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Pre-planting factors have been associated with the late-season severity of

Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagono-

spora nodorum, in winter wheat (Triticum aestivum). The relative importance of

these factors in the risk of SNB has not been determined and this knowledge can

facilitate disease management decisions prior to planting of the wheat crop. In this

study, we examined the performance of multiple regression (MR) and three machine

learning algorithms namely artificial neural networks, categorical and regression trees,

and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-

planting factors tested as potential predictor variables were cultivar resistance, latitude,

longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue.

Disease severity assessed at the end of the growing season was used as the response

variable. The models were developed using 431 disease cases (unique combinations

of predictors) collected from 2012 to 2014 and these cases were randomly divided into

training, validation, and test datasets. Models were evaluated based on the regression of

observed against predicted severity values of SNB, sensitivity-specificity ROC analysis,

and the Kappa statistic. A strong relationship was observed between late-season

severity of SNB and specific pre-planting factors in which latitude, longitude, wheat

residue, and cultivar resistance were the most important predictors. The MR model

explained 33% of variability in the data, while machine learning models explained 47

to 79% of the total variability. Similarly, the MR model correctly classified 74% of the

disease cases, while machine learning models correctly classified 81 to 83% of these

cases. Results show that the RF algorithm, which explained 79% of the variability within

the data, was the most accurate in predicting the risk of SNB, with an accuracy rate

of 93%. The RF algorithm could allow early assessment of the risk of SNB, facilitating

sound disease management decisions prior to planting of wheat.

Keywords: disease risk, machine learning, random forest, variable importance, Stagonospora nodorum blotch,

wheat
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INTRODUCTION

Stagonospora nodorum blotch (SNB) of wheat (Triticum
aestivum), caused by Parastagonospora nodorum (syn. Septoria
nodorum), is a major disease of wheat worldwide (Solomon et al.,
2006). The disease affects both the quantity and quality of yield,
and losses up to 50% have been reported in susceptible cultivars
(Eyal, 1981; Bhathal et al., 2003). In the United States, the
disease is becoming more prevalent in part due to the increased
adoption of minimum tillage (Shaner and Buechley, 1995), and
losses of 30–50% have been reported during severe epidemics
(Anonymous, 1995). Infected seed, ascospores from neighboring
fields and wheat residue infected with P. nodorum serves can
serve as sources of primary inoculum for infecting the wheat
crop in the field (Holmes and Colhoun, 1975). Rain-splashed
conidia are responsible for secondary infections during the
season with temperatures between 15 and 25◦C being conducive
for disease development. Minimum tillage promotes the survival
of P. nodorum in wheat residue left on the soil surface from the
previous cropping season (Milus and Chalkley, 1997), a practice
that ensures inoculum availability to initiate SNB epidemics at the
start of the growing season. The cropping area under minimum
tillage is increasing in wheat-growing regions of the United
States (Horowitz et al., 2010). Minimum tillage can increase the
likelihood of severe SNB epidemics, especially in rotations where
wheat was planted the previous season, as is the case with wheat
double-cropped with soybeans.

Stagonospora nodorum blotch is currently managed in wheat
using a variety of methods that include crop rotation, tillage,
planting moderately resistant cultivars, fungicide-treated seed,
and foliar fungicides (Luke et al., 1983; Milus and Chalkley,
1997; Krupinsky et al., 2007). Pre-planting factors such as crop
rotation and tillage have been shown to reduce the severity of
SNB at the end of the season, but their effectiveness depends
on their widespread adoption given that airborne ascospores
from adjacent fields may lead to disease development even where
there is no wheat residue on the soil surface (Cowger and Silva-
Rojas, 2006). Foliar fungicides can be effective in controlling
SNB, but in periods when wheat prices are low, the realized yield
response may not be adequate to offset the cost of fungicide
treatments (Weisz et al., 2011). Complete resistance in wheat to
SNB is currently not available and cultivar resistance ranges from
moderately resistant to highly susceptible. Cultivar resistance
also interacts with wheat residue to influence SNB severity, with
disease severity being higher on a highly susceptible than a
moderately susceptible cultivar across a range of residue in the
field (Mehra et al., 2015).

