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Predicting post-operative right ventricular failure
using video-based deep learning
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Despite progressive improvements over the decades, the rich temporally resolved data in an

echocardiogram remain underutilized. Human assessments reduce the complex patterns of

cardiac wall motion, to a small list of measurements of heart function. All modern echo-

cardiography artificial intelligence (AI) systems are similarly limited by design – automating

measurements of the same reductionist metrics rather than utilizing the embedded wealth of

data. This underutilization is most evident where clinical decision making is guided by sub-

jective assessments of disease acuity. Predicting the likelihood of developing post-operative

right ventricular failure (RV failure) in the setting of mechanical circulatory support is one

such example. Here we describe a video AI system trained to predict post-operative RV

failure using the full spatiotemporal density of information in pre-operative echocardiography.

We achieve an AUC of 0.729, and show that this ML system significantly outperforms a team

of human experts at the same task on independent evaluation.
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P
redicting which patients will go on to develop RV failure
after implantation of a left ventricular assist device has so
far remained beyond the abilities of both human experts

and existing automated algorithms1–3. A variety of clinical scor-
ing systems have been developed with modest predictive power,
with a maximum area under the receiver operating characteristic
curve (AUC) of 0.60 in held-out datasets1,4–7. Without reliable
methods to predict RV failure in the pre-operative setting, we
have neither the means to decide in whom to aggressively
intervene, nor an efficient method to randomize patients to trials
that evaluate the efficacy of right ventricular treatment options.
The gold standard method for determining which patients should
receive advanced right ventricular support devices thus remains a
‘clinical gestalt’8, involving the patients’ clinical course, lab
parameters, and a qualitative assessment of myocardial function
using a trans-thoracic echocardiogram. In this study, we describe
an echocardiography machine learning system that enables time
resolved characterization of motion parameters from each scan.
We use this ML system to predict post-operative RV failure in
LVAD (Left ventricular assist device) patients, using pre-
operative echocardiograms alone. We compare the predictions
of our ML system to those of contemporary RV failure risk scores,
and further show that our ML system outperforms heart failure
echocardiography experts in independent clinical evaluation.
Figure 1 details an overview of the project.

In recent years, artificial intelligence has enabled automated
systems to meet or exceed the performance of clinical experts
across a range of image analysis tasks, from detection and diag-
nosis of disease to prediction of disease progression9–13. These
systems typically draw conclusions from static images. Our video
AI system processes two parallel spatiotemporal streams of data
from echocardiography videos. The greyscale video channel and
optical flow streams are combined within the convolutional
neural network architecture with concatenation of activations
prior to the terminal fully connected layers. We tested a variety of

approaches, including various pre-training strategies, optimizers,
input streams, and model architectures (Supplementary Table 7).
Ultimately, we selected a three-dimensional 152-layer residual
network for our echocardiography ML system as it gave the best
performance. Architectural details and training strategy are
detailed in the methods section. The area under curve (AUC) of
the receiver operating characteristic (ROC) curve of our AI sys-
tem, on the holdout testing dataset is shown in Fig. 2a. The ROC
AUC for the AI system was 0.729 (95% CI 0.623–0.835; n= 121
patients; 327 scans). The corresponding Precision-Recall curves
are shown in Supplementary Fig 4.

Results
Clinical decision-making workflow for end-stage heart failure.
Heart failure affects more than 6.5 million people in the United
States alone, with an estimated 960,000 new cases diagnosed each
year14. A heart transplant remains the gold standard for treating
patients with end-stage heart failure. Demand, however, far
outpaces the supply of transplantable hearts15,16. LVADs offer a
mechanical alternative to transplantation, and the number of
patients supported by these battery powered mechanical pumps
have steadily grown17. In the contemporary era, an estimated
3500 LVAD implants are performed each year, approximately
equal to the number of annual heart transplants in the United
States3,18. Unfortunately, a third of all patients implanted with
LVADs, develop a clinically significant degree of right ventricular
failure (RV failure) soon after the procedure4,19. Underlying RV
dysfunction and physiological changes under LVAD flow are
both thought to contribute to the development of severe post-
operative RV failure, which remains the single largest contributor
to short-term mortality in this patient population2,3,20,21.

