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Amorphous solids lack long-range order. Therefore identifying structural defects—akin to dislocations in

crystalline solids—that carry plastic flow in these systems remains a daunting challenge. By comparing many

different structural indicators in computational models of glasses, under a variety of conditions we carefully

assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow

in amorphous solids. We further demonstrate that the density of defects changes as a function of material

preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work

represents an important step towards predicting how and when an amorphous solid will fail from its microscopic

structure.

DOI: 10.1103/PhysRevMaterials.4.113609

I. INTRODUCTION

How can we predict when and where a material will fail?

For disordered solids, including many food and cosmetic

products, screens and cases for smartphones, and even mud

and gravel perched on a hillside, this fundamental question

remains a challenge. Under small deformations or forces, such

amorphous materials respond as an elastic solid, but beyond

a critical threshold the materials yield and exhibit extensive

irreversible plastic deformation.

At the moment, we cannot easily predict from first

principles whether a given material will fail abruptly and

catastrophically, termed brittle failure, or flow slowly and

steadily, known as ductile flow. Moreover, we cannot predict

when or where it will fail, and we lack global design principles

for how we might change the microscopic structure of these

materials in order to control failure mechanisms.

One reason disordered solids are so challenging to under-

stand is that, unlike crystals, their microscopic structure lacks

*d.richard@uva.nl
†mmanning@syr.edu

long-range order. In crystals it is easy to identify a defect

where the crystalline order is broken, and unsurprisingly pl-

asiticity is initiated at certain types of these defects. Over the

past 50 years, analogous structural defects have been proposed

in amorphous solids [1], but it has proven more difficult to

identify these and connect them to deformation and failure.

For this reason, theoretical work has largely remained dis-

connected from simulations. Several fairly successful theories

have posited that there is no correlation of particle rearrange-

ments with the inherent microstructure [2], while others such

as Shear Transformation Zone (STZ) [3,4], Soft Glassy Rhe-

ology (SGR) [5], and elastoplastic models [6] assume the

existence of structural defects, without specifying the precise

definition of these defects. Perhaps more problematically, all

these theories are phenomenological in the sense that they

contain fitting parameters that we do not know how to extract

from first principles, i.e. from the microstructure and interac-

tions between the constituent particles of the material. In fact,

even in the case of crystalline solids, predicting the collective

dynamics of many dislocations [7,8] or dislocation nucleation

in defect-free single crystals remain open problems [9–14].

Hence, tools developed to characterize amorphous solids can
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serve as well to understand plasticity in crystalline solids

[15–17].

Fairly recently, large-scale computer simulations of glass-

formers have reinvigorated the search for structural de-

fects. Examples of promising approaches include identifying

energetically favored structures and community inference

[18–25], mapping the local shear modulus [26], highlighting

regions that are excited by linear and nonlinear vibrational

modes [27–34], or quantifying the structure in more complex

ways, e.g., using machine learning with either supervised

[35–37] or unsupervised methods [38–40]. A particularly lit-

eral and successful approach applies strain to small regions

within a simulation to determine which are closest to yielding

[41,42].

Until now there have been three main drawbacks to this

line of inquiry. First, there has never been a consistent method-

ology for evaluating whether a given indicator that identifies

structural defects works well for predicting deformation and

failure, although efforts towards this goal have been made

[41]. Second, it has not been clear whether a given method

works best only on a particular model system or the inter-

action potential for which it was designed, or whether some

methods work well universally across different disordered

solids. Finally, computer-generated amorphous solids have

historically been vastly more ductile than those in real experi-

ments, and so it was difficult to simulate bulk brittle materials

that exhibit catastrophic failure. Recent methodological devel-

opments [43,44] now allow very deep supercooling of model

polydisperse liquids, to temperatures comparable to and even

lower than what can be achieved with laboratory liquids.

These liquids, when quenched to zero temperature, form ul-

trastable glasses that exhibit brittle failure [45]. In this paper

we use the term brittle to characterize a discontinuous yielding

characterizing the mechanical instability associated with the

formation of a shear band. Although this phenomenon is not

accompanied by the formation of free surfaces, as seen in

the fracture of brittle materials, the macroscopic avalanche

taking place at the discontinuous yielding transition would be

the precursor of a crack in the absence of periodic boundary

conditions employed in simulations.

In this article we employ these computational tools to con-

duct a comprehensive and quantitative comparative study of

how well several recently proposed structural indicators pre-

dict plastic activity in two-dimensional model glasses formed

using a wide range of preparation conditions. We develop a

standard methodology for comparing these indicators to one

another and to the complex deformation fields that result from

the applied deformation.

We find that different classes of structural indicators

are not always strongly correlated, suggesting that different

paradigms for identifying structural defects are sensitive to

distinct structural information. With a few exceptions, the

indicators we investigated are excellent at predicting the loci

of plastic instabilities in ductile and brittle materials over

short strain scales (0.1% in the system sizes studied), and

several remain correlated beyond 10% strain, highlighting

that structure does indeed govern plastic deformation in these

zero-temperature materials under simple shear. The quality

of a given indicator does not vary much between the two

interaction potentials we studied. In contrast, their predictive

capabilities do change with glass stability: indicators are gen-

erally less accurate in ductile glasses, where many regions are

soft even at zero strain. An exception to this rule occurs in the

ultrastable glasses accessible via swap Monte Carlo—in these

materials many of the structural indicator fields change so

much before the first plastic rearrangement that the indicator

field at zero strain is not highly predictive. Importantly, we

demonstrate that free volume (or any measure of a local den-

sity), historically used to predict plasticity in metallic glasses,

performs much worse than other indicators. Finally, we are

able to follow the complete strain history of a given brittle

sample and we find that our indicators are able to capture

an anisotropic spatial distribution of soft regions before shear

banding.

II. METHOD

A. From ductile to brittle materials

We shear systems of 2D soft disks using a standard

athermal quasistatic (AQS) protocol, where the only control

parameters are the imposed strain γ and the strain incre-

ment δγ [46]; see Appendix A for details. Figures 1(a)

and 1(b) show that the mechanical response quantified by

plots of the shear stress σ versus γ , where different curves

correspond to different material preparation protocols. Fig-

ure 1(a) corresponds to a standard glass former, a bidisperse

packing of particles with a Lennard-Jones (LJ) interac-

tion potential; glasses were formed by cooling equilibrium

states by means of conventional molecular dynamics meth-

ods [47]. Figure 1(b) corresponds to polydisperse (POLY)

disks [43] interacting via purely repulsive interactions; liquid

states spanning a wide range of supercooling temperatures

were equilibrated using the swap Monte Carlo method and

quenched to the glassy phase with a minimization algo-

rithm (details about models and protocols are provided in

Appendix A). Plastic instabilities associated with deforma-

tion and particle rearrangements correspond to instantaneous

drops in the stress. Qualitatively, we see that some mate-

rial preparation protocols generate less-stable, ductile solids

where small plastic instabilities occur frequently until the

system approaches a steady state. Other preparation protocols

generate ultrastable brittle solids which behave nearly elas-

tically until they fail catastrophic around 6% or 7% strain

(γyielding ≃0.07). In order to compare these two very differ-

ent material systems, we study the average strain at the first

instability, 〈γmin〉 [Fig. 1(c)], which is a good indicator for ma-

terial stability/ductility for a given finite system size N , and

correlates strongly with other previously developed measures

for stability (Supplemental Material Fig. S1) [48]. Another

indicator, the magnitude of the average stress drop 〈�σ 〉, is an

order parameter for the macroscopic yielding transition [45],

exhibiting a sharp peak at the macroscopic yielding transition

in brittle systems [Fig. 1(d)] associated with the formation of

a system-spanning shear band (right inset).

B. Structural indicators for plastic defects

In this paper, we have considered 18 different indicators

sorted into five different families:

113609-2



PREDICTING PLASTICITY IN DISORDERED SOLIDS … PHYSICAL REVIEW MATERIALS 4, 113609 (2020)

FIG. 1. Probing plasticity from ductile to brittle glasses: (a) Typical stress-strain curves for the LJ system prepared via three different

quench protocols. Inset shows a typical plastic event where dark particles indicate nonaffine rearrangements. (b) Typical stress-strain curves

for the POLY system quenched from four initial temperatures Tini. (c) Average strain at the first plastic instability 〈γmin〉 for the different

systems and protocols (with N = 104 particles). The dashed line indicates the yield strain γyielding ≃ 7%. (d) Average stress drop 〈�σ 〉 as

a function of the strain γ for the POLY system. Snapshots show the cumulative nonaffine displacements observed after yielding in a very

stable glass (bottom right) and a typical ductile glass quenched instantaneously from a high-temperature liquid (bottom left). Error bars are

sample-to-sample fluctuations.

