior frontal gyrus; MFG= middle frontal gyrus; SFG= superior frontal gyrus; 

OFC= orbito-frontal cortex; SOrbG= superior orbital gyrus; FP= frontal pole; STS= superior temporal gyrus; 

STG= superior temporal gyrus; MTG= middle temporal gyrus; ITG= inferior temporal gyrus; FFG= fusiform 

gyrus; SPL= superior parietal lobe; IPL= inferior parietal lobe; IPS= intra-parietal sulcus; fOP= frontal operculum; 

pOP= parietal operculum; TPJ= temporo-parietal junction; SMG= supramarginal gyrus; AG= angular gyrus; 

lOcC= lateral occipital cortex; OcPole= occipital pole; MOG= middle occipital gyrus; IOG= inferior occipital 

gyrus; Cb= cerebellum 

 

Predictions based on the pooled sample 

Subjects Selection 

From the “s1200” release, Sample 1 and Sample 2 were generated by selecting only one 

member per family and then matching the male and female subgroups by age, years of education 

and twin-status. To perform the analysis on the largest (balanced and matched) possible set of 

HCP subjects (henceforth Sample 3), we combined the two unrelated samples, noting that now 

virtually all subjects will have a close relative in the sample. This procedure was preferred over 

the use of the entire HCP sample (n = 1096 participants with FIX-denoised RS-fMRI data and 

personality measurements) in order to keep the gender-ratio balanced and maintain control over 

age, education and twin status, which is still matched between male and female. Thus, Sample 

3 resulted in a total of 740 subjects: 370 males (196 non-twin, 174 twin subjects; aged 22-37 

years, mean: 28.3 ± 3.5; years of education: 14.8 ± 1.8) and 370 females (196 non-twin, 174 

twin subjects; aged 22-36 years, mean: 28.7 ± 3.5; years of education: 14.9 ± 1.8).  

Results of the Relevance Vector Machine in Sample 3 

 

 



The analysis on the pooled Sample 3 revealed that the majority of the predictions discovered in 

the two unrelated samples could be replicated (see Table S4). This can be easily explained by 

the fact that whenever a prediction truly reflected an association between trait and brain 

network, the presence of related individuals in the training and in the test groups would not 

harm the prediction, but rather lead to an overestimation of the performance of the model due 

to the genetic shared variance between twins (100% between Mz twins, 50% between Dz). On 

the other hand, introducing related subjects in the analysis (Sample 3) yielded a consistent 

number of predictions not found in the unrelated Samples 1 and 2. However, it is impossible to 

disentangle, whether these additional results were driven by the higher power due to the larger 

number of subjects or the optimism-bias introduced by including related subjects. 

 

Table S4: Comparison of the significant predictions across the three samples 

   
Replication-analysis results Pooled-analysis results 

Predicted 

Trait 

Predicting 

Network 

Group r 

Sample

1 

p-value 

Sample

1 

r 

Sample 

2 

p-value 

Sample 

2 

r 

Sample 

3 

p-value 

Sample 

3 

O VA All 0.12 0.006 0.17 0.12 0.1 0.004 

O Pain All 0.1 0.018 0.2 0.1 0.16 0.0 

O Rew Women 0.17 0.006 0.2 0.17 0.11 0.017 

O Pain Women 0.12 0.048 0.29 0.12 0.15 0.018 

E Face Men 0.18 0.005 0.14 0.18 0.01 0.4 

E Rew Women 0.14 0.02 0.23 0.14 0.1 0.03 

E Conn Women 0.29 0.0 0.23 0.29 0.13 0.01 

A AM All 0.1 0.018 0.18 0.1 0.12 0.0 

N Conn All 0.14 0.018 0.14 0.14 0.07 0.06 

N Conn Men 0.17 0.0 0.37 0.17 0.12 0.02 

N Emo Men 0.2 0.002 0.42 0.2 0.05 0.1 

 

Predicted Trait: O: Openness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: autobiographic memory; 

Face: face perception; Conn: whole-brain network; Emo: emotional processing.  

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 in both samples 

1 and 2 (Replication-analysis results), compared with the performance of the same network-trait association in 

Sample 3 (Combination-analysis results). In red, predictions that resulted significant at p < 0.05 also in Sample 

3. 



Table S5: Results of the Relevance Vector Machine in Sample 3 

 

Predicting 

Network 

Predicted 

Trait 

Group r  

Sample 3 

p-value 

Sample 

3 

AM O All 0.09 0.01 

AM O Men 0.17 0.00 

AM O Women 0.15 0.00 

Emo O Women 0.11 0.02 

Emp O All 0.07 0.04 

Emp O Women 0.13 0.01 

Face O Women 0.21 0.00 

Pain O All 0.16 0.00 

Pain O Men 0.06 0.04 

Pain O Women 0.15 0.00 

Rew O All 0.10 0.00 

Rew O Men 0.07 0.03 

Rew O Women 0.11 0.02 

SM O All 0.07 0.03 

SM O Men 0.13 0.00 

VA O All 0.10 0.00 

VA O Women 0.18 0.00 

WM O Women 0.11 0.02 

Face C Women 0.13 0.01 

Conn C All 0.10 0.00 

Conn C Men 0.10 0.03 

WM C Women 0.12 0.01 

AM E Women 0.13 0.01 

Pain E Women 0.09 0.04 

Conn E All 0.16 0.00 

Conn E Women 0.13 0.01 

Rew E All 0.11 0.00 

Rew E Women 0.10 0.03 

AM A All 0.12 0.00 

AM A Men 0.12 0.00 

AM A Women 0.13 0.01 

Emp A Men 0.15 0.00 

Face A All 0.06 0.05 



Rew A All 0.14 0.00 

SM A All 0.12 0.00 

SM A Men 0.11 0.00 

VA A Men 0.14 0.00 

WM A All 0.09 0.01 

Emp N Women 0.18 0.00 

Face N All 0.08 0.02 

Conn N All 0.07 0.03 

Conn N Men 0.12 0.01 

Rew N Men 0.09 0.01 

 

Predicted Trait: O: Openness; C: Conscientiousness; E: Extraversion; A: Agreeableness; N: Neuroticism. 

Predicting Network: AM: Autobiographic Memory; Emp: Empathy; Emo: Emotional processing; Face: Face 

perception; Pain: Pain processing; Rew: Reward; SM: Semantic Memory; VA: Vigilant Attention; WM: Working 

Memory; Conn: Connectome. 

Correlation coefficients between real and predicted values which resulted significant at p < 0.05 Sample 3. 

 

Supplement Fig S1: Meta-analytically derived networks 

 

Empathy  

 

 

Static Face Perception 

 

 



Perception of emotional scenes and faces 

 

Reward 

 

Pain 
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Vigilant Attention 

 

Autobiographic Memory 

 

 

Semantic Memory 

 

Regions constituting the meta-analytically defined network defined according to the SPM anatomy toolbox 2.1 

(Eickhoff et al. 2005, 2007). Red labels indicated regions already defined in previous sections. 

 

 

 

 

 

 



Supplement Fig 2: Comparison of the predictions across groups. Scatter plots of real and 

predicted personality score in the entire samples (all) as well as for males and females 

separately. Predictions are reported if they are significant in at least one out of the three 

groups.  Only for the significant predictions, continuous regression lines and dashed lines, 

representing the standard deviation, are displayed.  
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