An array of clinical biomarkers such as serum creatinine, alanine
aminotransferase (ALT), blood urea nitrogen (BUN) are clinically
used as surrogates of RV dysfunction4,6,22. Semi-quantitative

Fig. 1 Overview of the project. a Pre-operative echocardiography videos are processed as a stack of 32 frames. A two-stream implementation of raw

greyscale videos and optical flow channels are fed into a 3D convolutional neural network to produce the prediction of RV failure. b The clinical workflow

for predicting future risk of RV failure begins in the pre-operative phase using a combination of clinical parameters and a detailed echocardiographic

assessment. Risk scores such as the CRITT and Penn scores are calculated thereafter to aid in risk stratification following which a decision is made to either

electively implant a concomitant RVAD or proceed with LVAD alone. c The clinical ground truth is determined largely by the persistent need for inotropes

past post-operative day 14 or right ventricular mechanical circulatory assist devices during the post-operative recovery period. MCS-ARC definitions are

detailed in Supplementary Table 1. Artwork attribution from left to right in (b): Wikimedia Commons by Videoplasty.com; Anton Kalashny; Ralf Schmitzer".
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echocardiographic measures and invasive hemodynamics are
additional tools available to clinicians for the assessment of the
right ventricle in the pre-operative setting. Echocardiographic
measures such as TAPSE (tricuspid annular plane systolic
excursion) and longitudinal strain are often used to characterize
the severity of RV dysfunction. Patients with evidence of pre-
operative RV dysfunction (via either echocardiography or invasive
hemodynamic measurements) are typically hospitalized for aggres-
sive pharmacological management and optimization22. Treatment
regiments include diuretics to lower right ventricular preload, and
inhaled drugs such as nitric oxide or phosphodiesterase inhibitors
(PDE-5) to reduce right ventricular afterload23. Delaying LVAD
implantation in a rapidly deteriorating patient is, however, not
recommended, and often in such situations the risk of delaying
surgery far outweighs the benefits of pre-operative cardiovascular
optimization24. In the operating room, the LVAD implant proceeds
via a median sternotomy, or thoracotomy with an additional
smaller incision for aortic access. The LVAD is implanted into the
left ventricular apex after coring out a segment of myocardium, and
the synthetic aortic outflow graft is then sutured onto the ascending
aorta. Intra-operative complications, although rare, may warrant
reassessment of the right ventricle. Research has shown that

outcomes are more favorable following planned right ventricular
assist device (RVAD) implantation, compared to emergent RVAD
implantations where treatment is initiated after rapid deterioration
of right ventricular function after initial LVAD implant25. The
challenging prediction problem is thus compounded by the narrow
therapeutic window available in the pre-operative phase.

Multi-center clinical and echocardiographic RV failure dataset.
A dataset containing pre-operative and post-operative clinical
variables along with paired trans-thoracic echocardiography
studies was collected from three hospitals in the United States.
The dataset consisted of 941 consecutive patients who had LVAD
implants. 44 records were discarded due to missing data on
duration of post-operative inotropes that prevented the adjudi-
cation of RV failure status. Data from an additional 173 patients
were discarded because of missing apical 4-chamber echo-
cardiograms or insufficient number of frames per video (Sup-
plementary Fig. 3 and Supplementary Table 5). The dataset
consisted of 159 (21.9%) females, and 562 (77.6%) male patients
with an average age of 57.4 (sd 13.1) years. These figures are
representative of the general LVAD patient population, and
additional baseline characteristics and demographics by data split
are outlined in Supplementary Table 326,27. Most pre-operative
scans were acquired at a median of 9 days (IQR 13 days) prior to
LVAD implant. Patients undergoing surgery for a LVAD implant
typically recover in the setting of a cardiac intensive care unit,
where hemodynamic parameters (via invasive catheters) and
clinical course determines the diagnosis of post-operative RV
failure. We used the latest MCS-ARC (Mechanical Circulatory
Support Academic Research Consortium) consensus definitions
to grade each patient for post-operative RV failure to provide
accurate and standardized clinical ground truth labels (Supple-
mentary Table 1)28. Briefly, this incorporates invasive hemody-
namic measurements, laboratory results for renal and hepatic
function, and a persistent requirement for pharmacological ino-
tropic support or right ventricular mechanical circulatory support
devices. Training, validation, and holdout test datasets were
randomly created to assess performance from the remaining 723
patients (1909 scans). Multiple scans were available from each
patient, but no patients overlapped between the training, valida-
tion, and test datasets. One hundred eighty two patients (25.13%)
were adjudicated to have post-operative RV failure.