(1) Eight purely structural ones that require only the posi-

tion of particles and not their interaction potential (red)

(2) One machine learning-based method that is also struc-

tural but require a training on a subset of shear deformations

(purple)

(3) Three based on the linear response/harmonic vibra-

tional modes with no information about the applied strain

(green)

(4) Three that quantify the linear response to a specialized

applied strain, which here is simple shear (blue)

(5) Three going beyond the linear response (orange).

We also have considered two additional indicators (colored

in black) that are not a priori related to plasticity (the local

potential energy ϕ and local thermal expansion α). Detailed

descriptions of all employed structural indicators in this work

are provided in Appendix B. In Fig. 2 we provide schematics

explaining the key physical ingredients behind the calculation

of the different classes defined above.

C. Rank correlation between structure and plastic events

Having characterized the macroscopic material properties

of these systems, we next study how plastic deformation

correlates with proposed indicators for structural defects.

Although many different correlation functions have been

proposed in previous work, here we adopt a very simple cu-

mulative rank correlation originally put forward in Ref. [41],

in order to fairly compare structural indicators with vastly

different magnitudes and distributions, and to avoid setting an

arbitrary threshold.

In particular, we ask how well a structural field is able to

capture the triggering event associated with a plastic insta-

bility. The latter is detected by computing the destabilizing

critical mode �c at the onset of each event. From this method-

ology, we define C = C(γstr, γpl) as the correlation between

a snapshot of the structure at strain γstr and the plastic de-

formation field at a strain γpl (measured by �c). We consider

three different prediction scores, sketched in Fig. 3(a): (1) Cmin

correlating a structural field computed at zero strain γstr = 0

with the first plastic instability occurring at γpl(1), (2) Cγ

scoring how well a structural field computed at γstr = 0 is able

to predict events located around γpl (or alternatively the nth

plastic event), and finally (3) C�γ is defined as the correlation

between a structural field at a strain �γ > 0 prior to a plastic

event, and the subsequent plastic event.

In practice, we rank-order the value of each indicator on

each particle between 1 and N . We choose a larger rank to be

associated with a higher probability of rearranging, e.g., small

shear moduli or large free volumes. We define rx(γstr, γpl) as

the rank of the structural indicator at a strain γstr on the par-

ticle associated with the largest |�c| evaluated at a strain γpl,

normalized by the number of particles. For a good structural

indicator, we expect rx to be nearly unity. Sampling rx over

many realizations (here 100 independent samples), we expect

the cumulative distribution function F (1 − rx ) to approach a

Heaviside step function or a linear behavior F (1 − rx ) ∼ 1 −
rx for an excellent and poor indicator, respectively. Figure 3(b)

113609-3
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FIG. 2. Different classes of structural indicators: (a) Purely structural indicators [22,49–51] that require only information about particle

positions or geometry such as the distance between a particle pair rij or angle between a triplet θijk . These methods enable the detection of

locally unstable structures responsible for soft spots. (b) Machine learning-based methods [35,37–39] correlate a high-dimensional description

of a local particle environment (constructed from purely structural information) with the likelihood of undergoing a local shear transformation.

The cartoon explains the Softness method [35,36] that utilizes Support Vector Machine to distinguish “soft” and “stiff” particles based on their

local radial distribution function g(r) (counting the number of neighbors at a distance r). (c) Sketch of a rough energy landscape around an

inherent state of the glass. The green and orange lines are a harmonic and anharmonic approximation of the landscape, respectively. Linear

response methods [27–29,31,32] associate soft regions to low curvatures of the energy landscape. Anharmonic methods can provide estimates

of activation barriers [52–54]. (d) Anisotropic indicators are also based on the linear response of the system but include the geometry of

the imposed deformation [26,33,34,46]. An explicit derivative of quantities with respect to the imposed strain γ allows filter out soft spots

that couple weakly (red crosses) with the shear geometry. Soft regions with the correct shear orientation (green crosses) will correspond to

activation barriers that decrease upon incrementation of the strain (softening shown in green). (e) Schematic of the residual plastic strength

�τy from the frozen matrix method [41,42]. A local patch of the material (with prestress τ0) is sheared until it yields (at a local plastic strength

τc), which allows the extraction of an estimate for the local strain distance to threshold �γlocal = �τy/μ̃, where �τy = τc − τ0 and μ̃ denote

the minimal residual plastic strength and bulk shear modulus, respectively.

illustrates this correlation for selected structural indicators:

the local shear modulus μ, the free volume φ, and the ther-

mal expansion α. As one would expect, we find no sign of

correlation between thermal expansion and plasticity, but we

do observe that μ and φ correlate with plastic rearrangements.

The cumulative rank correlation between a snapshot of the

structure at strain γstr and the plastic deformation field at a

strain γpl is then defined as C = 2〈rx〉 − 1 [41], which ranges

from 0 (poor indicator) to 1 (excellent indicator) [see example

in Fig. 3(c)]. Note that 〈rx〉 simply corresponds to the integral

of F (1 − rx ) between 0 and 1. In addition, we compute the

degree of similarity between two structural indicators A and B

as a cross-rank Spearman correlation

Cs = 1 − 6

N
∑

i

(ai − bi )
2/[N (N2 − 1)], (1)

where ai and bi are the rank of particle i for the metrics A and

B, respectively.

III. CORRELATION OF STRUCTURAL DEFECTS

WITH PLASTICITY

We start by comparing the spatial similarities between

the whole set of structural indicators considered. The full

Spearman indicator to indicator correlation Cs is shown in

Fig. 4(a) for the gradually quenched binary Lennard-Jones

system. The majority of purely structural indicators correlate

strongly with each other but are not strongly correlated with

indicators based on linear response. This suggests that the

two classes of indicators capture different structural features,

likely because the latter has explicit access to the forces across

bonds, which encode longer-range elastic interactions across

the contact network.

A. Prediction of the first plastic event

Previous work has demonstrated that a glass’s formation

protocol has a substantial impact on where and how it fails

113609-4
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FIG. 3. Rank correlation: (a) Sketch of the different correlations

Cmin, Cγ , and C�γ considered in this work. The bullet in each arrow

marks the strain γstr at which the structural field is computed, and the

head’s arrow points to the event at which it is compared. (b) Cumula-

tive distribution F (1 − rx ) of the rank rx at the first plastic instability

for the thermal expansion α, free volume φ, and local shear modulus

μ. (c) Correlation score Cmin at the first plastic instability.

under shear. Therefore, we first study how the structural in-

dicators evaluated at zero strain, γ = 0, correlate with the

plastic deformation that occurs at the first plastic event, at a

strain γpl(1). Figures 4(b) and 4(c) show the cumulative rank

correlation Cmin = C(0, γpl(1)) for all the indicators studied

in the most ductile (HTL) and least ductile (GQ) LJ glasses.

Note that Cmin is evaluated at vastly different strains in differ-

ent systems, at approximately γ ∼ 0.1% in ductile glasses,

and approximately γ ∼ 5% in the most brittle glasses. We

observe a qualitative agreement between the two different

protocols with some quantitative change in the predictiveness

as the sample becomes more stable. Indicators constructed

from vibrational modes (from M to �) perform extremely

well, with a correlation Cmin approaching unity. These indica-

tors can even perform as well as the residual plastic strength

�τy, which is a highly nonlinear method that locally shears

a small portion of the material centered around a particle i

and measures how much additional stress is needed to induce

yielding. This result confirms many observations that loci

of plastic instabilities are directly connected to the presence

of low-frequency excitations that control the response of a

system upon external driving [29,31].

The majority of structure-based indicators perform poorly,

with two important exceptions: the steric bond order � and

the machine learning-based softness field S, which are highly

correlated with each other and with soft modes, as shown by

Cs in Fig. 4(a), highlighted by a yellow box. The indicator

� highlights particles that significantly depart from sterically

favored configurations with little particle overlap, and thus

is a local measure of frustration. The fact that � is so sim-

ilar to the agnostic machine learning method suggests that

the machine learning algorithm has learned to identify such

frustration too. In metallic glasses, plastic rearrangements do

correlate strongly with unfavored local structures [55]. This

connects to recent evidence that internal stresses caused by

frustration built up during the quench process are responsible

for quasilocalized excitations [56] and strongly echoes with

experimental work on metallic glasses [57]. The same quasilo-

calized excitations control the regions with a low residual

strength. In particular, recent works [52,58] have demon-

strated that their distance to threshold scales with the cube

of their frequency, i.e., �τy ∼ ω3 when ω → 0. Together,

this establishes a connection between a geometrical signature

of frustration (measured by �), regions with high internal

stresses which create low-frequency modes (measured by �)

and regions with small distance to threshold (measured by

�τy).