As for all plant diseases, an SNB epidemic is an outcome
of an ecological process that involves the interaction between a
population of host wheat plants and P. nodorum, a process that is
influenced by the environment at different temporal and spatial
scales (Madden et al., 2007). Variability in the susceptibility of
the wheat plant population and pathogenicity of P. nodorum
determine the extent of subsequent spread of SNB. Together with
host plant resistance, the environment, defined broadly to include
weather during the growing season and pre-planting factors
that influence inoculum availability, determines the severity

of SNB epidemics. Interaction among various elements of the
pathosystem dictates that SNB epidemics will exhibit complicated
behavior over different temporal and spatial scales (Madden
et al., 2007). A fundamental goal in botanical epidemiology is
to predict the risk of disease at various spatio-temporal scales
(Madden, 2006). Information on the expected risk of a disease
epidemic can aid growers in making better informed disease
management decisions when seeking to reduce potential yield
losses. Development of models to understand disease dynamics
and predict the risk of disease outbreak to facilitate decision-
making is an integral component of plant disease management
(Scherm et al., 2006; Jeger and Xu, 2015).

Pre-planting factors such as crop rotation, type of tillage,
cultivar resistance, and amount of wheat residue in the field
can influence SNB risk during the growing season. Decisions
pertaining to any of these factors singly or in combination can
reduce the risk of SNB and its impact on yield at the end of
the growing season. However, such a decision-making tool is
currently not available for SNB. The choice to use a moderately
resistant cultivar at a given location should be based on previous
history of SNB at the location, whether wheat was planted the
previous season and the type of residue management practiced
in the field. Clearly, the use of moderately resistant cultivars
in SNB management can be improved through a selective
combination of host resistance with other pre-planting factors.
For example, while the amount of wheat residue is related
to disease severity, other factors such as cultivar susceptibility
influence the magnitude of that relationship (Mehra et al., 2015).
In addition, field location also appears to be an important pre-
planting predictor of SNB. For example, in North Carolina, SNB
tends to occur in the western (Piedmont region) and northeastern
(Tidewater region) parts of the state (Weisz, 2013). Given that
several pre-planting factors can potentially influence the risk of
SNB, there is a need to develop a decision-making criterion that
takes the effect of these factors, singly or in combination, into
consideration. A pre-planting risk assessment model can provide
critical information to guide SNB management decisions prior to
planting of the wheat crop.

Predicting the risk of SNB by relating pre-planting factors
to the severity of the disease can involve working with data
that is complex and unbalanced. For example, the relationship
between pre-planting factors (e.g., wheat residue) and SNB
severity can be strongly non-linear and could involve high-order
interactions with other factors (Mehra et al., 2015). When the
interest lies in developing a model to predict a disease severity
class, often the goal is to produce an accurate classifier for
the disease class and to uncover the predictive structure of the
problem. Traditionally, regression analysis has been the most
popular modeling technique in predicting disease risk (De Wolf
et al., 2003; Gent and Ocamb, 2009). In recent years, acccurate
classifiers have been developed using machine learning methods,
which are capable of synthesizing regression or classification
functions based on available data (Gutierrez, 2015). Unlike
traditional methods, machine learning methods can deal with
complex and non-linear relationships between predictors and a
response and are also able to process multifaceted and noisy data
(Recknagel, 2001; Garzón et al., 2006).
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Among machine learning methods, categorical and regression
tree (CART) and artificial neural networks (ANN)methodologies
have been used to predict the risk of plant diseases (De Wolf
and Francl, 2000; Paul and Munkvold, 2004; Kim et al., 2014).
The random forest (RF) technique (Breiman, 2001), which is an
extension of CART, has been shown to have greater accuracy
among machine learning methods (Svetnik et al., 2003; Garzón
et al., 2006) and also provides a measure of the importance of
each candidate predictor. RF has previously been used to predict
invasion success of fungal pathogens in forests (Philibert et al.,
2011). However, the algorithm has not been applied to asess the
risk of disease development in agricultural systems. The overal
goal of this study was to develop risk assessment models that
can be used to guide management decisions for SNB before
planting of the wheat crop. The specific objectives of the study
were: (i) comparemultiple regression (MR) andmachine learning
modeling techniques for their accuracy in predicting the risk
of SNB using pre-planting factors and (ii) identify important
pre-planting factors that influence the risk of SNB in winter
wheat.