Echocardiography AI system and performance. All current
automated echocardiography systems—much like human echo-
cardiography interpretations—are inherently reductionist in
nature; a complex sequence and pattern of cardiac contraction is
reduced to an outline of one or more chambers, from which a few
global metrics of heart function are then calculated29–31. Quan-
tifying subtle motion characteristics of the heart that predict
future risk of disease requires a shift in approach to ML in
echocardiography. We compared the predictive performance of
our AI system against two popular clinical RV failure risk scores
used for predicting post-operative RV failure—the CRITT score
and Penn score4,6. These clinical risk scores combine clinical
laboratory measures, hemodynamic readings, and qualitative
assessments of cardiac function. The pre-operative variables used
for calculating these scores are described in Supplementary
Table 24,6. The AUCs calculated for the Penn score (0.605; 95%
CI 0.485–0.714) and the CRITT score (0.616; 95% CI
0.564–0.667) for our dataset are similar to previously published
reports (Fig. 2a)1,4. We evaluated the ML system at both a liberal
operating point of 80% sensitivity, where the specificity was
52.75%, and at a more conservative operating point of 80%
specificity, where the sensitivity was 46.67%. Balancing the risks

Fig. 2 Performance of the AI system, clinical risk scores, and clinical

benchmarking. a ROC curve of the AI system compared to contemporary

clinical risk scores. The performance of the AI system was 0.729 (95% CI

0.623–0.835). b ROC curves of clinical expert team and independently

calculated metrics of right ventricular function compared to the AI system.

The performance of the AI system was found to exceed both clinical

experts and the traditional risk scoring systems. LV-ESA left ventricular end

systolic area, RVED-Area right ventricular end diastolic area, RVEF RV

Ejection Fraction, RVES-Area RV end systolic area.
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and potential benefits of interventions in this patient population
may require different thresholds of sensitivity and specificity.
Observational data suggest that early and aggressive therapy with
RVADs may improve survival in patients who are likely to
develop post-operative RV failure25. These decisions must be
made taking into account the significant additional morbidity
associated with biventricular mechanical circulatory assist21,26,32.
Right ventricular assist devices potentially could thus be offered
based on cutoffs from the conservative operating point of our ML
system. An increasing proportion of patients implanted with
LVADs today are listed as ‘destination therapy’ candidates, where
the expectation is that the LVAD will provide lifelong circulatory
support26. A heart transplant on the other hand may be offered
after the initial LVAD implant as a ‘bridge to transplant’ strategy,
with priority for receiving an organ guided by prevailing UNOS
(United Network for Organ Sharing) allocation policies. Anec-
dotally 50% of all surviving LVAD patients at 5-years are bridged
to a heart transplant in our current dataset33. Although not all
LVAD patients are suitable candidates for a heart transplant, a
more liberal threshold for the ML system may be used to inform
listing strategy for heart transplantation owing to the poor short
and long-term survival of LVAD patients who go on to develop
post-operative RV failure.