In Fig. 4(d) we summarize our results by plotting Cmin

for the three different quench protocols shown in Fig. 1(a)

and ordering them according to the degree of stability of

the sample. For visibility, we display only one of the best

structural indicators in each family (�, S, M, nafμ, and

�τy). The predictive power increases as the system becomes

less ductile, consistent with Ref. [47]. In the least ductile LJ

systems, structural indicators based on vibrational modes or

frustrated geometric configurations work very well to predict

the next plastic event. This is especially impressive since less

ductile materials must be strained further before triggering the

next plastic event.

Figure 4(e) shows the correlation Cmin for the same struc-

tural quantities as in Fig. 4(d), now for a polydisperse system

prepared using swap Monte Carlo (POLY). Again, the initial-

ization protocols are ranked from most ductile to most brittle,

which is controlled by the equilibrium parent temperature Tini

from which the system is minimized. Recalling from Fig. 1(c)

that the first three types of POLY systems have ductility and

stability very similar to the three types of LJ systems, we

notice that Figs. 4(d) and 4(e) are quite similar if we restrict

ourselves to those data points. This is also highlighted by

the similarities in Cmin across nearly all structural indicators

between ductile LJ [Fig. 4(c)] and POLY [Fig. 4(f)] systems.

Taken together, these results suggest that the attractive inter-

action and degree of polydispersity related to the interaction

potential have only a small influence on the predictive power

of a given indicator.

In contrast, the stability/ductility of the material very

strongly influences the predictive power—for almost all of

the conditions studied, the predictive power increases with

decreasing ductility. This can be rationalized by realizing that

the system dynamics are noisy, and so when a large fraction of

the system is relatively soft it is more difficult to predict which

of those soft regions will fail first, consistent with Ref. [47].

On the other hand, the most brittle systems we study—

Fig. 4(g) and the right-most points in Fig. 4(e)—buck this

trend. These correspond to ultrastable glasses that can be

formed only using swap Monte Carlo. In those systems, the

predictive power of vibrational modes, softness, and � are

all lower. We also observe the same drop in Saddle Point

Sampling (SPS), which highlights that the relevant saddles in

the potential energy landscape (PEL) are not present at γ = 0

and form during the elastic branch. One direct consequence is

113609-5
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FIG. 4. Comparison of structural indicators: Local density ρ, free volume φ, excess entropy s2, contact force number z, Voronoi anisotropy

P, divergence of the Voronoi anisotropy Q, hexatic bond orientational order �6, steric bond order �, softness field S, local thermal expansion

α, potential energy ϕ, low-frequency vibrational modes M, local heat capacity cα , vibrality ψ , atomic nonaffine shear modulus (nafμ),

nonaffine velocity ẋ, local shear modulus μ, nonlinear vibrational modes π , Saddle Point Sampling (SPS), and residual plastic strength �τy.

(a) Indicator to indicator Spearman cross-correlation Cs for the less ductile (GQ) LJ glasses. (b), (c) and (f), (g) Correlation Cmin = C(0, γpl(1))

between a structural field computed at γ = 0 and the first plastic event. Binary LJ data are shown for the most (HTL) to the least (GQ)

ductile glasses in (b) and (c), respectively. Panel (d) shows the same information as a function of the glass stability. Polydisperse glasses data

prepared by SWAP are shown for mildly (Tini = 0.12) and very stable glasses (Tini = 0.05) in (f) and (g), respectively. Panel (e) shows the same

information as in (d) but plotted as a function of the inverse of the parent temperature. (h), (j) Correlation decay Cγ = C(0, γpl(npl )) between

a structural field computed at γ = 0 and the nth plastic event in a system composed of 104 particles. The underlying gray gradient indicates

the corresponding average plastic strain 〈γpl〉 ranging linearly from γ = 0 (transparent) to γ � γyielding (opaque). (i), (k) Correlation growth

C�γ = C(γpl − �γ , γpl ) between a structural field �γ away from a plastic event located at γpl. Results are for ductile glasses (h), (i) and

brittle glasses (j), (k) prepared at Tmin = 0.30 and Tmin = 0.05, respectively. The different colors and symbols correspond to the same structural

indicators as shown in (d) and (e).

the reversibility of first inelastic events in very stable glasses

as shown in Fig. 5 (also observed in Refs. [54,59,60]). During

the elastic branch, the imposed loading creates a saddle that

links two states (a) and (b). At the first plastic event, the sys-

tem flows from (a) to (b) in the usual saddle-node bifurcation

(as shown, e.g., in Ref. [61]). Shearing back the system the

saddle now moves towards the state (b) as the energy barrier

weakens. The recovering strain marks the location at which

the original saddle was created. In contrast, the predictiveness

offered by the residual plastic strength keeps increasing. This

suggests that in very stable glasses, the as-cast structure is

insufficient to predict the first event and that one needs access

to the dynamics along the elastic branch.

B. Correlation away from the as-cast glass

One possible explanation for this observation is that (on

average) the first plastic event is nearly an order of magnitude

further away in strain for the most brittle materials compared

to the other material preparations [Fig. 1(c)]. To test this

hypothesis, we study how the correlation between structure

and deformation changes with the number of plastic events

113609-6
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FIG. 5. Anelastic events in stable glasses: Example of an anelas-

tic (reversible) plastic event in a stable glass (arrows indicate the

loading direction). Rightmost sketches show the evolution of the

potential energy landscape along the hysteresis.

that have occurred since the state was prepared at γ = 0.

For the ductile glass, we see that the correlation function de-

cays smoothly as the system approaches the yielding regime,

identified by the gray shading [Fig. 4(h)]. The correlation

for some structural indicators remains above the noise floor

even beyond 50 plastic events or 10% strain, consistent with

previous studies [29,41].

The fact that the correlation does not fully decay after the

yielding transition suggests two possible scenarios: either (1)

soft regions that have failed during the elastic branch are still

weak and fail again in the post-yielding steady state and re-

lated (2) some significantly harder zones in the quenched state

never yielded but were simply advected with the deformation

[e.g., white regions in the snapshot shown in Fig. 1(d)]. These

zones, rightfully measured as hard in the initial state, thus

continue to participate in the correlation score.

In brittle glasses, with the exception of �τy, there is instead

a sharp decrease in correlation after just a handful of plastic

events [Fig. 4(j)]. In Fig. 6 we plot the correlation between the

structure at γstr = 0 and deformation changes with the strain

for various glass stabilities (POLY system). At the same time,

we monitor the average energy dissipation density Ŵ across

the yielding transition. In the limit γ → 0, we do observe a

significant increase of the correlation as the glass becomes

more stable (because of the increase of contrast due to the

depletion of soft regions; see Ref. [47]). As the plastic activity

(measured by Ŵ) increases the correlation decays as the mi-

croscostructure is progressively reshuffled. However, in stable

glasses, Ŵ is about four orders of magnitude lower than in

poorly annealed glasses, which means that the decrease seen

in Cγ occurs in the absence of any plasticity. This suggests that

significant changes to the indicators must occur along strain-

reversible elastic branches, and that the longer extent of these

elastic branches is indeed the reason why, for most indicators,

predictive capabilities are low in the most brittle glasses. It

also explains why �τy is far superior in this case—because

�τy is measured only after the system yields, it has access to

these transformed states far along an elastic branch.

FIG. 6. Correlation decay from the as-cast glass and dissipation:

Correlation decay Cγ at various degrees of stability (controlled by

Tini in the POLY model) for the residual plastic strength �τy (a), the

vibrality ψ (b), and the steric bond order � (c). Panel (d) shows the

energy dissipation density Ŵ as a function of the strain γ for the same

preparation protocols.

For a short elastic branch, one can predict at first order how

the particle positions are going to evolve. In athermal dynam-

ics, this transformation is composed of an affine raf (γ ) and a

nonaffine term rnaf (γ ) ≃ ẋγ + O(γ 2), where ẋ = dr/dγ |γ0

is often referred to as the nonaffine velocity, here evaluated

at γ = 0. To validate that it is indeed the dynamics occurring

prior γpl(1) that is responsible for the drop seen in Cmin, we

propose to recompute the � map in stable glasses after the

affine transformation and subsequently adding the nonaffine

deformation; see Fig. 7(a). We observe a clear increase of

correlation. Adding both raf and rnaf gives similar results

as if one computes � at the onset strain γpl(1). The rea-

son for the slightly lower correlation compared to the onset

is due to higher-order nonaffinities which are not encoded

in ẋ evaluated at γ = 0; see Fig. 7(b). Here we demon-

strate that the change of geometrical frustration picked up

by � along the elastic branch is controlled by the affine and

nonaffine deformations. The latter is controlled by soft excita-

tions (quasilocalized modes) that couple well to the imposed

nonaffine shear force. We highlight this in Fig. 7(c) by super-

imposing ẋ computed at γ = 0 with the eight lowest localized

excitations extracted from our nonlinear framework [62]. Note

that higher-order corrections in the dynamics, namely the

nonaffine acceleration ẍ = d2r/dγ 2, will also be dominated

by those soft excitations.

