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Abstract

Phosphorus (P) fertilisation recommendations rely primarily on soil content of plant avail-
able P  (Pavl) that vary spatially within farm fields. Spatially optimized P fertilisation for 
precision farming requires reliable, rapid and non-invasive  Pavl determination. This labora-
tory study aimed to test and to compare visible-near infrared (Vis–NIR) and mid-infrared 
(MIR) spectroscopy for  Pavl prediction with emphasis on future application in precision 
agriculture. After calibration with the conventional calcium acetate lactate (CAL) extrac-
tion method, limitations of Vis–NIRS and MIRS to predict  Pavl were evaluated in loess top-
soil samples from different fields at six localities. Overall calibration with 477 (Vis–NIRS) 
and 586 (MIRS) samples yielded satisfactory model performance  (R2 0.70 and 0.72; RPD 
1.8 and 1.9, respectively). Local Vis–NIRS models yielded better results with  R2 up to 
0.93 and RPD up to 3.8. For MIRS, results were comparable. However, an overall model to 
predict  Pavl on independent test data partly failed. Sampling date, pre-crop harvest residues 
and fertilising regime affected model transferability. Varying transferability could partly 
be explained after deriving the cellulose absorption index from the Vis–NIR spectra. In 62 
(Vis–NIRS) and 67% (MIRS) of all samples, prediction matched the correct  Pavl content 
class. Rapid discrimination between high, optimal and low P classes could be carried out 
on many samples from single fields thus marking an improvement over the common prac-
tice. However,  Pavl determination by means of IR spectroscopy is not yet satisfactory for 
determination of precision fertilizer dosage. For introduction into agricultural practice, a 
standardized sampling protocol is recommended to help achieve reliable spectroscopic  Pavl 
prediction.
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Introduction

Optimised phosphorus (P) fertilisation is desired to enhance farm input efficiencies, 
improve economic returns and minimize ecologic disturbances. In this respect, reducing P 
inputs is an actual aim in view of the high P status of many arable soils, at least in Western 
Europe (Csatho et  al. 2007). Nonetheless, optimisation might also result in increased P 
dosage to exploit soil yield potential. Plant availability of P is a complex outcome of P fer-
tilisation history, but also of multiple and partly interacting soil properties. However,  Pavl 
makes up only a small percentage of total soil P. Diverse extractants are approved to esti-
mate  Pavl and to calculate fertiliser dosage. Jordan-Meille et al. (2012) reviewed European 
soil P tests and fertilising recommendations. The principle is similar everywhere: P extrac-
tion with chemical reagents is followed by calibration of  Pavl values on the basis of field tri-
als in order to achieve fertiliser recommendations. In Germany, the calcium acetate lactate 
(CAL) extraction (Schüller 1969) is a standard soil test method to determine  Pavl and forms 
the basis of P fertilisation recommendations (LWK 2015). Note that  Pavl as determined by 
conventional soil tests is operationally defined and does not account for chemical P binding 
forms (Hartmann et al. 2019).

Available nutrients and other soil properties that directly or indirectly impact crop 
growth may vary considerably within fields (Patzold et  al. 2008). Precision agricul-
ture addresses this problem by adapting fertilisation in different field-zones (Gebbers 
and Adamchuk 2010); such optimisation can lead to economic benefits in the long term 
(Schulte-Ostermann and Wagner 2018). However, common agricultural practice is to take 
composite soil samples that are regarded as representative for the sampled area. In Ger-
many, official advisory services recommend one composite soil sample per 3 ha area (LWK 
2015). In most cases, P fertiliser is still uniformly applied because farmers feel uncertain 
about how to divide a distinct field into management zones. Zones with varying soil prop-
erties can be distinguished when conducting a soil survey with diverse sensing techniques. 
Sensor maps often unravel soil heterogeneity and explain variation in, e.g., grain yield or 
total biomass (Mertens et  al. 2008; Sun et  al. 2011). Such information is commercially 
provided by consultants and helps to define management or soil sampling zones. However, 
routine soil sensing such as electromagnetic induction most often yields information that is 
not directly related to available decision rules (Sylvester-Bradley et al. 1999); this is espe-
cially the case for phosphorus.

For physical reasons, valuable information about  Pavl in soil is not directly readable 
from sensor signals including electromagnetic induction, gamma spectrometry and optical 
instruments. However, in several studies, infrared (IR) spectroscopy in the visible and near-
infrared (Vis–NIRS) and in the mid-infrared (MIRS) have performed satisfactorily in elu-
cidating relationships between soil spectra and nutrient status as reviewed in Kuang et al. 
(2012). Spectroscopic models require calibration with conventionally analysed soil sam-
ples before predictions for the parameter of interest in unknown samples can be done. For 
model calibration, multivariate statistics such as partial least squares regression (PLSR) 
are in widespread use. Even if the soil property of interest has no specific spectral feature, 
PLSR can perform well for model calibration, when it finds surrogate spectral features that 
retain satisfactory estimations of the studied soil properties (Gomez et al. 2008).

Reviews by Kuang et  al. (2012) and Soriano-Disla et  al. (2014) have pointed out 
that no precise, but only approximate, quantitative prediction of  Pavl is possible using 
IR spectroscopy. The reason is that the low dipole moment between P and oxygen (O) 
inhibits direct detection of orthophosphate. However, when organically bound P forms 
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a tight relationship with other relevant soil properties, P quantification is generally pos-
sible, but requires further testing in soils with a wide range of properties (Abdi et  al. 
2016). In general, MIRS yields better results than Vis–NIRS where orthophosphate has 
no spectral response (Soriano-Disla et al. 2014; Kruse et al. 2015). In chemically pure 
systems, Ahmed et  al. (2019) elucidated orthophosphate and molecular mechanisms 
for phosphate adsorption to goethite using MIRS. Mayrink et  al. (2019) successfully 
predicted exchange resin-adsorbed P, but also without direct spectral influence of soil 
components. However, P binding mechanisms and partners in soil are manifold, and  Pavl 
is not a chemically defined component. Consequently, Wijewardane et al. (2018) found 
poor  Pavl (Mehlich) prediction in the MIR when analysing 4969 samples from a broad 
range of soils all over the USA.