MATERIALS AND METHODS

Field Sites and Data Collection
Field experiments were conducted at 12 sites in 11 counties
in North Carolina during the 2011/12, 2012/13, and 2013/14
(hereafter referred to as 2012, 2013, and 2014, respectively)
growing seasons (Table 1). Experimental sites were chosen to
represent areas with different histories of SNB, varying cropping
practices and a range of weather conditions. In each year, wheat
was planted at each site in a conventionally prepared field,
a no-tilled field, or both. Experimental plots across the study
ranged between 1.0 to 1.5 m in width and 6.0 to 8.5 m in
length. Crop production practices at each site followed standard

recommendations for North Carolina (Weisz, 2013) but with no
fungicide applications. Planting was earlier in the western than
in the eastern part of the state, ranging from 25 September to 8
November in each year.

In the 2012 season, the following five soft red winter wheat
cultivars with resistance rating (RR) to P. nodorum ranging
from 3 to 6 based on a scale of 1 (most resistant) to 9 (most
susceptible) were used: Branson (RR = 6), Dyna-Gro Dominion
(RR = 3), Dyna-Gro Shirley (RR = 4), SS8700 (RR = 3), and
SY9978 (RR = 6). RRs were determined based on performance
in the United States Department of Agriculture – Agricultural
Research Service Septoria screening nursery in North Carolina
(Anonymous, 2011). These cultivars had similar heading dates
and generally possessed resistance to other foliar fungal wheat
pathogens prevalent in the state. Cultivars were planted at each
site in a randomized complete block design with six replicates.

In 2013 and 2014 seasons, two additional factors, seed
treatment and seeding rate, were varied at each site. In these years,
the experiment was laid out as a split–split–plot design with six
replicates. Seed treatment was the main plot factor, seeding rate
the sub-plot factor, and wheat cultivar the sub–sub–plot factor.
Two levels of both the seed treatment factor, carboxin + thiram-
treated or -untreated seed and the seeding rate, the standard rate
(380 seedsm−2) versus a reduced rate (20% reduction of standard
seeding rate) were evaluated. Seed was treated with imidacloprid
insecticide to minimize the incidence of barley yellow dwarf
virus. In 2013, four cultivars were used: Dyna-Gro 9012 (RR= 7),
SS8641 (RR= 4), Dyna-Gro Shirley, and P26R20 (RR= 4). These
four cultivars were also planted in 2014, except for SS8641 which
was replaced by USG3438 (RR = 4). Cultivars tested in the first
year of the study were replaced in subsequent years to generate a
wide range of disease RRs across the entire study.

At each site, longitude, latitude, previous crop, and wheat
residue cover on the ground were recorded. Latitude and
longitude data were determined by locating the position of

TABLE 1 | Description of experimental sites and tillage methods used in a study conducted in North Carolina to identify pre-planting factors that

influence the risk of Stagonospora nodorum blotch in winter wheat.

Tillage method a

Site Field type b County Region 2012 2013 2014

Aurora Grower Beaufort Tidewater CT – c –

Caswell Farm Research Lenoir South-Central – CT, NT –

Cunningham Station Research Lenoir South-Central CT CT, NT CT, NT

Hertford Grower Perquimans Tidewater – CT, NT –

Lake Wheeler Road Research Wake South-Central CT CT –

Monroe Grower Union Piedmont – NT –

Piedmont Station Research Rowan Piedmont NT CT CT, NT

Tidewater Station Research Washington Tidewater NT CT, NT CT, NT

Tyner Grower Chowan Tidewater – – CT, NT

Rowland Grower Robeson South-Central CT – –

Upper Mt. Station Research Ashe Piedmont NT CT, NT –

Walkertown Grower Forsyth Piedmont – CT, NT CT, NT

aCT = conventional tillage with complete burial of residue, and NT = no-tillage. bResearch fields were managed by personnel on the research station, while growers’