C. Correlation approaching an instability

While some of the indicators are computationally expen-

sive and therefore can be computed only at γ = 0, it is

possible to compute other indicators along the strain trajec-

tory. For these indicators, we also explore how well they

capture deformation as a function of the strain until the next
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FIG. 7. Elastic branch and nonaffine motions: (a) Correlation

Cmin for the � indicator computed in the as-cast configuration at

γ = 0 (black), affinely transformed coordinate up to the onset critical

strain (gray), affinely and nonaffinely transformed coordinates (blue),

and configuration at the onset strain γpl(1). The sketch illustrates

the increase of frustration (internal forces) during the large elas-

tic branch. (b) Comparison between the transformed coordinates

(raf + rnaf , blue) and positions at the onset (red). (c) Superimposition

of the nonaffine velocity (black field) evaluated at γstr = 0 and the

eight softest quasilocalized excitations in the as-cast glass.

plastic event, �γ , averaged over all plastic events. These

data are shown with C�γ = C(γpl − �γ , γpl) in Fig. 4(i) for

a ductile glass, and in Fig. 4(k) for a brittle glass. In both

systems, the correlation for the best indicators is nearly unity

until a relative strain difference of 10−3, which is close to

the average distance between plastic events for a system of

this size. Beyond this strain scale, the predictive power de-

creases exponentially, suggesting that the system gradually

loses memory of its past state over a characteristic strain scale

of 10−1.

D. Effects of the dimension and system size

In this work, we focus on simple 2D glass models; reveal-

ing the degree to which our results extend to 3D and to more

realistic glass models is therefore crucial. There is a sufficient

body of work to suggest that lessons from analysis of 2D

systems do carry over to 3D systems. Most of the indicators

considered here can be computed in three-dimensional sys-

tems, and some have already successfully been applied to bulk

metallic glasses (BMGs) such as the saddle point sampling

(SPS) [54]. We expect methods based on linear response to

be highly effective in 3D as the properties of nonphononic

low-frequency excitations remain unchanged with dimension

[63] and interaction complexity [64,65]. Supervised machine

learning methods, such as the softness S, have been shown to

be very efficient in 3D systems [36,37]. On the other hand, it

has been shown that, e.g., the � indicator is less predictive of

flow in 3D, in the context of supercooled liquids’ dynamics

[22].

Moreover, as computer glasses are inherently limited in

size (the linear size of our systems is about 100 particle

diameters long), finite-size effects are expected to emerge.

Although a rigorous finite-size study is beyond the scope of

this paper—due to the various preparation protocols and large

number of indicators involved—we can still speculate on how

our results would change in the thermodynamic limit based

on previous studies that have focused on finite size effects.

In particular, it is known that the average strain at which the

first plastic event takes place scales as N−1/(1+θ ), with θ ≈ 2/3

[66–68]. As we have demonstrated that many indicators fea-

ture nearly perfect predictiveness at small strains away from

instabilities (see Fig. 4), we can expect that the predictability

of the first plastic event will improve with increasing system

size [in particular for very stable glasses; cf. Fig. 4(e)].

Furthermore, it has been shown [67] that the energy dissi-

pation density Ŵ occurring during the elastic branch remains

constant with system size. Since we found that the correlation

decay seen in Cγ is mainly controlled by how much dissipa-

tion (plastic events) occurs at a given strain (see Fig. 6), we

expect that our results should remain valid in the thermody-

namic limit.

IV. EVOLUTION OF PLASTIC DEFECTS ACROSS

THE YIELDING TRANSITION

Many phenomenological models that predict plastic de-

formation and failure rely on largely untested assumptions

about the characteristics of structural defects, such as their

strain distance to threshold or density. Now we are finally

in a position to begin to test some of those assumptions,

by quantifying properties of our calculated structural fields

and studying how different structural indicators contribute

different insights into macroscopic material response. In

particular, we can utilize a structural indicator to isolate

regions likely to rearrange and follow their spatial evolu-

tion during deformation. Here we propose to follow various

sheared states along the stress-strain curve of a brittle glass

[Fig. 8(a)].

We first focus on the initial state (γ = 0). We extract

an estimate for the strain distance to the next instability as

�τy/μ̃, with μ̃ being the bulk shear modulus. In Fig. 8(b)

we plot the distribution P(�τy/μ̃) at zero strain, for our most

ductile [Tmin = 0.3 (red)] and most brittle [Tmin = 0.05 (blue)]

computationally modeled glasses. In both cases, we find a

power-law tail at low �τy/μ̃, highlighting the presence of

anomalously soft regions. However, the density of regions

close to a plastic rearrangement changes drastically between

the ductile and brittle material (about two orders of magni-

tude), which is illustrated by the leftmost snapshots where

particles that are less than 3% in strain from threshold are

colored in white. We observe the same decrease in the number

of low-energy excitations (extracted by localizing modes lying

below the onset frequency of the power-law tail in the density

of states; see Supplemental Material Fig. S8) [48] and indi-

cated by black crosses, consistent with other studies [69–71].

We find that the purely structural indicator �, which does not

require information about the interaction between particles, is
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FIG. 8. Yielding pathway: (a) Stress-strain curve of a brittle glass [the same sample as shown in Fig. 1(d)]. (b) Probability distribution

function of the (strain) distance to threshold �τy/μ̃ at zero strain for ductile (red) and brittle (blue) glasses. (c) Probability distribution of

the measure of microscopic disorder �. (d) Snapshots highlight the spatial distribution of soft regions (white color) with particles having

�τy/μ̃ < 3% and � > 0.1, respectively. Black crosses show the location of low-energy excitations. Similar trends occur for the structural

softness indicator, Fig. S9 [48].

also able to resolve a decrease in the number of particles be-

longing to highly disordered motifs (� > 0.1), demonstrated

quantitatively in the distribution P(�) in Fig. 8(c) and qualita-

tively in the leftmost bottom snapshots. Since the tail of P(�)

changes by only one order of magnitude instead of two, it

incorrectly labels some regions as soft even when the distance

to threshold (τy/μ̃) is high. Nevertheless, these data demon-

strate that some purely structural methods easily accessible

to experimentalists can effectively be used to sort samples

with respect to their ductility. While � works well for these

simulations with spherically symmetric interaction potentials,

similar trends are seen in also in the structural softness metric

S, as shown in Fig. S9 [48], which can be applied to a wide

range of simulations and experimental systems [72].

We next study specific features of the residual plastic

strength distributions as a function of strain, show in Fig. 9.

One consequence of the fact that P(�τy) has a significantly

depleted tail for low values of �τy in brittle glasses [shown

by the black line in Fig. 9(b)] is that such glasses can be

deformed up to 5% of strain—labeled strain point (2) in

Figs. 8 and 9—with only a minor plastic activity. At this large

amount of strain, localized excitations have softened, result-

ing in a shift of P(�τy) towards �τy → 0, as shown by the

gray empty squares in Fig. 9(b). In other words, regions that

were relatively hard at zero strain move closer to their critical

threshold, in agreement with elasto-plastic models where �τy

is assumed to decrease by the elastic loading μ̃γ . We test this

prediction explicitly by comparing the rescaled distribution

P(�τy − μ̃γ2, γ1) from the state (1) (as-cast glasses) with

the distribution P(�τy, γ2) of state (2), shown by the dashed

gray line and empty squares, respectively, in Fig. 9(b). It is

in good agreement with the solid gray line, suggesting that

the elasto-plastic assumption works well for brittle materials.

In contrast, this rescaling does not hold in ductile glasses at

large strains, as already many blocks have yielded at 4%–5%

of strain and thus have been redrawn (on average) at higher

�τy values. This is shown by the dashed gray lines in Fig. 9(a).

In addition, we note that purely structural indicators are less

sensitive to this softening, as highlighted in Fig. 8(d).

Nevertheless, as the system progresses to the yielding

point—strain state (3)—both the ductile and brittle materials

exhibit similar distributions for P(�τy), shown by the orange

lines in Figs. 9(a) and 9(b). Both distributions exhibit a further

FIG. 9. Residual plastic strength distributions as a function of

strain: Probability distribution of the residual plastic strength �τy

at different strain corresponding to the state marked in Fig. 8(a) for

a poorly annealed (a) and very stable glasses (b). Here P(�τy, γ2),

P(�τy, γ3), and P(�τy, γ4) is averaged over states at strain 4% <

γ2 < 5%, 6% < γ3 < 7%, and γ4 > 10%, respectively.
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FIG. 10. Strain softening in stable glasses: Transverse average

profile of the residual plastic strength �τy (a) and steric bond order

� (b) at the same state points shown in Fig. 8. (c) Average rank inside

the shear band 〈r〉sb as a function of the strain for various indicators.