The  Pavl proportion of total P is partly controlled by organic matter (OM) content 
and properties that determine IR reflectance of soil. Consequently, IR spectra may con-
tain indirect, i.e., surrogate, information on P fractions (Chang et al. 2001; Abdi et al. 
2012; Soriano-Disla et al. 2014). Abdi et al. (2016) successfully predicted organic P in 
chernozem soil samples because of the close relationship between OM and organic P. 
Organically bound P (e.g., phytate) is not, or only to a minor degree, captured by con-
ventional soil P tests (Steffens et al. 2010). Abdi et al. (2012, 2016) reported variable 
success in  Pavl prediction depending on the extractant. The CAL method was designed 
to characterize  Pavl (Schüller 1969) and extracts P from diverse binding partners in 
soil (Steffens et al. 2010; Hartmann et al. 2019). Until now, Vis–NIRS and MIRS have 
hardly been tested to predict CAL-extractable P (CAL-P).

Most published studies to predict  Pavl with emphasis on precision agriculture have 
been conducted on very few or even single fields, and models were mostly not trans-
ferred to fields outside calibration. Mouazen et  al. (2007) and Mouazen and Kuang 
(2016) predicted  Pavl in the lab and field with accuracy that was regarded sufficient for 
practical purposes. Mayrink et al. (2019) successfully predicted Mehlich-3 extractable 
P by taking diffuse reflectance spectra (325–1075 nm) from resin exchange strips that 
had been used to extract P from soil. All soil samples came from a 20 ha field; prior to 
model building, samples were pre-selected to optimise results.

Application of Vis–NIRS directly in the field is generally possible, but taking 
Vis–NIR spectra in the laboratory still performs generally better, because measurements 
can be taken under controlled conditions (Rodionov et al. 2014a, b, 2016). Mouazen and 
Kuang (2016) published a case study on  Pavl prediction with mobile Vis–NIRS. For the 
mid-infrared, portable spectrometers (pMIRS) are available and are increasingly tested 
in soil science (Soriano-Disla et al. 2017). For example, the recent study by Rogovska 
et al. (2019) tested the potential for nitrate estimation in precision agriculture. However, 
prediction of  Pavl in situ using pMIRS failed (Ji et al. 2016).

Major challenges concerning  Pavl prediction by IR spectroscopy are (i) overcoming 
the case study character of  Pavl prediction both in the Vis–NIR and MIR region, (ii) 
transferring models from calibration sites to independent fields, and (iii) calibrating 
 Pavl prediction models that are universally applicable in practical precision farming. To 
address these challenges, the ongoing joint research project “BonaRes-I4S” is develop-
ing a mobile sensor platform that integrates non-invasive sensors and soil sampling for 
chemical and spectroscopic analyses (Gebbers et al. 2016). The objective of this study 
was to test and to compare Vis–NIR and MIR models capable of  Pavl prediction in sam-
ples from different fields. The study was conducted in a laboratory setting as needed to 
evaluate the potential for integrating a pMIRS-based  Pavl prediction on the future “Bon-
aRes-I4S” sensor platform.
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Materials and methods

Sample set

This study was conducted on archived sets of arable topsoil samples from different research 
sites. All samples had been analysed in different projects with the CAL method to charac-
terise  Pavl and were re-evaluated for this study. Six different localities with soils from loess 
or loess-derived sediments were sampled (Table  1). Klein-Altendorf (KA; 50°36′57″  N, 
6°59′37″  E; four fields), Poppelsdorf (PO; 50°43′34″  N, 7°05′09″  E), Dikopshof (DI; 
50°48′29″ N, 6°57′11″ E), and Hilberath (HI; 50°34′46″ N, 6°59′27″ E) were situated close 
to Bonn. The field at Merklingsen (ME; 51°34′07″ N; 8°00′05″ E) was located 110 km NE 
of Bonn. The Görzig (GÖ; 51°40′08″ N; 12°00′52″ E) field was located 360 km ENE of 
Bonn and 20 km N of Halle. The topsoils at KA, DI, ME, and GÖ formed from Weichse-
lian loess. In HI, Pleistocene periglacial slope deposits (PPSD) from loess and underlying 
weathered Lower Devonian silt and sandstones led to expressed topsoil heterogeneity as 
described by Heggemann et al. (2017). Soils at PO developed from silty Holocene fluvial 
deposits and were similar to loess soils with regard to texture, pH, pedogenic iron and OM 
content. Only the HI soils partly revealed stagnic properties. All samples fell in texture 
classes of silt loam and loam. Mineralogical composition was not investigated because 
loess in the Bonn region was considered homogeneous. For ME and GÖ, divergent miner-
alogical composition could not be excluded with respect to the regionally deviating loess 
origin, although the clay fraction generally reveals little difference in mineralogy through-
out the German loess belt (Gehrt 2000). Soil samples for chemical and spectroscopic inves-
tigation were taken from the plough layer (0–0.3 m depth) and were carbonate-free except 
at GÖ where 18 of 109 samples contained 0.1 to 0.9% carbonate. The pH values hardly 
varied between locations except at HI where pH was approximately one unit lower than in 
the other fields (Table 1).