Clinical benchmark with human experts. We benchmarked the
performance of our AI system against a clinical heart failure
echocardiography team. In clinical practice, echocardiographic
assessment is used as an important adjunct metric to gauge the
likelihood of downstream RV failure. Numerous metrics such as
TAPSE, right ventricular diameters, fractional area change, and
right ventricular longitudinal strain have all been described as
potential predictors for post-LVAD RV failure34–38. While deci-
sions are rarely based on echocardiography alone, the combina-
tion of poor clinical presentation and ‘severely depressed’ pre-
operative RV function may be predictive of post-operative
disease22. A blinded clinical benchmark has to our knowledge,
not been conducted for this clinical problem. The team of board-
certified cardiologists and a sonographer with 12 years of clinical
sonography experience were blinded patient outcomes, and gra-
ded scans independently from the remainder of the research
team. A web-based annotation tool (MD.ai, New York, NY) was
configured for measuring echocardiographic metrics of right
ventricular function38. In addition to quantitative metrics, the
clinical team also identified the patients they predicted would go
on to develop RV failure after the operation. These measures were
calculated for all 121 patients in the testing dataset (n= 91
controls; n= 30 cases with RV failure) and an additional subset of
86 (n= 70 control; n= 16 cases) randomly selected patients from
the validation set. The AUCs of the manually extracted metrics
ranged between 0.525–0.571. The AI system (n= 121; test set
results only) outperformed both clinical readers and all quanti-
tative echocardiographic metrics. The best performing manual
echo metric (RV longitudinal strain) had an AUC of 0.5623 (95%
CI 0.464–0.660; ΔAUC for AI system 0.167 (95% CI 0.159–0.175,
p= 0.025) (Fig. 2b). The AUC of the clinical team predictions
was AUC of 0.579 (95% CI 0.4971–0.643); ΔAUC for AI system
0.159 (95% CI 0.126–0.192), p= 0.016). The clinical reader team
had a specificity of 37.89% and a sensitivity of 76.09%; for the
same sensitivity, the specificity of the AI system was 54.95%.

Saliency maps and visualizations. Interpretability of clinical AI
systems has implications in identifying failure modes as well as in
establishing trust and confidence in end users39,40. In this paper
we utilized gradient backpropagation to generate saliency maps41.
These are computed based on the imputed gradient of the target

output with respect to input, where only non-negative gradients
are backpropagated; in non-technical terms, the goal of this
technique is to find input data that would exemplify the features
the network uses to predict RV Failure (or lack thereof). We show
that for each patient, regions of activation were localized exclu-
sively to the myocardium and valves. The cardiac chambers
(ventricles and atria) themselves showed no activation. Further-
more, motion characteristics of specific regions of the heart
contribute towards the prediction of RV failure at different phases
of the cardiac cycle (Fig. 3). In patients where the AI system
correctly predicted RV failure, saliency maps localized over the
right atrium and the region of the tricuspid annulus. Similarly,
the AI system correctly predicted the absence of RV failure when
activation was localized over the right ventricle and right atrium.
In cases where the AI system appeared to rely heavily on the
interatrial and interventricular septum, the quality of predictions
seemed to decline. While septal motion aberrations have often
been described as a predictor of RV failure in the clinical setting,
it may also be a feature of acute isolated RV volume overload—a
challenging overlap in presentation on echocardiography42.

Discussion
In this study we demonstrate a machine learning system capable
of characterizing subtle myocardial motion aberrations on
echocardiography for downstream clinical analyses. We utilize
this system to predict the outcome of post-operative RV failure in
heart failure patients under consideration for LVAD implant, and
show that our ML echocardiography system outperforms board-
certified clinicians equipped with both manually extracted echo-
cardiographic metrics and state-of-the-art clinical risk scores. Our
algorithm predicts a binary outcome of RV failure, though our
methods can readily be extended to predict continuous and
multi-class outcomes of interest.

The poor predictive performance of contemporary clinical risk
scores is well documented. Many of the input variables are con-
sequences rather than true predictors of RV failure. Most risk
scores were developed without internal cross-validation or falter
when evaluated on held-out datasets1,5,8,43. More recently, some
investigators have attempted to use Bayesian networks on pre-
operative parameters sourced from the INTERMACS registry to
predict post-operative RV failure44. Critically, pervasive issues
with missing data and severe class imbalance in these registries
(2.7% RV failure, vs 97.3% normal patients) may have biased the
results with overestimations of predictive power, especially when
using performance metrics sensitive to changes in class
imbalance45. We have employed the latest standardized defini-
tions of post-operative RV failure28. In the past, definitions of
post-operative RV failure were largely based on the need to
implant a right ventricular assist device—an intervention driven
by surgeon preference and institution specific nuance. The cur-
rent definitions allow for standardized and generalizable ground
truth labels for post-operative RV failure across all participating
institutions. By abstaining from defining ‘mild’ and ‘moderate’
RV failure (as only more ‘severe’ grades were found to impact
long-term outcomes), the current MCS-ARC guidelines offer a
more clinically relevant target for our ML system.