The vertical dashed line marks the location of the largest stress drop

and the formation of a permanent shear band. Inset shows a zoom of

the rank close to the yielding transition.

enhancement in probability at low �τy compared to distribu-

tions for states (1) and (2)—a larger number of regions are

closer to yielding. Of course, even though the distributions

are similar, the spatial organization of soft regions could be

different between the two systems, leading to their drastically

different yielding behavior. To study this, we first note that

in this geometry, a shear band forms oriented along the y

axis [state (4) in Fig. 8(d)]. For a given initial condition, we

denote as x0 the location along the x axis which is the center

of the shear band when it forms. We can then plot the value of

various indicators, averaged over the y-direction, as a function

of the distance to the center of where the shear band will form,

x − x0. Further, we also estimate the width of the shear band,

and average the value of indicators over that width.

In Fig. 10 we plot the y-averaged residual strength 〈�τy〉
[Fig. 10(a)] and average steric order 〈�〉 [Fig. 10(b)] for the

same state points shown in Fig. 8(a). As discussed above, we

first observe a global softening from (1) to (2) with a lower

threshold 〈�τy〉 and higher structural disorder 〈�〉. Moving

from (2) to (3), we observe a clear heterogeneous and local-

ized softening in the region where the shear band will form,

in agreement with recent work [73]. In Fig. 10(c) we provide

a comparison how well different indicators capture this strain

softening and thus can forecast the formation of a shear band.

Here we rank order the structural field and monitor its average

inside the band 〈r〉sb as a function of the strain. We find no

localization (i.e., 〈r〉sb ≃ 0.5) up to γ = 6% followed by a

rapid increase of 〈r〉sb prior to the yielding transition. Most

indicators are able to capture this softening, with a better

signal/noise resolution in indicators with explicit information

about the force network. In contrast, we show 〈r〉sb for the free

volume φ and local potential energy ϕ which demonstrate a

very weak contrast between the inside and outside of the band

at the state (3). Here we have monitored the dynamics of a

single snapshot (same one as rendered in Fig. 8). Note that,

averaged profiles of the local yield strength τc over many real-

izations at different strains have been performed in Ref. [73]

and show similar results.

Finally, the system yields and reaches a transient shear-

banded state (4). We observe that the majority of our structural

indicators are able to locate the shear band (including φ and

ϕ). In particular, we observe an array of low energy excita-

tions perfectly aligned with regions close to their threshold.

Moreover, � reveals that the microstructure inside the band

is highly disordered [see Figs. 8(d) and 10(b)], reinforcing

the link between local disorder, low-energy excitations, and

residual plastic strength. After the large stress drop, we ob-

serve that the region outside of the band has been stabilized,

so that 〈�τy〉 increases and 〈�〉 decreases. This stabilization

is due to the decrease of the applied stress after the mechanical

instability and the nucleation of the shear band. This stabiliza-

tion can also be seen in a shift of the median of P(�τy) from

strain points (2) to (4), plotted in Fig. 9(b). In contrast, ductile

glasses show almost no variation in their distributions of resid-

ual strength and already reach the steady-state distribution at

4%–5% of strain [see Fig. 9(a)].

V. CONCLUSION

Taken together, our results demonstrate that shear-driven

rearrangements in amorphous solids are deeply encoded in the

structure. In ductile systems, many of the structural indicators

that have been previously proposed are highly predictive of

deformation at yielding and beyond. Our work indicates that

two purely structural indicators (machine learning and �),

which do not require any knowledge of the interaction poten-

tial and can be immediately applied to experimental systems,

perform comparably to more complicated methods in ductile

solids. Another surprising observation is that the linear modes,

which can be extracted from time averaging of two-particle

correlation functions in experiments [74], outperform all other

methods in ductile materials.

By analyzing ultrastable glass configurations whose first

plastic instability is pushed up to 6%–7% shear strain,

we show that the predictiveness of metrics based on lin-

ear response drops significantly in those systems. These

results might appear counterintuitive, as the system under-

goes only reversible elastic deformation. We show that no

other metric—except for the residual plastic strength metric—

can accurately predict rearrangements for such huge strain

intervals. This clearly indicates that capturing quantitative

information regarding the coupling strength of soft spots to

the imposed loading geometry is key to high predictiveness.

Future work should, therefore, focus on enhancing exist-

ing, and developing better, micromechanical-information-rich

anisotropic indicators.

Using a novel nonlinear framework which allows extract-

ing the precise location of soft quasilocalized excitations,

and directly comparing them to the local yield stress map,

we have firmly established that the low local yield stresses

113609-10



PREDICTING PLASTICITY IN DISORDERED SOLIDS … PHYSICAL REVIEW MATERIALS 4, 113609 (2020)

observed in some regions directly emanate from the pres-

ence of soft quasilocalized modes. Quantifying how different

nearby excitations interact and self-organize will be crucial

for understanding strain localization and catastrophic failure

via shear banding in brittle glasses.

Finally, our work focuses on the athermal quasistatic

regime, but should certainly be extended to finite temperatures

and strain rates. In particular, many fundamental questions in

that context have yet not been addressed, such as (1) What is

the interplay between the thermal and mechanical activation

of soft spots? (2) How do the stresses and strains generated by

a single shear transformation propagate throughout the system

for different imposed strain rates? Answering these questions

would place us in a prime position to formulate improved

theoretical frameworks and models of elastoplasticity, both

on the mesoscale—in the form of more accurate elasto-plastic

lattice models—but also on the macroscale, towards formulat-

ing observation-based constitutive relations for macroscopic

elastoplasticity.
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APPENDIX A: GLASS FORMER

1. System

a. Binary Lennard-Jones (LJ)

The 2D binary glasses are made of 104 atoms. They were

obtained by quenching liquids at constant volume. The density

of the system is kept constant and equals 104/(98.8045)2 =
1.02. We choose the composition such that the number ratio of

large (L) and small (S) particles equals NL/NS = (1 +
√

5)/4.

The two types of atoms interact via 6–12 Lennard-Jones inter-

atomic potentials whose parameters are: σSS = 2 sin(π/10),

σLL = 2 sin(π/5), σSL = 1, ǫSS = 0.5, ǫLL = 0.5, ǫSL = 1,

mS = 1, mL = 1. The standard Lennard-Jones potentials have

been slightly modified to be twice continuously differen-

tiable functions. This is done by replacing the Lennard-Jones

expression for interatomic distances greater than Rin = 2σ

by a smooth quartic function vanishing at a cutoff distance

Rcut = 2.5σ [47].

b. Polydisperse soft spheres (POLY)

The glass-forming model consists of particles with purely

repulsive soft-sphere interactions, and a continuous size poly-

dispersity. Particle diameters, di, are randomly drawn from a

distribution of the form f (d ) = Ad−3, for d ∈ [dmin, dmax],

where A is a normalization constant. The size polydisper-

sity is quantified by δ =
√

〈d2〉 − 〈d〉2/〈d〉, where 〈· · · 〉 ≡
∫

ddf (d )(· · · ) and is here set to δ = 0.23 by imposing

dmin/dmax = 0.449. The average diameter, 〈d〉, sets the unit

of length. The soft-sphere interactions are pairwise and de-

scribed by an inverse power-law potential

vi j (r) = v0

(

di j

r

)12

+ c0 + c1

(

r

di j

)2

+ c2

(

r

di j

)4

, (A1)

di j = (di + d j )

2
(1 − ǫ|di − d j |), (A2)

where v0 sets the unit of energy (and temperature with Boltz-

mann constant kB = 1), and ǫ = 0.2 quantifies the degree

of nonadditivity of particle diameters. We introduce ǫ > 0

to the model in order to suppress fractionation and thus en-

hance its glass-forming ability. The constants, c0, c1, and c2,

enforce a vanishing potential and the continuity of its first-

and second-order derivatives of the potential at the cutoff

distance rcut = 1.25di j . We set c0 = −1.924145348608, c1 =
2.111062325330, and c2 = −0.591097451092. We simulate

a system with N = 10 000 particles within a square cell of

area V = L2, where L is the linear box length, under periodic

boundary conditions, at number density ρ = N/V = 1. The

model is the 2D version of one developed in Ref. [44] and

subsequently studied in Ref. [45] for rheology.