To achieve a maximum range of P content at comparable soil properties, two long-term 
fertilising experiments (LTFE) at PO and DI with 68 and 120 plots were included in the 
study. For the DI-LTFE, effects of fertilisation, pre-crop and sampling date on spectral 
properties could be detected; therefore, sample sets were not only assigned to the treat-
ments, but also re-grouped as listed in Table 1. The GÖ field of 30 ha comprises a variable-
rate fertilising experiment on 72 m wide strips that was sampled on a 36 m grid. At KA, 
four fields with similar tilling and fertilising practices (only mineral fertiliser) were sam-
pled. The large sample numbers from small fields rely on barley variety plot trials with 
variable N and uniform P fertilisation. The HI field had been cropped with cereals over the 
previous 4 years when sampled; before, it had been a pear orchard with grassed tracks for 
at least 30 years. The sampling points were located on a regular grid with 21 m width.

P analyses and classification of CAL‑P contents

In all samples,  Pavl was determined according to the CAL method (Schüller 1969). The 
CAL extraction (buffered at pH 4.1) is recommended as standard method by the Asso-
ciation of German Agricultural Analytical and Research Institutes (VDLUFA) and applied 
by official advisory services (LWK 2015). Fertilising recommendation in North Rhine-
Westphalia, e.g., relies on five classes of CAL-P contents from very low (A) to very high 
(E) with allowance for soil texture. Wuenscher et al. (2015) compared various P extraction 
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methods and found a close correlation between CAL-P and Olsen-P (r = 0.801***); yet 
CAL extracted slightly higher P amounts than Olsen.

Spectra acquisition

Vis–NIRS

Spectra were recorded in the laboratory using an AgriSpec Vis–NIR spectrometer with 
350–2500 nm range (Analytical Spectral Devices Inc.; Boulder, CO, USA). Prior to spec-
tra acquisition, soil samples were air-dried, sieved and pestled. Samples were placed and 
levelled in a petri dish and three mean spectra of 30 single spectra each in slightly different 
positions were taken as described by Rodionov et al. (2014b). Spectra were taken from a 
total of 477 samples. No Vis–NIR spectra could be recorded from the archived GÖ sam-
ples because not enough sample material was available after conventional soil analyses for 
the spectral investigation that was not initially planned.

MIRS

Mid-infrared spectra were recorded with a benchtop Bruker Tensor 27 spectrometer 
(Bruker Optik, Ettlingen, Germany). The laboratory spectrometer was equipped with an 
automated high throughput device (Bruker HTS-XT) as described by Patzold et al. (2008). 
Soil samples were air-dried, sieved, and milled prior to spectra acquisition as recom-
mended by Stumpe et al. (2011). The recorded wavelengths were 1250–25,000 nm. Five 
composite measurements, comprising 120 scans at a time, were conducted for each sample. 
A total of 586 soil samples were examined.

Spectra analyses and model building

Partial least squares regression (PLSR) with leave-one-out cross-validation was carried out 
for model calibration using the software “ParLeS” (Viscarra Rossel 2008). Spectra were 
truncated to 500–2400 nm (Vis–NIR) and 2500–16,667 nm (MIR) wavebands to eliminate 
noise at the edges. Reflectance [R] was transformed to log (1/R). To account for site-to-site 
variance, all Vis–NIR spectra were mean-centered prior to modelling. After testing diverse 
data pre-treatments, the MIR spectra were subjected to PLSR as first derivative. For com-
posite models from different sample sets, data were randomly divided into calibration (2/3) 
and validation sets (1/3). An exception was the entire DI-LTFE dataset, where three blocks 
with 24 plots each were used for calibration and two blocks with 24 plots each for test-set 
validation to achieve a balanced representation of the fertilising treatments.

The samples were taken from various previous projects (see above); in consequence, 
CAL-P values were not optimally distributed in some of the sample sub-sets (see Supple-
mentary Material, Tables S1–S3). Nevertheless, the full dataset was utilized to encompass 
the expected variability of future prediction datasets and to ensure the representativeness of 
samples. For practical usefulness, prediction models should be applicable to independent, 
i.e., unknown sample sets. Therefore, diverse combinations of calibration and independ-
ent test-set validation sample sub-sets were utilized. Calibrated models were transferred to 
sites that did not contribute to model building. For this test-set validation, complete data-
sets of the validation site were used. To improve model transferability between localities, 
the spiking approach as reviewed by Stenberg et al. (2010) was tested for some exemplary 
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cases. Prior to calibration, ten and eight randomly selected samples from other sites were 
added to samples sets from one (KA) and four (KA, DI, HI, ME) localities, respectively. 
Statistical parameters of CAL-P distribution for the diverse calibration and validation data 
sets and sub-sets are listed in Tables S1–S3.

The number of latent variables, herein denoted as “factors” (Viscarra Rossel 2008), was 
limited to ten to avoid overfitting. Quality of calibration models and validation was evalu-
ated using  R2, ratio of performance to deviation (RPD) and root mean square error (of 
cross-validation or of prediction, resp.,  RMSECV or  RMSEP). Applicability of RPD was 
generally questioned by Bellon-Maurel et al. (2010), and RPD threshold values have been 
controversially discussed (Bellon-Maurel and McBratney 2011). Nevertheless, RPD is one 
of the most popular parameters to evaluate model performance (Bellon-Maurel et al. 2010) 
and still applied in recent studies (Wijewardane et al. 2018; Mayrink et al. 2019). Accord-
ingly, this study reports RPD and model quality categories as proposed by Chang et  al. 
(2001): (A) excellent models (RPD > 2); (B) acceptable models (1.4 < RPD < 2); (C) non-
reliable models (RPD < 1.4). Values for RMSE are important for evaluation of model qual-
ity and so were reported for all cross-validations and predictions.