fields were managed by individual growers. In some instances, both conventional tillage and no-tillage experiments were conducted in separate fields at the same site.
cNo experiment was conducted at the site in that year.
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the field site on Google Maps (Google Inc., Santa Clara, CA,
USA). The number 1 was assigned to fields where wheat was
the previous crop, while 0 was assigned to fields where the
previous crop was not wheat. The amount of wheat residue
cover on the ground was determined using the line transect
method (Wollenhaupt and Pingry, 1991). Briefly, a 100-feet long
tape (with 1-foot interval markings) was stretched across each
treatment block at a 45◦ diagonal. Residue cover for the treatment
block was then determined by the number of times that a piece of
residue intersected the tape at the 1-foot markings.

Disease severity was assessed visually on a whole-canopy basis
by estimating the percentage of SNB severity in the plot (Mehra
et al., 2015). Two to four assessments were made at most sites,
while in a few cases, only one assessment was made due to either
a shorter wheat season or low levels of disease. The response
variable was maximum disease severity (MaxDS) averaged across
replicates. In this study, MaxDS corresponded to disease severity
at the last assessment date, recorded around the soft dough stage
equivalent to Zadoks growth stage 85 (Zadoks et al., 1974). Values
of MaxDS predicted from various modeling approaches were
later categorized to generate a binary predicted response variable
of low disease severity (<30%) and high disease severity (≥30%).
The 30% severity cutoff on a whole-canopy basis corresponds
to approximately 20% disease severity on the flag leaf (Mehra,
unpublished results), which has been shown to result in yield
loss in wheat (Bhathal et al., 2003). Thus, 30% disease severity
is a useful threshold for risk assessment and making management
decisions for SNB.

Modeling Approach
Predictive modeling tries to find good rules for predicting the
response variable based on the value of predictor variables in
the dataset. In this study, MaxDS from a unique combination
of predictor variables or disease cases (Table 2) was considered
as the response variable. A total of 431 disease cases were
obtained from the three years of the study across all experimental
sites. Each modeling technique described below involved two
independent steps. In the first step, the entire dataset was split
randomly into training (70%), validation (20%), and test (10%)
datasets using the procedure SURVEYSELECT in SAS (version
9.4, SAS Institute, Cary, NC, USA). This splitting was conducted
15 times (i.e., 15 randomizations of the data). Each time, a model
was developed using the training dataset and optimized using the
validation dataset, and the predictive ability of the model was
tested on the test dataset. In the second step in the modeling
process, the final model was developed using all the disease cases
collected in the study.

Two predictive modeling techniques, MR, and machine
learning models, were applied in this study to predict the risk
of SNB based on pre-planting variables. Within the machine
learning paradigm, three predictive models were selected,
ranging from the simple classification and regression trees to the
more complex Breiman’s random forest algorithm.

During exploratory data analysis, previous crop, tillage
type, and wheat residue were found to be highly correlated,
while the three variables were not correlated with other pre-
planting factors. Thus, the SAS PROC VARCLUS with option

TABLE 2 | Independent variables tested for their usefulness in assessing

pre-planting risk of Stagonospora nodorum blotch in winter wheat.

Designation in modeling

approach a

Predictor variable Type CART, ANN, RF Multiple

regression (MR)

Cultivar resistance Ordinal 1 to 9 b 1 to 9 b

Latitude Continuous Non-standardized Standardized c

Longitude Continuous Non-standardized Standardized c

Previous crop Dichotomous Wheat, no wheat 1 (wheat) or 0 (no

wheat)

Seed rate Dichotomous Standard, reduced d 1 (standard), 0

(reduced)

Seed treatment Dichotomous Yes, no 1 (yes) or 0 (no)

Tillage type Dichotomous No-till, conventional 1 (yes), 0 (no)

Wheat residue Continuous Non-standardized Non-standardized

aCART = Classification and regression tree model, ANN = Neural networks model

and RF = Random forest model. bCultivar resistance ranges from 1 (=most

resistant) to 9 (=most susceptible). cLatitude and longitude were standardized to

have mean = 0 and standard deviation = 1, prior to fitting the MR model.
dReduced seed rate is 80% of standard rate of about 380 seeds/m2.