2. Glass preparation

a. LJ

Three different quench protocols are considered. The first

two kinds of glass are obtained after instantaneous quenches

from high-temperature liquid (HTL) and equilibrated su-

percooled liquid (ESL) states at T = 9.62T sim
g and T =

1.13T sim
g , respectively, with T sim

g ≃ 0.31ǫSL/kB. The last pro-

tocol consists in a gradual quench (GQ), in which temperature

is continuously decreased from a liquid state, equilibrated at

1.13T sim
g , to a low-temperature solid state at 0.096T sim

g , over a

period of 106t0 with t0 = σSL

√
mS/ǫSL. All quench protocols

are followed by a static relaxation via a conjugate gradient

method to equilibrate the system mechanically at zero temper-

ature. The forces on each atom are minimized up to machine

precision. The same relaxation algorithm is used hereafter to

study the response to mechanical loading.

b. POLY

Glass samples have been prepared by first equilibrating

liquid configurations at a finite temperature, Tini, and then

performing a rapid quench to T = 0, the temperature at which

the samples are subsequently deformed. We prepare equilib-

rium configurations for the polydisperse disks using swap
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Monte Carlo simulations [44]. With probability Pswap = 0.2,

we perform a swap move where we pick two particles at

random and attempt to exchange their diameters, and with

probability 1 − Pswap = 0.8, we perform conventional Monte

Carlo translational moves. To perform the quench from the

obtained equilibrium configurations at Tini down to zero tem-

perature, we use the conjugate-gradient method given by a

C++ software [75]. The preparation temperature Tini then

uniquely controls the stability of glass, and we consider a wide

range of preparation temperatures, Tini = 0.05–0.300. Some

representative temperatures of this model are as follows: On-

set of slow dynamics, Tonset ≈ 0.23, mode-coupling crossover,

Tmct ≈ 0.11, and an estimated experimental glass transition

temperature, T
exp

g ≈ 0.068. Note that these values are slightly

different from the ones presented in Ref. [76] due to slight

difference of the number density.

3. Mechanical loading

Beginning from a quenched unstrained configuration, the

glasses are deformed in simple shear imposing Lees-Edwards

boundary conditions up to γ = 0.12 with an athermal quasi

static method. We apply a series of deformation increments

γ to the material by moving the atom positions following an

affine displacement. After each deformation increment, we

relax the system to its mechanical equilibrium. In order not

to miss plastic events, a sufficiently small strain increment

equal to 10−5 is chosen. Plastic events are detected when

the computed stress σ decreases, a signature of mechanical

instability. We have checked that the lowest mode at this

onset (measured at a strain γx and stress σx) has converged

to the true critical mode �c at which the slope of the stress

with respect to the strain is negative, as shown in Fig. 11.

Fitting the critical strain γc from the square root singularity

of the stress (i.e., σ − σc ∼ √
γc − γ ), we have monitored the

overlap 1 − |�c · �γ | between the critical mode �c and the

lowest mode mode �γ computed at strain γ as a function of

γc − γ , where γ < γx. In Fig. 11(b) we observe that the over-

lap at γ = γx (the rightmost point) is already below 0.01–0.1,

meaning that the mode evaluated at γx has an overlap larger

than 95% with the true critical mode �c. More importantly

for our analysis, we have extracted the rank rc of the particle

having the largest �c component (core of the triggering event)

and compare it to the rank rγ of the same particle as a function

of γc − γ . We find no switch of rank from γc to γx; see

Fig. 11(c), where rc − rγ = 0. We also have checked that

results shown in Fig. 4 remain appreciably unchanged if we

simply locate loci of plasticity as the maximum of the D2
min

field over the entire avalanche. However, note that in the case

of large avalanches, the maximum of the D2
min field does not

necessarily correspond to the triggering event.

APPENDIX B: STRUCTURAL INDICATORS

1. Conventional bond orientational order �x

First we consider the conventional two-dimensional bond

orientational order parameters �
j
m for the jth particle,

FIG. 11. Critical mode convergence: (a) Normalized stress ver-

sus shifted strain for few saddle-node bifurcations, where σx and γx

are the stress and strain at the onset measure with the strain step

δγ = 10−5. (b) Overlap between the critical mode �c and the mode

�γ approaching the critical strain γc. (c) Rank difference between

the largest component in �c and �γ approaching γc. Different colors

correspond to different samples.

defined by

� j
m = 1

n j

∣

∣

∣

∣

∣

n j
∑

k=1

emiθ jk

∣

∣

∣

∣

∣

, (B1)

where n j is the number of nearest neighbors of the jth particle,

and θ jk is the angle between r jk = rk − r j and the x axis. The

condition for the nearest neighbors is set to |r jk| < xcutd jk ,

where xcut is the first minimum of the normalized radial dis-

tribution functions. We set our cutoff after the first peak of

the radial pair distribution function with xcut = 1.33 and 1.5

for the polydisperse and binary system, respectively. We use

m = 2, 3, . . . , 9, which would detect different symmetries,

respectively. m = 6 is often used to characterize hexagonal

order in glassy and jamming systems [49,77]. �6 takes 1 for

perfectly hexagonal packings, whereas �6 takes lower values

for disordered packings.

2. Generalized bond orientational order �

We also compute a generalized bond orientational order

parameter � developed in Ref. [22]. Here we consider a

central particle j and its neighbor particles. The definition of

the neighbors is the same as �6. For each pair 〈kl〉 of neighbor

particles next to each other, we measure the angle between

r jk and r jl , denoted as θ1
kl . The reference configuration with

these three particles, j, k, and l , perfectly just in touch, with

the central angle indicated as θ2
kl . Practically θ2

kl is computed

by d jk , d jl , and dkl , using the cosine formula. Note that we

employ nonadditive rule for d jk (e.g., d jk = 0.5(d j + dk )(1 −
ǫ|d j − dk|) for the polydisperse disks), hence “just in touch” is

achieved with respect to the nonadditive rule. Then we define
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the order parameter for the jth particle as

� j = 1

n j

∑

〈kl〉

∣

∣θ1
kl − θ2

kl

∣

∣, (B2)

where n j is the number of nearest neighbors of the jth particle.

〈kl〉 denotes the summation over all pairs of neighbors. If

particles form stericallly favored, well-packed configurations

(in the nonadditive sense), � produces smaller value, because

θ1
kl would be close to the reference, θ2

kl . Instead disordered

packings generally take larger �, since θ1
kl would strongly

deviate from θ2
kl . Thus, � characterizes amount of disorder,

which would play the similar roles as 1 − �m, yet � is more

sensitive order parameter for multicomponents (or polydis-

perse) systems.

3. Voronoi-based metrics: ρ, φ, P, and Q

The local density ρ and local free volume φ maps are

extracted from a radical radical Voronoi tessellation by as-

signing to each particle a “radius” equal to its same-particle

σ/2, e.g., sin(π/10) for the largest particles in the LJ binary

mixture. For each particle, we can define a vector pi pointing

from the particle center to the centroid of its Voronoi cell. For

disorder packing networks, the magnitude P(i) = |pi| can be

anomalously large in disorder regions and thus can be used as

a structural metric to quantify a local disorder. As well, one

can define for each k Delaunay triangle the divergence of the

local interpolated field p as

Qk = (·p)/(Ak/〈A〉), (B3)

where Ak and 〈A〉 are the area of the triangle k and average

〈Ak〉 over the whole packing, respectively. The local diver-

gence Q(i) is computed as the average over Delaunay triangles

touching particle i. More details can be found in Ref. [50].

4. Local excess entropy s2

To obtain an estimate of the local excess entropy s2, we

follow closely Ref. [51]. We first reconstruct the local radial

pair distribution function gi(r) of particle i as

gi(r) = 1

A

∑

j

1√
2πδ2

e−(r−ri j )
2/(2δ2 ). (B4)

Here, the sum runs over all neighboring particle j with pair-

wise distance ri j , ρ is the global density, and δ the standard

deviation of the normalized Gaussian weight. Following pre-

vious work [78] for similar systems, we choose δ = 0.12. The

particle excess entropy s2(i) follows

s2(i) = −2πρkB

∫ rm

0

dr[gi(r) ln gi(r) − gi(r) + 1], (B5)

where kB is the Boltzmann constant and the cutoff rm is set to

the minimum between the first and second peak of the total

pair distribution function g(r).

5. Softness field S

Following previous work [36], we use the support-vector

machine (SVM) algorithm to try to fit a combination of local

structural variables which best distinguishes rearranging and

nonrearranging particles. Here we aim to separate particles

according to their likelihood of undergoing plastic flow. Pre-

vious works have built a training set for the SVM out of the

particles which are confidently identified as rearranging (i.e.,

large D2
min) and nonrearranging (low D2

min for a long time).

Training only on the global maximum of the critical mode,

as we test on when comparing structural indicators, would

provide a very small training set, and particles near the global

maximum are expected to move a large amount regardless

of their structure, making them unsuitable training examples.