For Vis–NIRS and the MIRS models comprising the entire dataset, the most relevant 
spectral regions were identified as described in detail by Gomez et al. (2008) to ensure that 
soil constituents being potentially relevant for phosphate bonding were adequately con-
sidered. When (i) the variable importance in the projection (VIP; Viscarra Rossel 2008) 
exceeded the value 1 and (ii) at the same time, the PLS regression coefficient (b-coeffi-
cient) was greater than its standard deviation, the respective wavelength was considered 
significant.

Calculation of cellulose absorption index (CAI)

In order to better differentiate the various sample sets with respect to their spectral proper-
ties, the CAI was calculated. This index is used in Vis–NIRS analyses to detect the pres-
ence of plant litter. For MIR, the use of the CAI has not yet been reported in the literature. 
Values > 0 generally point to the presence of lignin and cellulose, and CAI values of ageing 
litter decrease over time due to lignin and/or cellulose decomposition (Nagler et al. 2000). 
Further, CAI can indicate presence of pre-crop residues (Aguilar et  al. 2012). The CAI 
was derived from Vis–NIR spectra as CAI = 0.5·(R2025 + R2215) − R2110 from the sums of 
reflectance factors R at the wavebands 2000–2050 nm  (R2025), 2089–2130 nm  (R2110) and 
2190–2240 nm  (R2215), respectively (Rodionov et al. 2016).

Results and discussion

Testing the general performance of CAL‑P prediction on different fields

Vis–NIRS

Quantification of CAL-P with Vis–NIRS was successful when the entire dataset (n = 477) 
was used for cross-validation (Fig. 1a). Prediction quality was acceptable with RPD = 1.84 
and  R2 = 0.703 though  RMSECV equalled 30.3 and was not satisfactory for precise fertiliser 
dosage. Soils with high P demand would not have been fertilised and experience yield loss 
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whereas soils without P demand would have unnecessarily received P fertiliser and experi-
enced increased risk of loss to the environment.

The fundamental spectral response in the MIR region and the electron transitions and 
overtones in the Vis–NIR region pointed to iron oxides, clay minerals and diverse func-
tional groups of SOM (Viscarra Rossel and Behrens 2010) as major binding partners for 
CAL-P. The exact spectral regions that were selected for model calibration by the ParLeS 
software are depicted in Figs. S1 and S2. Neighbouring components and functional groups 
can lead to spectral shifts in the NIR.

Calibrating individual models for single fields led to highly variable results, although 
the same data were used as for the overall calibration (Table 2). Excellent CAL-P predic-
tion was obtained for two of the five sample sets and three of the 13 subsets. Figure 2a 
illustrates the reliable (RPD = 4.31, category A) and precise  (RMSECV = 11.1 mg P  kg−1 
soil) result for field KA-2. Sample sets from other fields yielded worse, but acceptable, 
results (Fig.  2b for PO, Table  2). In some cases, field-individual prediction failed com-
pletely (Fig. 2c).

One reason for the partly poor results in P prediction might be the data range that dif-
fered among the fields (see Table 1). On the KA fields, fertilisation was not systematically 
varied, and CAL-P variability consequently relies on natural soil heterogeneity. In contrast, 
the LTFEs at DI and PO were established on homogeneous fields and the fertilizer treat-
ments have been established for more than 100 years. Consequently, some differences in 
OM and pH have developed (Table 1). In addition, indirect effects such as variable crop 
growth have influenced SOM content and P binding and availability. As CAL-P is not 
defined by a specific binding partner but correlated to various soil properties (Wuenscher 
et  al. 2015), the fertiliser-induced variability of soil properties makes CAL-P prediction 
complex and difficult. This is perhaps the reason why P prediction was much better on 
fields KA-2 and KA-3, where fertilisation has not been systematically varied (Table  1). 
Conceptually, the same is true for field KA-1 where P prediction was acceptable and KA-4 
where prediction failed (Fig. 2). However, KA-1 was sampled shortly after barley harvest 
and the small CAL-P range in KA-4 probably hampered a better calibration result.

Fig. 1  Prediction of plant-available P (calcium acetate lactate extractable, CAL-P) with a Vis–NIR spec-
troscopy and b MIR spectroscopy in topsoil samples from different fields in Germany (laboratory spectra, 
PLSR leave-one-out cross validation)
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Prediction failed in HI although the range in CAL-P was large. Here, the former 
long-term use as a pear orchard caused highly variable OM quality and P binding con-
ditions due to wood residues in the former tree strips, and grassed inter-row spaces. 
Soil heterogeneity at HI also was pronounced with respect to relief and parent material 
(Heggemann et al. 2017).

MIRS

In general, MIRS cross-validations were comparable to those in the Vis–NIR range, 
with some exceptions (Fig. 1b and Table 3). For the entire dataset, RPD was slightly 
better, but still only acceptable. Although the data range was large, CAL-P prediction 
via MIRS was poor for the GÖ sample set (Fig.  2d). Excellent to acceptable perfor-
mance was achieved for DI-all, PO and KA (except KA-4), as in the Vis–NIRS. Hence, 
in contrast to the statement of Kruse et al. (2015), MIRS did not generally yield gener-
ally better results than Vis–NIRS.