MAXEIGEN = 0.9 was used to eliminate two redundant
predictors (Nelson, 2001). The VARCLUS variable reduction
procedure identifies clusters of variables that are highly correlated
among themselves but as uncorrelated as possible with variables
in other clusters. Previous crop and tillage type were found to
be redundant predictors and subsequently, only wheat residue
and five other pre-planting factors (Table 2) were considered as
independent variables in the ensuing modeling exercise.

MR Model
Regression analysis is one of the most popular techniques for
predictive modeling. A MR model with more than one predictor
can be written as:

y = β0 + β1x1 + β2x2 + · · · + βmxm+ε, (1)

where y is the response variable (i.e., MaxDS), βi is the regression
coefficient, xi is the ith pre-planting predictor for i= 1,2,..,m, and
ε is the random error term.

In the first step of the modeling process, the MR model
was implemented using the SAS procedure GLMSELECT with
the BACKWARD variable selection method and sub-options
CHOOSE = validate, STOP = validate and MAXSTEP = 26
(Cerrito, 2006). The type and designation of predictor variables
evaluated in theMRmodel is summarized inTable 2. To allow for
direct comparison of model coefficients, latitude and longitude
were standardized to have a mean of zero and a standard
deviation of 1.0 prior to regression analysis (Schielzeth, 2010).
Interactions between qualitative and quantitative predictors, and
quadratic terms of quantitative predictors, were also included in
the basemodel. Themodels obtained from the 15 randomizations
of the training dataset were used to make predictions for the
test dataset, and the prediction accuracy of the MR model was
determined by linear regression of observed against predicted
values of MaxDS.
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In the second step of themodeling process, the finalMRmodel
was developed as described in the first step above using all the
431 disease cases. A significance level of 0.1 was used as the basis
for variable retention. If a quadratic effect or an interaction was
significant after variable selection, the main effects of variables
comprising the quadratic effect or the interaction were included
in the model to preserve the hierarchy. In the final step of the
modeling approach, predicted values of MaxDS were assigned to
the low- or high-disease severity class based on a disease severity
threshold of 30%. The proportion of correctly classified cases,
sensitivity (the proportion of true positives), and specificity (the
proportion of true negatives) were then calculated.

ANN Model
Artificial neural network models are analytical techniques that
were originally developed by researchers attempting to mimic
the neurophysiology of the human brain (Ripley, 1996). These
models predict new cases after going through a learning process
with existing data. An ANN is commonly divided into three or
more layers: an input layer, a hidden layer(s), and an output layer
(Figure 1). The input layer contains the input nodes (the input
variables or predictors for the network), while the output layer
contains the desired output of the system, and the hidden layer
contains a series of nodes that are associated with transfer (or
activation) functions. Each layer of the ANN is linked by weights
that are determined through a learning algorithm.

A three-layer feed-forward network with back-propagation
learning algorithm was used to predict the risk of SNB based on
pre-planting predictors (Ripley, 1996; Francl, 2004). In the back-
propagation algorithm, the weights of the network are trained by
minimization of an error function (E) of the form:

E =
1

2
·
[

6(tp − yp)
2], (2)

FIGURE 1 | Schematic flow of an artificial neural network (ANN)

depicting the input, hidden and output layers. The input layer contains

predictors (Xi ), while the output layer contains the response variable. The

hidden layer is composed of the combination (6) and transfer (L) functions

and summarizes predictor variables and associated weights (W), applies the

transfer function, and sends the result to the output layer. The weights (W1,

W2, W3. . .etc.) link input and hidden layer of the neural network.

where t and y are the predicted and actual observed outputs,
respectively, of the pth training pattern (Rojas, 1996). A single-
hidden-layer architecture was used, with the number of nodes in
the hidden layer (h) serving as a tuning hyper-parameter of the
whole model (Sarle, 2002). The logistic function of the form:

L(ϑ) =
1

1 + e−ϑ
, (3)

was used as the activation function of the hidden layer that
transfers the summed inputs to the output layer in which