Instead, we train our classifier on local fluctuations in the D2
min

computed on �c at each onset, which include information

on both the core event and coupling with other soft regions

of the system. Local extrema of D2
min correspond to particles

having a D2
min value larger (or smaller) than all their Voronoi

neighbours within a distance of two connections in the trian-

gulation, i.e., up to the second peak of the radial distribution

function. Particles corresponding to maxima and minima are

labeled as yi = 1 (soft) and yi = 0 (stiff), respectively. We

train an SVM as in Ref. [36], finding a linear combination

of the structure functions which distinguishes local minima

(yi = 0) from maxima (yi = 1). A training set of n particles

can be written as {(Gi, yi ), . . . , (Gn, yn)}, where the vector

Gi = (G1, . . . , Gm) describes the local structural environment

of the particle i (details are provided below). Attempting to

fit a deep neural network produces a higher accuracy on this

training set, but is surprisingly less effective at identifying the

global maximum, which reflects the fact that the training task

is not exactly the same as the testing task.

The polydispersity of the POLY system necessitates un-

conventional choices of structural variables. In our previous

work [36], most structural variables are, roughly speaking,

the number of neighbor particles at a distance bin r ∼ r + dr.

Since we used a bidisperse system [36], and a small neighbor

and a large neighbor can produce very different stabilizing

effects to the central particle at the same r, we had to treat the

number of small and large neighbors as two different structure

functions in each bin. Unfortunately, there are infinitely many

different particle sizes in the POLY system, so we cannot copy

the previous approach. Our new solution is to normalize the

particle distance, ri j , by their contact distance used in the pair

potential

di j = 0.5 × (di + d j )(1 − ǫ × |di − d j |). (B6)

The number of neighbor particles with the normalized dis-

tance ri j/di j falling in a given bin constitutes a structure

function. More precisely, we linearly spread particles into

discrete bin locations, so that the structural variables are

Gm =
∑

j

gm,i j, (B7)

where

gm,i j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − ri j/di j−xm

xm−1−xm
, if xm−1 < ri j/di j < xm,

1 − ri j/di j−xm

xm+1−xm
, if xm < ri j/di j < xm+1,

0, otherwise,

(B8)

and xm is the location of the mth radial function, given by

xm = 0.5 × 1.1m−1, m = 1, 2, . . . , 25. (B9)
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The linear particle spread used here is not worse than Gaus-

sian spread used before [36] but is computationally faster.

We use the diameter of the center particle, di, as one extra

structure variable. We train an SVM using these 26 structure

variables using regularization parameter C = 1 and found val-

idation accuracy 91.5%, 90.5%, 89.9%, and 87.5%; for Tini =
0.05, 0.085, 0.12, and 0.3, respectively. Both the training set

and the validation set consists of 20 000 local-max particles

and 20 000 local-min particles. Using an even larger training

set significantly slows down the SVM training but produces

diminishing accuracy improvements.

For the LJ system, we also normalize the separation be-

tween each pair of particles by the interaction distance σi j

between them. We then bin the normalized distances into

bins of width 0.025, between distance 0.8 and 3, and take

the number of neighbors within each normalized distance

bin as a structure function. The number of L-type neighbors

and the number of S-type neighbors are treated as distinct

structure functions. The diameter of the center particle is again

taken as a structural variable, giving a total of 129 structural

variables. We train an SVM using these variables, again using

regularization parameter C = 1 and found validation accuracy

of 93.5%, 92.8%, and 91.5% for the quench protocols GQ,

ESL, and HTL, respectively. Both the training and validation

sets consist of 60 000 local-max particles.

6. Soft modes M

Low-frequency vibrational modes are extracted from a

partial diagonialization of the harmonic dynamical matrix

M = ∂2U/∂x∂x. We denote the kth lowest eigenmode by

�k with frequency ωk = √
κk , where κk is the correspond-

ing eigenvalue (stiffness) of the mode. As demonstrated in

many recent works [30,31,33], plasticity is controlled by

quasilocalized low-frequency vibrational mode. Such a mode

is composed of a localized core composed of a few tens of

particles and a long-ranged elastic kernel that decay as r1−d ,

with d the dimension of the system. In large enough systems,

these localized excitations are hybridized with plane waves

(phonons). As a consequence, constructing a structural met-

ric from stacking the norm of the nth lowest modes will be

highly polluted by a phononic background. In Refs. [30,31],

the authors have shown that one can efficiently disentangle

plane waves from localized cores using the following con-

traction U (3) : �k�k , where the third-order anharmonic tensor

reads U (3) = ∂3U/∂x∂x∂x. Each contraction of U (3) with �k

is proportional to the mode spatial derivatives. For plane

waves, such a derivative scales as the frequency ω, whereas

for quasilocalized excitations, it attains a characteristic value

independent of frequency. As a consequence, the contribution

of plane waves for low-frequency vibrational modes become

negligible. In addition, the scaling of long-ranged elastic tail

is suppressed and now scales as r3−3d [30]. In practice, our

structural indicator is computed by the weighted sum

M(i) =
nk

∑

k=1

∣

∣U
(3):�k�k

∣

∣

2

i

ω2
k

, (B10)

where | · |2i means the norm associated to the ith particle.

We have set the number of modes nk to 512 to optimize the

prediction of plastic rearrangements.

7. Local potential energy ϕ

The local potential energy of the ith atom is computed as

ϕ(i) = 1

2

∑

α

ϕα (rα ), (B11)

where the sum runs over all pairs of interacting particles α =
{i j} separated by a distance rα . The total potential energy U is

recovered when summing over all ϕ(i).

8. Local heat capacity cα

The local heat capacity cα associated to the interaction

α between two particles in contact with potential energy ϕα

reads

cα = ∂ϕα

∂x∂x
:M−1 − ∂ϕα

∂x
· M−1 · U (3):M−1. (B12)

The local heat capacity cα (i) of the ith particle is com-

puted by summing over all interacting neighbors the absolute

value |cα|. When performing the sum only the second (an-

harmonic) term − ∂ϕα

∂x
· M−1 · U (3):M−1 is kept as it is the

most sensitive to low-frequency quasilocalized excitations.

A more detailed description of this metric can be found in

Refs. [31,33]. The full diagonalization of the Hessian matrix

M is done with the Lapack library.

9. Vibrality �

The vibrality � is computed following closely Ref. [32].

This indicator corresponds to the susceptibility of particle

motion to infinitesimal thermal excitation in the zero tempera-

ture limit and is proportional to the well-known Debye-Waller

factor. In practice, we calculate � as

�(i) =
dN−d
∑

k=1

∣

∣�i
k

∣

∣

2

ω2
k

, (B13)

where the sum runs over the entire set of eigenmode �k with

frequency ωk .

10. Atomic shear nonaffinity nafμ

In athermal quasistatic deformation, the elastic constants

can be derived from the second derivative of the total po-

tential energy. Following Maloney et al. [61,79], but in the

coordinates of the normal modes, the elastic constants can be

obtained as

Ci jkl = 1

V

(

∂2U

∂ǫi j∂ǫkl

+
∑

m

∂2U

∂qm∂ǫi j

dqm

dǫkl

)

, (B14)

where U is the potential energy, V is the volume, and qm is the

mth coordinate of the eigenbasis corresponding to the Hessian

matrix ( ∂2U
∂r0i∂r0 j

). The first term of Eq. (B14), often called Born

term, is the contribution due to affine displacement, while

the second term represents the contribution from nonaffine

relaxation in each normal mode.
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Cheng et al. [80] once observed that the nonaffine modulus

of a system is much more sensitive to structural stability than

the affine modulus (Born term). Considering that the stress

of the system can be expressed as σi j = 1
V

∂U
∂ǫi j

and
dqm

dǫkl
=

− 1
λm

∂σkl

∂qm
[61], where λm is the eigenvalue of mth normal mode,

the nonaffine contribution to the modulus from the mth normal

mode can be rewritten as

C̃i jkl,m = − V

λm

∂σi j

∂qm

∂σkl

∂qm

. (B15)

We note that the nonaffine modulus contribution C̃i jkl,m is

always negative and the nonaffine modulus of system can be

written as C̃i jkl = ∑

m C̃i jkl,m.