Table 2  Vis–NIRS calibration models (leave-one-out cross validation, CV) for different entire sample sets

All spectra were transformed to absorbance (log [1/R] prior to PLSR). N = Number of samples, F = number 
of PLSR factors. CV for the complete sample set (N = 477) is depicted in Fig. 1. Statistical parameters for 
the sample sets are listed in Table S1
a RPD, ratio of performance to deviation (model reliability): A = excellent, RPD > 2; B = acceptable, 
1.4 < RPD < 2; C = non-reliable, RPD < 1.4
b Model equation: CAL-Ppredicted = [slope] × CAL-Pobserved + [intercept]

Sample set and sub-set N F R2 RMSECV RPDa Modelb 
[slope; inter-
cept]

Performance

1 DI 120 10 0.72 32.7 1.88 0.774; 23.3 B

2  DI-I 24 10 0.54 49.8 1.40 0.732; 27.9 B

3  DI-II 24 10 0.76 31.6 1.95 0.887; 8.8 B

4  DI-III 24 10 0.33 54.0 1.12 0.562; 50.2 C

5  DI-IV 24 9 0.81 27.3 2.33 0.858; 14.4 A

6  DI-V 24 10 0.69 29.8 1.77 0.787; 26.0 B

7  DI + FYM 60 6 0.578 36.1 1.55 0.626;57.2 B

8  DI − FYM 60 10 0.44 31.1 1.26 0.625; 30.0 C

9  DI + mineral P 80 10 0.74 27.3 1.95 0.792; 30.5 B

10  DI − mineral P 40 9 0.65 21.8 1.66 0.757; 14.9 B

11 PO 67 10 0.79 17.4 2.17 0.835; 22.8 A

12 KA 210 10 0.90 14.8 3.21 0.907; 9.6 A

13  KA-1 69 10 0.60 7.1 1.57 0.680; 25.9 B

14  KA-2 32 10 0.95 11.1 4.31 0.981; 2.6 A

15  KA-3 77 10 0.93 8.4 3.81 0.944; 6.1 A

16  KA-4 32 10 0.04 7.5 0.80 0.209; 37.5 C

17 HI 42 10 0.27 11.6 1.10 0.461; 9.8 C

18 ME 38 5 0.45 19.5 1.35 0.536; 35.7 C
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Transferring calibration models to leave‑out fields

Transferability of models between fields from one locality

All Klein-Altendorf fields belong to the same experimental farm, reveal similar soils and 
are managed in the same way. The dataset for each of the fields was randomly divided into 
calibration and validation data. Reference data distributions for all sample sets are com-
piled in Tables S1–S3. In a first step, fields KA-1–3 were merged, and field KA-4 was 
excluded because here CV had failed. Calibration (CV) and test-set validation (P) per-
formed “A” in the Vis–NIR as well as in the MIR range (Table 4, lines 1–2 and 13–14). 
Again, Vis–NIRS and MIRS performed comparably. These results and good performance 

Fig. 2  Prediction of CAL-P with Vis–NIR spectroscopy (a–c) and MIR spectroscopy (d) in topsoil samples 
of single fields (leave-one-out cross-validation): a KA-2, b PO, c HI and KA-4, and d GÖ. For sample set 
designations, refer to Table 1
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for the single datasets (Tables 2 and 3) gave rise to the expectation of satisfactory transfer-
ability tests.

However, calibrating individual models (CV) for each KA field and transferring them to 
other KA fields for test-set validation (P) yielded mixed results. In most cases, no CAL-P 
prediction was possible with Vis–NIRS calibration models, although model calibration had 
yielded  RMSECV values that were acceptable (Table 4). For subsequent prediction,  R2 as 
well as RPD were small and most  RMSEP values were too large to serve as a basis for 
precise fertiliser dosage when compared to the recommended soil P values (Table 6). This 
result was insofar unexpected as the ranges in values of calibration and validation data 
were wide and overlapping (Table S2). Only CAL-P prediction for field KA-2 was accept-
able after calibrating a model with KA-3 data. For the MIR range, some predictions were 
slightly better (Table  4), but the overall results were comparable to those of Vis–NIRS. 
Consequently, in this respect MIRS was not superior to Vis–NIRS.

Figure  3a illustrates Vis–NIRS prediction for KA-2 based on the KA-3 model. Pre-
diction of KA-3 completely failed when KA-2 were used for calibration (Fig.  3b). It is 
assumed that soil properties connected to CAL-P or the IR-active soil components related 
to P extractability varied between the two fields. Sampling date, soil surface cover and pre-
crop were different for KA-2 and KA-3 (Table 1). Field KA-2 was sampled in November 

Table 3  MIRS cross-validation results for CAL-P (entire datasets)

All spectra were subjected to PLSR as 1st derivative. F = factors in leave-one-out cross validation (CV). For 
annotations, see Table 2. Comprehensive CV for the entire sample set (N = 586) is shown in Fig. 1. Statisti-
cal parameters for the sample sets are listed in Table S1
a RPD, ratio of performance to deviation (model reliability): A = excellent, RPD > 2; B = acceptable, 
1.4 < RPD < 2; C = non-reliable, RPD < 1.4
b Model equation: CAL-Ppredicted = [slope] × CAL-Pobserved + [intercept]