All contemporary echocardiography ML systems rely on super-
vised segmentation algorithms to outline cardiac chambers29,46,47.
Most recently, Ouyang et al. described a weakly supervised video
segmentation system to calculate ejection fraction using left ven-
tricular tracings in conjunction with spatiotemporal
convolutions30,47. Our methods offer a number of key improve-
ments: First, instead of segmenting cardiac chambers, our AI system
directly analyses spatiotemporal information from the cardiac
musculature and valves by default—the principal regions of interest
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in all cardiac diseases. This enables the algorithm to characterize
subtle, regional aberrations in myocardial motion, that traditional
manually extracted echocardiographic measures fail to capture.
Secondly, our end-to-end system tracks features of importance
without human supervision in the form of segmentation masks.
This method is not dependent on cardiac view plane or chamber,
enabling rapid deployment of our methods to a diverse array of
echocardiography problems. Finally, we use two streams of spa-
tiotemporal information in the form of greyscale video channels
and optical flow to directly predict downstream outcomes of
interest. Combined two-stream networks achieve state-of-the-art
performance on large video recognition datasets48. Our system
makes inferences on a single study within 500ms on a single Nvidia
GeForce RTX 2080Ti GPU. An additional computational overhead
of 10 s, however, is needed for calculating optical flow per input
video. In the context of our clinical problem, the additional com-
putational overhead of calculating optical flow is acceptable. Future
work may focus on integrating faster deep learning methods of
optical flow estimation within the AI pipeline for applications that
require real time inference49.

Analyzing echocardiography videos rather than clinical or
laboratory metrics allows for a direct visual assessment of cardiac
function. The literature surrounding the predictive value of
manually calculated metrics of cardiac function, however,
remains inconclusive37,50. Our echocardiography ML system
outperforms manually calculated metrics of myocardial function
in predicting RV failure. Automating the calculations of these
hand-measured metrics using image segmentation algorithms are
therefore unlikely to be predictive of our outcome of interest,

further supporting our rationale for transitioning to an end-to-
end architecture. While our AI system was trained using the
largest echocardiographic heart failure dataset of its kind, there
remain several limitations of our work. The retrospective nature
of our dataset and the lack of a standardized echocardiography
acquisition protocol limits the quality and timing of the scans
prior to the index operation. Most scans were taken 9 days prior
to LVAD surgery, though this window was larger for some
patients. Furthermore, a comprehensive assessment of right
ventricular function remains challenging without additional
echocardiographic views (subcostal views, parasternal long
axis)51. Madani et al. describe an image-based neural network for
automated echocardiography view classification that could be
integrated into a multi-view RV failure risk prediction system,
and it is plausible that superior performance can be attained using
prospectively collected echocardiographic data from multiple
view planes52. Key to such efforts are standardized and com-
prehensive protocols for acquisition of scans at pre-defined
timepoints before index surgery. Prospective evaluation in the
clinical setting will be essential to understand the limitations of
our technology. We found that pre-training with large video
datasets (Kinetics-600) was critical for model performance53. The
same could not be said for pre-training from the Echo-Net
Dynamic dataset despite sharing the same imaging modality.
While beyond the scope of this current manuscript, future
attempts at self-supervised pre-training with cardiovascular
imaging datasets may yield superior results54,55. Finally, unlike
hard radiological or histopathological ground truth labels, the
clinical ground truth for post-operative RV failure leaves room