For one mode, different atoms often contribute differ-

ently. We may express the normalized eigenvector as �m =
∑

n,α cmnαenα , where enα is a unit vector corresponding to

the displacement of nth atom in the α(= x, y, or z) direction,

and cmnα is the projection of the mth eigenvector on the ba-

sis of Cartesian coordinates enα . Summing the contributions

from different modes, the atomic nonaffinity that quantifies

the atomic nonaffine modulus contribution of each individual

atom can be obtained as

Ĉi jkl,n =
∑

m,α

− V

λm

∂σi j

∂qm

∂σkl

∂qm

c2
mnα. (B16)

In this way, the nonaffine modulus of a system can also be

written as a sum of the atomic nonaffinity of each atom

as C̃i jkl = ∑

n Ĉi jkl,n. Since the nonaffine contribution to the

modulus must converge to a finite value in the thermodynamic

limit, the atomic nonaffinity must scale like 1
N

(N is number

of atoms in the system), generally being smaller for atoms in

large system.

To understand the atomic nonaffinity, we will simplify

the above tensor expression to the case specific to the shear

protocol, which is the most common deformation protocol of

interest since local plastic rearrangements are typically shear-

like [3,4]. We focus on the atomic shear nonaffinity, which is

the shear component of the atomic nonaffinity and depends on

the specified shear direction. Based on Eq. (B16), the atomic

shear nonaffinity can be obtained as

Ĝn =
∑

m,α

− V

λm

(

∂τ

∂qm

)2

c2
mnα, (B17)

where ∂τ/∂qm is the derivative of shear stress with respect to

coordinate qm along the mth mode.

11. Local shear modulus μ and local thermal expansion α

We calculated the local shear modulus (μ) [26] and local

thermal expansion (α) [81] using a coarse-grained method

originally proposed by Goldhirsch and Goldenberg [82],

which connected discrete atomic position with continuum

fields.

First, we defined the local coarse-grained displacement

fielding u(r, t ) from atomic displacement as

u(r, t ) ≡
∑

i miui(t )φ[|r − ri(t )|]
∑

j m jφ[|r − r j (t )|] , (B18)

where ui(t ) is the displacement of atom i at time t , starting

from a reference position, and φ(x) is the coarse-grained func-

tion, here we choose a coarse-grained function φ(r) = 1
A

[1 −
2(r/rc)4 + (r/rc)8] for r < rc and 0 for otherwise [47], with

rc the coarse-grained scale and A = 8/15πr2
c . As prescribed

by Tsamados et al. [26], we choose rc = 5σ to maintain the

validity of linear elasticity and heterogeneity in the mesoscale,

where σ is the atomic diameter, note that the coarse-grained

size within a certain range would not change the qualitative

conclusion as proved in Ref. [81].

Then based on Eq. (B18), one can obtain the local strain

field ǫi j under the linear elastic assumption:

ǫαβ (r) = 1

2

[

∂uα (r)

∂xβ

+ ∂uβ (r)

∂xα

]

. (B19)

And the local stress field σαβ (r) can be obtained by atomic

interaction as [26,82].

σαβ (r, t ) = −1

2

∑

i

∑

j �=i

∂�

∂rα
i j

r
β

i j

∫ 1

0

dsφ(r − ri + sri j ),

(B20)

where � is atomic total energy. And for the small defor-

mation, the local shear modulus μ is the response of local

shear stress by the change of local shear strain using athermal

quasistatic simple shear:

μ(r) = ∂σxy(r)

∂ǫxy(r)
. (B21)

And we can define the local thermal expansion Ŵ(r) from the

coarse-grained volumetric strain ǫv (r) caused by temperature:

α(r) = ǫv (r)

�T

∣

∣

∣

∣

ρ

(B22)

We calculated the local thermal expansion at constant

number density in the 2D polydisperse model, we reheat

the sample from inherent structure to 0.01 TMCT (�T =
0.01TMCT) with the NVT ensemble to calculate local thermal

expansion.

12. Nonaffine velocity ẋ

The nonaffine velocity field ẋ is computed from solving

M · ẋ = − ∂2U

∂x∂γ
. (B23)

This displacement field is nothing than the linear response

of the system to the shear force − ∂2U
∂x∂γ

. This indicator is

dominated by the lowest harmonic eigenmodes, which include

both a phononic background and quasilocalized excitations.

As done in the soft modes indicator M, we disentangle plane

waves and elastic kernels from localized cores by computing

the contraction |U (3) : ẋẋ|, giving us a unique scalar value for

each particle.
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13. Nonlinear modes π

Following Refs. [30,58,62], we extract nonlinear modes by

finding iteratively solution π̂ of the nonlinear equation

M · π̂ = M:π̂π̂

U
(n) · π̂(n)

U
(n) · π̂(n−1), (B24)

where U
(n) is the rank-n tensor of derivatives of the potential

energy and ·π̂(n) denotes a contraction over n instances of the

mode π̂. In practice, we have used n = 4 and n = 3 for the

POLY and LJ system, respectively. The latter system having

a potential not as smooth as the polydisperse model and for

which U
(4) is ill-defined.

In order to probe homogeneously in the system modes with

both a low stiffness and a high coupling with the imposed

deformation, we decompose our system into a cubic grid with

cell size l = 4σ . In each cell, we pick the pair α that has the

largest | ∂ϕα

∂xα
· ẋα| value (where ϕα is the potential energy of

the contact α = {i j}, with xα = x j − xi and ẋα = ẋ j − ẋi) and

compute the associated dipole response �dα from solving

M · dα = f α, (B25)

with f α = ∂ϕα/∂x; see, for example, Ref. [83]. In an upcom-

ing paper series [58], we demonstrate that the dipole response

is an excellent starting guess to efficiently find the solution π̂ .

Glassy nonlinear modes strongly overlap in space with

quasilocalized modes present in the harmonic approximation

but without the phononic background [83]. Cores are still

decorated with a quadrupole like elastic kernel. This long-

ranged decay can be suppressed by computing the contraction

U
(3):π̂π̂. Finally, the structural metric π is extracted by sum-

ming over the nk different modes found during the mapping

procedure,

π (i) =
nk

∑

k=1

∣

∣U
(3):π̂kπ̂k

∣

∣

2

i

κk

, (B26)

where κk is the stiffness of the kth mode.

14. Saddle Point Sampling

A complete description of the Saddle Point Sampling can

be found in Refs. [53,54]. For one system with volume V

at initial shear strain γ0, knowing the activation energy of

a plastic event Q0 and the shear stress difference between

the system at a saddle point and at its initial state �τ =
τ (xs, γ0) − τ (0, γ0), one can predict the triggering strain of

this plastic event as

�γc = γc − γ0 = − 3Q0

2V �τ0

. (B27)

For one local region, if the triggering strain of all possible

events are obtained, then we define the local yield strain to be

the lowest one of those possible events,

�γc = min(�γ i ), (B28)

where i loops over all the possible local events.

We use activation relaxation technique nouveau (ARTn)

[84] to harvest the plastic events for each local region, with

a push back strategy (mentioned in Ref. [85]) to confirm each

saddle point is connected to initial minimum. The activation

of ARTn was initiated by imposing a random displacement to

the local cluster centered on a chosen atom with a radius of

2σ . A force tolerance of 5 × 10−3ǫ/σ is used for converging

to the saddle points. Multiple activations were attempted until

five events were found for each local cluster.

15. Residual plastic strength 
τy

We compute the local yield stress fields whose method

is presented extensively in Refs. [41,47]. It gives access to

a relevant mechanical quantity, i.e., a local slip threshold,

in a nonperturbative way, over a well-defined length scale

and for arbitrary loading directions. Local stress thresholds

appear to be a very sensitive probe of the preparation of the

glass, the anisotropy induced by plastic deformation, and the

rejuvenation process [41,73].

This method consists in locally shearing a circular region

of radius Rfree = 5 using the Athermal Quasi-Static method

which are embedded in a shell where atoms are constrained

to affine strain. It thus forces plastic rearrangements to take

place in the central relaxed zone. The local yield stress τc,

and the associated critical deformation ǫc, are computed at

the critical state before the first shear stress drop in the

loading direction α. Strictly speaking, rather than calculate

a threshold, we are interested in a more effective quan-

tity to correlate structure and plastic activity which is the

residual plastic strength [86,87] �τc(α) = τc(α) − τ0(α). It

corresponds to the amount of stress necessary to trigger an

instability, where τ0(α) is the prestress in the probed area. On

this scale, glasses are heterogeneous and anisotropic. For an

external load in the αl direction, the effective threshold thus

corresponds to the smallest �τc(α) projected in this direc-

tion, which writes �τy(αl ) = minα �τc(α)/ cos(2[α − αl ])

with |α − αl | < 45◦. We compute the local yield stresses on

a regular square grid of lattice parameter Rsampling ≈ 2.5σ

with Rfree = 5σ every �α = 10◦, i.e., in 18 different direc-

tions α. These parameters optimize the correlation between

�τy(αl ) and plastic activity [41,47]. In order to define a field

of residual plastic strength per atom, �τy is then evaluated

by assigning to each atom the smallest value of the thresholds

calculated at the grid points located at distances less than Rfree.
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