Sample set and sub-set N F R2 RMSECV RPDa Modelb [slope; intercept] Performance

DI 120 10 0.81 26.2 2.22 0.909; 2.70 A

 DI-I 24 8 0.36 59.3 1.18 0.597; 54.9 C

 DI-II 24 5 0.41 49.4 1.25 0.597; 52.8 C

 DI-III 24 5 0.64 36.1 1.68 0.709; 38.0 B

 DI-IV 24 3 0.31 52.4 1.22 0.381; 68.9 C

 DI-V 24 9 0.69 28.9 1.83 0.749; 25.1 B

 DI + FYM 60 8 0.42 43.7 1.28 0.548; 70.6 C

 DI − FYM 60 10 0.35 32.9 1.19 0.503; 39.4 C

 DI + mineral P 80 10 0.77 25.5 2.08 0.821; 26.4 A

 DI − mineral P 40 6 0.65 21.3 1.70 0.736; 16.8 B

PO 67 8 0.75 18.8 2.00 0.747; 35.9 A–B

KA 210 8 0.91 14.6 3.26 0.911; 9.14 A

 KA-1 69 6 0.55 7.51 1.49 0.616; 31.0 B

 KA-2 32 6 0.83 19.5 2.46 0.829; 29.2 A

 KA-3 77 7 0.85 12.3 2.61 0.877; 14.1 A

 KA-4 32 10 0.02 8.68 0.69 − 0.141; 53.8 C

HI 42 9 0.34 10.2 1.24 0.389; 11.1 C

ME 38 10 0.25 23.1 1.14 0.346; 49.5 C

GÖ 110 6 0.39 24.8 1.26 0.478; 26.6 C
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approximately 6  weeks after sugar beet harvest prior to tillage, i.e., fresh beet leaf resi-
dues were present. In contrast, KA-3 sampling was conducted in March, approximately 
7 months after grain maize harvest with subsequent ploughing, cultivation and wheat sow-
ing (October). Conventionally measured CAL-P contents varied between the fields, but the 
CAL-P ranges largely overlapped.

Transferring models between localities

The performance of calibration and test-set validation was almost identical for the Vis–NIR 
and the MIR range. Therefore, only the Vis–NIR results are described here and shown in 
Table 5. The respective MIR results can be found in the supplementary material (Table S4). 
Calibrating a model for the entire dataset of KA-1–4 (n = 210) yielded, as expected from 
the results already shown, a highly performing cross-validation (Table 5, line 1). Trans-
ferring this model to the localities PO, DI, HI and ME revealed non-satisfactory test-set 
validations (lines 2–5). In expectation of better validation results, farmyard manure (FYM) 
treated plots were excluded from the PO and DI sample sets (PO–FYM, DI–FYM) because 
no FYM had been applied to KA fields. However, prediction performance further decreased 
(Table 5, lines 6–7) thus indicating a need for widely varying calibration samples when 
model transfer is envisaged. On the other hand, restricting the DI samples to those receiv-
ing mineral fertiliser slightly improved prediction (line 8). Spiking the model by adding 
ten randomly selected DI samples to the calibration set improved independent P predic-
tion and performed “B” instead of “C” (lines 9–10). Further combinations of single-site 
CV and prediction were tested, but no satisfactory results were achieved. Omitting KA-4 
samples from the CV sample set led to worse P predictions in the test-sets, although KA-4 
had failed in the single-field calibration. Overall, the results indicated that calibration sets 

Fig. 3  Transferring Vis–NIRS calibration models between two fields of the same locality (i.e., on the same 
farm): calibration (CV, leave-one-out cross validation) and CAL-P prediction (P, test-set validation); a CV 
for field KA-3 and P for field KA-2 (entire dataset and for samples < 207 mg Pobserved kg−1 to avoid extrapo-
lation); b CV for field KA-2 and P for field KA-3 (entire dataset and reduced dataset with > 98 mg  Pobserved 
 kg−1 and N = 32 to avoid extrapolation and imbalanced CV/P sample numbers. Values for  RMSECV and 
 RMSEP are given in Table 4
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with expressed variability—also concerning quality of OM as binding partner for  Pavl—
may lead to better model transferability.

Looking for a more universal applicability, the complete datasets of KA, DI, HI and ME 
were used for calibration and the model was applied to the PO dataset. This combination 
was chosen because PO yielded a well performing single-locality cross-validation; despite 
the large variability of the calibration set, test-set validation failed. Spiking the calibration 
data set with eight randomly selected samples from PO did not improve the result (Table 5, 
lines 11–14).

Reasons for limited transferability of calibration models in the Vis–NIR and MIR 

range

The DI-LTFE offered good opportunities to study the effects of pre-crop and sampling date 
as possible reasons for limited model transferability. All treatments were present in each 
of the five blocks (balanced sample set). Consequently, CAL-P contents covered similar 
ranges in each block (Table 1).

Vis–NIRS

Model calibration (CV) yielded satisfactory P prediction, when all 120 plots were con-
sidered. The same applied (except for DI-III) when calibration was performed block-wise 
as already shown in Table  2. Remarkably, selecting calibration and validation data with 
respect to pre-crop (block-wise) or, alternatively, to treatment led to differentiated results. 
Again, this points to better performance of heterogeneous sample-sets. Best results were 
achieved for block-wise calibration (i.e., integrating all treatments) and at least 5 months 
after harvesting the pre-crop. Note that visible straw and other particles had been thor-
oughly removed before spectra acquisition. Nevertheless, different combinations of 
Vis–NIR calibration and validation sample sub-sets led to contrasting results.

Predicting CAL-P in DI-I samples with the DI-II model was satisfactory (performance 
B), but failed the other way around (not shown). This was insofar surprising as both blocks 
were sampled at bare surface and 5 months after pre-crops with easily degradable residues. 
More calibration–validation combinations were tested, but no general rule could be found. 
It seems that crop residues, perhaps at the molecular scale, hamper model transferability. 
Separating the DI sample-set into the treatments “with” and “without FYM”, i.e., reducing 
the variability of OM quality, performed only “D” (Table 2, lines 7–8); transferability was 
consequently not further tested. Much better results were achieved when samples were sep-
arated in “with” or “without mineral P” (+ mineral P and – mineral P, respectively; Table 2, 
lines 9–10). However, validation with the respective opposite treatment failed.