ϑ =

n
∑

i=1

wixi + θi, (4)

wherewi is the weight of the input value connecting to the hidden
layer, xi and θi is the bias term (Venables and Ripley, 1999). The
network approximation for the output (ŷ) is computed from

y = φ
[

∑

h

wh · L(ϑ)
(

∑

i

wixi
)]

, (5)

where wi is the weight of the hidden layer value connecting to the
output layer and φ is the activation function of the output layer.
In this study, φ was linear, resulting in linear units for the output
of the ANN model. A logistic activation function of the hidden
layer in combination with a linear function of the output layer
generates good approximations of outputs in ANN (Venables
and Ripley, 1999). The importance of predictors in the ANN
model was determined using the Garson algorithm (Garson,
1991), as a recent study comparing methods for quantifying
variable importance in ANN found this algorithm to be the
most accurate (Fischer, 2015). The algorithm determines the
relative importance of a variable by partitioning absolute values
of hidden-output weights into components associated with each
variable node and the importance of all variables sums to 100%.
A weight decay value of 0.001 was used to avoid overfitting of
the ANN by penalizing large weights that could increase the
variance of output (Bishop, 1995). In implementing the ANN
technique, the two independent modeling steps described above
were conducted in the R statistical computing environment using
the caret package. The tuneGrid function in caret was used to
determine the number of nodes required in the hidden layer for
optimal performance of the model. As recommended by Ripley
(1996), the ANN model was implemented 100 times and the
output from all the networks was averaged using the avNNet
function within the caret package in R version 3.2.2 forWindows.

CART Model
In the CART modeling technique, an empirical tree represents
a segmentation of the data that is created by applying a series
of simple rules. CART models generate rules that can be used
for prediction through a repetitive process of splitting. Given a
training dataset L with N cases, consisting of m predictors Xi

(i = 1,..,m) as the input space X and the response variable y, the
CART algorithm recursively partitions the input space to obtain
a tree predictor (with y′

η as the predicted response for the sample
Xη):

y′
= TL(Xη). (6)
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Starting with the entire input space X, CART attempts to
find a binary partition to increase the response purity in the
subspaces formed by the partition. The partition is defined as a
hyperplane perpendicular to one of the coordinate axes of X. The
purity of the resulting subspaces depends on the homogeneity
of the response classes. Several criteria are available to facilitate
selection of the binary splits, depending on whether y′

η is a
categorical or continuous response (Breiman et al., 1984). Binary
partitioning is repeated in each new subspace until subspace
response homogeneity is achieved. The maximal tree is usually
overfitted and algorithms are used to constrain the overfitting by
pruning the tree to its best generalization size. The prediction for
a particular subspace is the majority vote (for classification if y′

η is
categorical) or the average (for regression if y′

η is continuous) of
training responses in that subspace.

In this study, y′
η was a continuous response variable and

thus, a regression tree within the CART modeling approach was
implemented using the ‘Decision Tree’ method in the ‘Partition’
modeling option in the JMP Pro statistical package (v11.2, SAS
Institute, Cary, NC, USA). Given that the response variable y was
a continuous response, binary partition was based onmaximizing
the LogWorth statistic:

LogWorth = −log10(P-value), (7)

where p-value is the probability calculated from the sum of
squares due to the differences in the means of the two groups
formed from the partition (Su et al., 2009). A ‘validation’ column
was provided to differentiate between the training, validation, and
test datasets. The training and validation datasets were used to
avoid overfitting the tree and to stop the splitting of tree nodes
automatically when the coefficient of determination (R2) from
the validation subset was better than the next ten splits (Breiman
et al., 1984). A minimum split size of eight was specified in this
study. The prediction formula was saved in the JMP data table,
and used to predict MaxDS for the test subset. The prediction
accuracy of the CART model was determined by simple linear
regression of observed on predicted MaxDS values for the test
dataset. Predicted values ofMaxDSwere then assigned to the low-
or high-disease class, and the proportion of correctly classified
cases, specificity, and sensitivity of the model were calculated as
described above.