Fig. 3 Analysis of saliency maps from pre-operative echocardiograms. Representative input videos and visualizations for both systolic and diastolic

phases of the cardiac cycle across patients with and without RV failure, in the form of a confusion matrix. True positives (bottom right quadrant), false

positives (bottom left quadrant), true negatives (top left quadrant), and false negative examples (top right quadrant). Colour scale for each quadrant

represents regions that contributed most to the predicted class (red) and those that pushed predicted probability away from the predicted class (blue).
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for subjectivity despite the MCS-ARC guidelines. As part of
additional experiments, we evaluated the incorporation of certain
baseline demographic and clinical features (Gender, INTER-
MACS score, Creatinine, ALT) into the training loop. We did not
see a meaningful improvement over our best performing video-
based system, although the improvements were more pronounced
in some of the shallower neural networks evaluated (Supple-
mentary Table 7). Additional hemodynamic information in the
form of invasive pressure telemetry may further improve the
performance of multi-modal AI systems integrating health record
information and imaging.

Our methods are, to our knowledge, the first to predict the
onset of disease using video-based echocardiography ML. Our
system may serve as a clinical decision support system beyond
instituting effective RV rescue treatments for this patient popu-
lation; including the early detection of left heart failure, disease
phenotyping, and a multitude of cardiac clinical decision support
applications where treatment or patient selection is guided by
qualitative echocardiography assessments.

Methods
Data sources and study population. Data in the form of clinical outcomes and
raw echocardiography DICOM files were sourced from the departments of Car-
diothoracic Surgery at Stanford University (CA), Spectrum Health (MI), and the
Houston Methodist Hospital (TX); (IRB 52440) with a waiver of consent owing to
the retrospective nature of the research. All patients aged 18 years or older with at
least one pre-operative trans-thoracic echocardiogram as well as a complete pre-
operative and post-operative assessment of RV failure during index-hospitalization
as per the MCS-ARC consensus definitions (Mechanical circulatory assist academic
research consortium) were included (Supplementary Table 1)28. Apical 4-chamber
views for trans-thoracic echocardiograms taken closest to the day of surgery were
used for this study. Our final dataset comprised 723 patients. Raw data was
anonymized and linked to clinical outcomes data via a unique study-ID. As the
MCS-ARC definitions were standardized in August 2020, we manually reviewed
each patient record for the duration of inpatient admission to collect pre-operative
and post-operative clinical parameters following a pre-determined and standar-
dized protocol28. This enabled accurate grading of RV failure severity along with
the calculations of the various RV failure risk scores. The research team tasked with
developing and training the artificial intelligence system did not have access to the
original patient charts. Clinical data were stored and managed in REDCap56.

Outcomes. The primary outcome of the study was the ability of the AI system to
identify and predict the likelihood of post-operative RV failure using only pre-
operative trans-thoracic echocardiograms as the input. All patients with MCS-ARC
defined post-operative RV failure were included in the ‘RV failure’ group (n= 182
patients; 25.13%); the remainder were kept as controls (n= 541). Multiple scans
were available for each patient (501 RV failure (26.24%); 1408 controls).

Data pre-processing. Echocardiograms were first de-identified by stripping all
private health information (PHI) from file metadata and by obscuring any sensitive
information in the videos. The complete removal of all sensitive information was
verified manually on all videos before proceeding to downstream postprocessing.
Areas outside of the scanning sector were masked to remove any miscellaneous
markings in the video frames that may otherwise influence the neural networks.
The videos were then normalized by dividing each pixel value by the pixel of
maximal intensity. The frames of the processed videos were additionally down-
sampled by bi-linear interpolation to a 112 × 112 resolution, and all videos were
temporally normalized to framerate prior to training and evaluation. Additional
experiments with an input resolution of 224 × 224 pixels were also conducted on
shallower residual networks. Optical flow was calculated prior to model training
using an OpenCV implementation of the Gunnar Farnebäck method based on
polynomial expansion57. Additional data augmentation operations were performed
on each frame of the videos in the following order as part of the training loop:
random rotation up to 10°, random brightness multiplications, and random 2D
shearing.