These results point to the complexity of boundary conditions for successful CAL-P 
prediction. Further, they likely explain why published results on P prediction are some-
how contradictory as reviewed by Stenberg et al. (2010) and Soriano-Disla et al. (2014). 
Over time, decreasing amounts of freshly added phosphates are being extracted by the 
CAL method (Hartmann et al. 2019). Lozier et al. (2017) found variable concentrations of 
water-extractable soil P in different cover crops and crop residues over time during the non-
growing season. Accordingly, Delin (2016) reported that release of soluble P from different 
organic amendments disappeared within 2 months. During breakdown of straw, leaves and 
root residues, diverse intermediate organic substances formed dissolved OM while reveal-
ing seasonal dynamics (Kalbitz et al. 2000). In the MIR, spectral features of dissolved OM 
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originating from maize and rye or wheat differed (Ellerbrock and Kaiser 2005). Conse-
quently, it is assumed that crop, pre-crop, fertilization regimes, residence time of P released 
from fertilizer or crop residues and further factors affected CAL-P at the sampling date and 
model calibration. Such differences were obviously not, or not fully, mirrored in the spec-
tra. Temporarily changing spectral features and their—perhaps incoherent—attribution to 
CAL-P by PLSR obviously led to highly variable prediction quality. The elemental analy-
ses (organic carbon content, C:N ratio) could not explain the results (Table 1).

To summarize, the influences on  Pavl were numerous, complex and differed from field 
to field. Mayrink et  al. (2019) observed that lesser factors were sufficient for modelling 
when taking spectra from exchange resin with adsorbed P instead of scanning soil samples 
directly. They suggest that this fact is responsible for their very good results. Indeed, the 
rather high factor number that was needed for model building in this study underlines the 
problem complexity that probably has decreased model transferability.

MIRS

Overall, for MIRS, the same general statements can be summed up as for Vis–NIRS. How-
ever, MIRS-CV results for the single DI blocks and for the treatments ± FYM were mostly 
worse than using Vis–NIRS (Tables  2 and 3) and performed only “B” and “C”. Conse-
quently no test-set validation was conducted. As for Vis–NIRS, separation into “with” and 
“without mineral P” yielded very good CV results, but test-set validation with the opposite 
treatment failed. The factors determining CAL-P are, as discussed above, mostly related to 
OM quality, and Vis–NIRS obviously better captures the complex situation.

Cellulose absorption index (CAI) as elucidation

The CAI potentially provides information about the presence of variable amounts of 
degrading plant material (Nagler et  al. 2000). Aguilar et  al. (2012) showed that CAI is 
sensitive to partly degraded residues insofar as CAI of soil with pea residues was affected 
if wheat residues from the previous year were present. Here, CAI was calculated to point 
out differences in OM quality between the sample sets. Note that CAI is only one possibil-
ity to better characterise spectral variability of soil samples; it is shown here as exemplary 
indicator. Figure 4 shows mean CAI’s for different sample sets and sub-sets.

CAIs vary in a large range between the localities but also within some sample sub-sets. 
Between treatments of DI-LTFE, variation is small. However, pre-crop seemed to affect 
CAI, because considerable variation arose when the LTFE dataset was sorted by blocks 
(compare blocks DI-I and DI-III). High standard deviation occurs because sorting by treat-
ments integrates different crops and, in turn, each block comprises all treatments. Accord-
ingly, CAI differences between the KA fields occurred. After sugar beet harvest, the CAI 
was lower than after cereal harvest at other KA fields, although soil samples were taken 
only 6 weeks after beet but ≥ 3 months after cereals. For the two fields with the highest 
CAI values, single-field CV failed: KA-4 was sampled shortly after cereal harvest (Table 2, 
line 16) and, at the ancient orchard HI (line 17), wooden residues (roots, branches) were 
still present. This underlines that type of harvest residue—perhaps also at the molecular 
scale—and sampling date influenced spectra and sometimes hampered CAL-P prediction.

Calibration for DI after separation into treatments + FYM and − FYM failed (Table 2, 
lines 7–8), although CAIs were similar. Thus, more factors than CAI alone must have 
been relevant. Note the small variability of organic carbon contents within the sample sets 
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+ FYM and − FYM compared to any other grouping within DI (Table 1). The better per-
formance of the models + minP and − minP compared to the FYM grouping was perhaps 
due to the larger organic carbon content range. Accordingly, Abdi et al. (2012) were not 
able to predict  Pavl with Vis–NIRS and concluded that the low correlation of the P related 
properties and soil C were the reason. However, the authors combined soil samples from 
6 years of a plot experiment, and the results here additionally turned out the effect of pre-
crop and harvest residues on P prediction (see above).

Of course, CAI can only serve as a proxy for changing OM properties and related P 
binding. This becomes obvious by the weak transferability of the universal calibration from 
DI–KA–HI–ME to the validation site PO. The CAI mean and standard deviation of the 
DI–KA–HI–ME dataset include CAI for PO (Fig. 4), suggesting good transferability. Nev-
ertheless prediction (without or with spiking) was not satisfactory (Table 5). Consequently 
CAI alone is not an appropriate parameter to decide upon model application to unknown 
samples. Yet, in this study, neither the details of P binding nor spectral features of OM 
were elucidated. Further, more factors controlling CAL-P (e.g., iron oxides) and related 
spectral features should be considered but were not investigated in this study.

Utilisation of IR‑based P prediction in fertilisation practice

In Germany, P dosage recommendation relies on soil CAL-P content, in some regions also 
on soil texture, and crop yield (Table 6, see also Jordan-Meille et al. 2012). In view of the 
primary goal to integrate spectroscopic P determination into agricultural practice, a correct 
estimation of the P class is sufficient and marks a step towards variable rate P dosage.

Applying the universal Vis–NIRS and MIRS models, > 60% of the predictions met the 
correct CAL-P class (Table 6). The CAL-P status prediction was better for soils in classes 

Fig. 4  Cellulose absorption index for different sample sets and sub-sets. Error bars represent standard devi-
ation
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B (low P), C (optimal status), and D (high P status) than for soils with very low (class A) or 
very high (class E) CAL-P contents. In the latter cases, spectroscopic P estimation would 
often lead to wrong fertilising recommendations. Consequently, the procedure cannot yet 
fully be recommended for practical application. However, for some single locations, results 
were better than for the entire dataset (e.g., for KA 73%, not shown). Accordingly Stenberg 
et al. (2010) and Gholizadeh et al. (2013) reported that local calibrations outperform global 
ones, although spectral libraries from numerous sites can be advantageous for calibrating 
models (Wijewardane et al. 2018). Until now, Vis–NIR and MIR spectral libraries for  Pavl 
in German arable soils are not available. Considering the results of this study will help to 
construct such libraries and to reduce costs for P analyses. The calculated acceptable costs 
for sensor-based variable-rate P fertilisation allow for future introduction of spectroscopic 
 Pavl determination in precision farming practice as pointed out by Schulte-Ostermann and 
Wagner (2018) for the Görzig site.

Limitations of the present study

Currently, the results are only valuable for the German standard CAL method. Neverthe-
less, the findings can help to improve P model calibration also for other soil tests that are 
operationally and not chemically defined. However, individual calibration of spectral mod-
els is still mandatory for each P extraction method.

Surprisingly, no clear preference for Vis–NIRS or MIRS could be derived from the 
results, because performance was similar under laboratory conditions. Both techniques 
revealed pros and cons. Although MIRS has not so far been introduced into mobile field 
applications, the results of this study encourage testing portable MIR spectrometers in the 
field.

The overall unsatisfactory prediction results were perhaps the consequence of dataset 
composition: the calibration and validation samples were not pre-selected but taken from 
previous projects as entire sets. This decision had been taken in order to explore the value 
of archived samples and data for future model calibration on a regional basis. However, 
it is widely accepted that calibration and validation samples should be selected to cover a 
wide range of the parameter of interest (Stenberg et al. 2010; Soriano-Disla et al. 2014).

This study was based on the linear standard PLSR calibration. Non-linear machine 
learning approaches can overcome some modelling restrictions (Gholizadeh et al. 2013). 
Nawar and Mouazen (2019) successfully performed random forest SOC modelling on a 
spectral library that was spiked with selected samples from the target field. As a conse-
quence, the authors recommended testing the approach with other soil properties. This pre-
sent study confirms this statement.

While standardizing spectra recording (surface properties, light source, geometry, etc.) is 
known to be an important issue when building spectral libraries (Gholizadeh et al. 2013; Sori-
ano-Disla et al. 2014), no related references were found concerning the soil sampling itself. 
This study showed that sampling season, pre-crop, etc. affect calibration and prediction perfor-
mance. One reason was, presumably, the presence of different harvest residues of microscopic 
or molecular size. Such residues impeded successful P prediction when the test-set samples 
contained no, less, or other such substances. In this respect, spiking the calibration set resulted 
in no significant prediction improvement. Consequently, for more universal validity of P pre-
diction models, attention can easily and must thoroughly be paid to composition of the sample 
sets. This can, e.g., necessitate strict co-ordination of sampling campaigns or standardization 
of sampling guidelines with respect to pre-crop and sampling date. Although not examined in 
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this study that focused on non-stagnic loess soils, it must be assumed that also parent mate-
rial and pedogenic iron oxides should be taken into account. Further work is needed to sys-
tematically elucidate spectral features of factors that control  Pavl extractability. Future research 
should focus on standardisation of the sampling procedure in order to enhance performance 
of Vis–NIRS, and MIRS prediction of  Pavl. The development of a sampling protocol to build 
a broader and valuable data pool as a basis for further model improvement is recommended. 
This guideline should include standards for calibration sample collection including pre-crop 
species, sampling date and presence of harvest residues. Such sampling protocol may make 
it possible to improve transferability and universal validity of  Pavl models. With this precondi-
tion,  Pavl prediction using Vis–NIRS or MIRS will probably further develop towards practical 
applicability in precision agriculture.

Conclusions

Arable soil samples from multiple sites in Germany were used to evaluate performance of 
Vis–NIR and MIR spectroscopy for predicting CAL-P. In the laboratory, Vis–NIRS and 
MIRS proved to be potentially useful for developing future applications in mobile sens-
ing. Performance of Vis–NIRS or MIRS conditions was similar and no preference could be 
derived. Analysis of the spectral data resulted in the rapid quantification of plant available 
CAL-P at a moderate level of precision (30.3  mg  kg−1). Unfortunately, P prediction often 
failed for independent test fields indicating a lack of transferability, occasionally even between 
neighbouring fields being similarly managed. Therefore, universal model validity and transfer-
ability to unknown sites are not yet satisfactory. A wide range of CAL-P alone did not ensure 
satisfactory modelling results. Variability in P extractability and spectral reflectance proper-
ties remained unexplained, but were ascribed to season, fertilising regime, pre-crop and har-
vest residues. The CAI—although originally designed to distinguish plants and soil in remote 
sensing—proved useful to explain varying transferability. However, CAI alone was not a reli-
able indicator to predict model transferability. Non-linear machine learning modelling instead 
of PLSR might help to better account for the complex problem of  Pavl prediction. Anyway, 
Vis–NIRS and MIRS at their current state are already sufficient to outperform the actual prac-
tice of evaluating P requirement, because the models frequently predicted the correct P recom-
mendation for soils classified as having low, optimal or high CAL-P contents. The application 
of a future sampling guideline will most probably lead to better  Pavl predictions. The expected 
increase in prediction performance of Vis–NIRS and MIRS makes an introduction into preci-
sion agriculture seem possible.
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