Neural network architecture and training. We use a three-dimensional con-
volutional neural network58, built using the Keras Framework with a TensorFlow
2.1 (Google; Mountain View, CA, USA) backend and Python, that tracks motion
features and structural features in blocks of 32 consecutive frames. We make use of
bottlenecked residual blocks expanded to three-dimensions. We used validation
data to do model selection over a range of architectures and tested multiple 3D
neural network architectures before selecting a two-stream fusion 152-layer 3D
Residual Network with bottlenecks incorporated within the residual blocks (Sup-
plementary Fig. 2)59,60. The residual blocks utilize a convolutional layer with a

3 × 3 × 3 kernel, sandwiched between two 1 × 1 × 1 convolutional layers. The first
convolutional layer utilizes a 7 × 7 × 7 kernel60. The network weights were initi-
alized using the Xavier normal initializing scheme, and was optimized using the
AdamW algorithm61,62. We incorporated clinical and demographic variables into
the vision network by concatenating a 1-D vector to the terminal fully connected
layer of each residual network. We showed marginal improvements over several
pure vision-based neural networks in Supplementary Table 7. The network was
trained for 50 epochs on a batch size of 8, with an initial learning rate of 1 × 10−5.
Training was stopped early if the training loss did not improve for 5 epochs. For
each echocardiogram, 5 random 32-frame clips of the full movie were subsampled
and passed through the trained neural network. The average of the 5 outputs was
calculated to predict RV failure. Hyperparameter tuning was carried out on the
validation dataset. We implemented a proportional loss weighting strategy during
training with a binary cross-entropy loss function, to account for the effect of
minor class imbalance. Major python packages used in this work include numpy
(1.18.1), opencv-python (4.5.1), scikit-learn (0.22.2), and pROC package (1.17) and
dplyr (1.0.7) in R.

Pre-training. All candidate networks were pre-trained on the Kinetics-600 dataset
for video action recognition53. Videos in the Kinetics-600 dataset were converted to
greyscale and optical flow and subsampled for 32 consecutive frames prior to pre-
training. Pre-training on Kinetics-600 was performed on servers, each with eight
NVIDIA V100 GPUs, on the Stanford Sherlock Supercomputing Cluster. We
additionally experimented with transfer learning from networks initialized on the
EchoNet Dynamic dataset for Ejection Fraction prediction with over 10,000 Apical
4-Chamber echocardiography videos30. The results were, however, similar to those
of randomly initialized networks. Training was stopped when validation loss did
not improve, and the model weights were saved. The networks for RV failure
prediction were finally initialized with these weights and the terminal linear acti-
vation function was replaced by a sigmoid function. In our experiments we find
that pre-training significantly improves training convergence, with higher valida-
tion AUC and lower cross-entropy losses. This corroborates findings from a
number of groups working on both medical imaging and general purpose video
action recognition problems11,30,48.

Visualizations and interpretations. We used an implementation of Gradient
backpropagation to generate saliency maps for the AI system as it makes predic-
tions of RV failure outcome when passed through the three-dimensional con-
volutional neural network39,41.

Visualization of representation learned by higher layers of the network are
generated by propagating the output activation back through the ReLU function in
each layer l and setting the negative gradients to zero:

R
ðlÞ
i ¼ ðf

l
i > 0Þ � Rlþ1

i > 0
� �

� Rlþ1
i

ð1Þ

Alternative visualization techniques such as layer wise relevance propagation
were also considered. The neurons that contribute the most to the higher layers
receive the most ‘relevance’ from it. The relative contribution of each pixel towards
the final predicted value is quantified to satisfy the following equation:

R
l;lþ1ð Þ
i k ¼ R

lþ1ð Þ
k

aiwik

∑hahwhk
ð2Þ

The total relevance R is conserved between layers l. During each forward pass,

neuron i inputs aiwik to the next connected neuron k. The messages R
l;lþ1ð Þ
i k

distribute the relevance R
lþ1ð Þ
k of a neuron k, onto the preceding neurons that feed

into it at layer l. The presence of skip connections in 3D residual networks violates
the assumptions of relevance conservation, limiting us to Gradient
backpropagation.

AI performance and comparison with clinical risk scores. The US dataset was
split in an approximate 66:17:17 ratio into a training, validation, and test dataset.
The stratified split ensured proportional numbers of unique patients with and
without RV failure in each group. The validation set was used for hyperparameter
tuning and an ensemble of three models trained with identical settings were used to
generate final predictions at the scan level. On freezing the model weights, model
performance was evaluated on the testing dataset using the area under curve
(AUC) of the receiver-operator characteristic and AUC of the precision-recall
curve. We further compared the predictive performance of our AI system against
clinicians equipped with two contemporary risk scores used in for predicting post-
operative RV failure—the CRITT score and Penn score. The variables used for
calculating these scores are described in Supplementary Table 24,6. Missing data
prevented the calculation of clinical risk scores for as many as 37% of all patients in
our total dataset. For this reason, we elected to use a multiple imputation strategy
following Rubin’s rules to pool and calculate AUCs63,64. No significant difference
in AUC was noted in the original incomplete dataset vs the imputed dataset (1%
lower in imputed Penn Score; 0.2% higher in imputed CRITT Score). Imputation
diagnostic plots are shown in Supplementary Fig 5.

Comparisons with manually calculated echocardiography metrics. We com-
pared the performance of AI based RV failure prediction to a set of manually
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derived echocardiographic measures of right ventricular function. These measures
were independently calculated by two board-certified cardiologists for 207 patients
(n= 161 controls; n= 46 with RV failure) in our dataset, using metrics of RV
function previously described38. The echocardiography scans were hosted on a
secure Google Cloud Bucket at full resolution, ranging from a resolution of
(422 × 636) to (768 × 1024) pixels. A custom cloud-based annotation system
(MD.ai, New York) was used to allow the clinical heart failure team to remotely
take measurements, perform quality control, and adjudicate metrics of RV failure
(Supplementary Fig. 1). The scans were uploaded in a random order and no time
constraints were provided to the clinical team. The clinical team-based adjudication
approach mimics the clinical setting, where clinical sonographers and board-
certified cardiologists together assess patients with end-stage heart failure. A full list
of echocardiographic measurements is detailed in Supplementary Table 6 and
Supplementary Fig. 6.

Statistical analyses. No statistical methods were used to predetermine sample
size. To evaluate the stand-alone performance of the AI system, ROC curves were
calculated as empirical curves in the sensitivity and specificity space. AUCs for
ROC curves were computed with trapezoids using the pROC package65. AUC for
the Precision-Recall curve was computed using the interpolation method described
by Davis and Goadrich66. To compare the performance of our AI system against
clinical risk scores and manually calculated echo metrics, we calculated non-
parametric confidence intervals on the AUC using DeLong’s method67, following
which p values were computed for the mean difference between AUC curves.
Missing data for clinical risk scores were addressed with multiple imputation with
chained equations using a univariate imputation method (predictive mean
matching)68. The pooled AUC for the imputed datasets (n= 20; max itera-
tions= 50) was calculated using Rubin’s Rules by log transforming the AUC prior
to pooling63. Statistical analyses were conducted in R (v3.6.2).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The dataset for this study was acquired under data transfer agreements that restrict

public release due to the potential embedded protected health information present in the

raw data. Access to subsets of the data can be obtained as follows: Please contact A.G. and

S.L. for access to paired raw imaging and patient level data from Houston Methodist and

Spectrum Health, respectively. Please contact A.G. (gashrith@houstonmethodist.org) and

S.L. (Sangjin.Lee@spectrumhealth.org) for access to paired raw imaging and patient level

data from Houston Methodist and Spectrum Health, respectively. Access may be granted

for research use subject to institutional ethical approvals. Please contact W.H.

(willhies@stanford.edu) for access to raw imaging data and patient level data from the

Stanford cohort. Access to all Stanford subsets (training/validation/testing) will be

granted to all accredited researchers pending approvals of relevant data use agreements

via Stanford’s office of sponsored research. The EchoNet Dynamic dataset is publicly

available at: https://echonet.github.io/dynamic/. The Kinetics action recognition dataset

is publicly available at: https://deepmind.com/research/open-source/kinetics.

Code availability
TensorFlow codebase including our models, training and evaluation scripts, and

accessory R scripts for the final analyses and plots are available on GitHub at: https://

github.com/rohanshad/postop_rv_failure_echo.git69.
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