RF Model
A RF is a collection of tree predictors, TL(Xη; θk), where K is the
number of trees indexed by k = 1, . . . K; Xη is defined as above
and has a vector length p associated with input vector X; and
θk are independent and identically distributed random vectors
that indicate a training dataset L. The dataset L is assumed to
be independently drawn from the joint distribution of (X, Y)
and comprises η (p + 1)-tuples (X1, y1), . . ., (Xη, yη). When the
response is a continuous variable as in the present study, the final
predictor yη for a sample Xη is the average over all trees:

y′
η =

1

K

K
∑

k=1

TL(Xη; θk). (8)

As K → ∞ , the Law of Large Numbers ensures

Ex,y
[

Y − y′
η(X)

]2
→Ex,y

[

Y − Eθyη(X; θ
]2

, (9)

in which the quantity on the right is the prediction error, and
convergence in that equation ensures the lack of overfitting in RFs
(Breiman, 2001).

To implement the RF model, the two independent modeling
steps described above were conducted using the randomForest
package in the R environment (Liaw and Wiener, 2002). The RF
classifier requires the definition of two parameters for generating
a prediction model: the number of classification trees desired (K),
and the number of prediction variables (m) to select randomly at
each node tomake the tree grow. Here, k= {1, 2, . . .,K} trees were
grown in the forest and the final predictor was the average across
K trees. At each node within a tree, a given number of predictors
was randomly chosen, and the best predictor was used to split
the node. RF uses the Gini index to split a node and selects the
split with the lowest impurity at each node (Breiman et al., 1984).
The process was repeated across the subsequent nodes to grow
the tree.

Each tree was developed using approximately two-thirds of
cases as training dataset L, which was used to make a prediction
for the remaining one-third of cases as the “out-of-bag” dataset.
To control variance and overfitting, the number of predictors
used at each node (m = 1 to 6) was evaluated using the function
tuneRF of randomForest package in R and optimized using the
“out-of-bag” error estimate (Liaw and Wiener, 2002). The R2

of the prediction on the out-of-bag dataset was taken as the
prediction accuracy of the tree. A test dataset was also used in
order to compare the RF model with the MR, ANN, and CART
models. The RF algorithm also provides a measure of variable
importance in the modeling, and the importance is derived from
the contribution of each variable accumulated along all nodes
and all trees where it is used (Breiman, 2001). The predicted
values of MaxDS were assigned to the low- or high-disease
class. The proportion of correctly classified cases, the specificity,
and the sensitivity of the model were calculated as described
above.

Assessment of Model Performance
The Receiver Operating Characteristics (ROC) curve, i.e., a
plot of 1-specificity vs. sensitivity rate, served to evaluate the
performance of the models. Specifically, we estimated the area
under the ROC curve (AUC), a threshold-independent index
widely used in ecology. The ROC is based on the concept of class-
dependent accuracy, which can be tabulated through a confusion
matrix (McPherson et al., 2004). Points on the ROC are defined
by the sensitivity and specificity indicators. The AUC ranges
from 0.5 (random accuracy) to a maximum value of 1, which
represents the most accurate model theoretically achievable.
Two additional measures were calculated for each model: the
coefficient of determination from regression of observed on
predicted disease values, and the Kappa statistic (Monserud
and Leemans, 1992). Kappa (κ) is a measure of agreement of
model prediction beyond random chance and has a range of
κ = 0 to 1. Values of κ: < 0.4 = low degree of similarity, κ:
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0.40 to 0.55 = acceptable degree of similarity, while κ: 0.55 to
0.70 = good, 0.70 to 0.85 = very good, and >0.85 = excellent
agreement beyond random chance (Monserud and Leemans,
1992).

RESULTS

A total of 431 unique disease cases were obtained from the
field experiments in North Carolina, with 35, 236, and 160
cases recorded in 2012, 2013, and 2014, respectively. Based
on our defined disease threshold, 297 (69%) were classified
as low-disease cases, while 134 (31%) were classified as high-
disease cases. The high-disease class contained 11, 42, and 19%
of total cases in 2012, 2013, and 2014, respectively. Different
modeling approaches were used to determine pre-planting
factors that influenced the severity of SNB, and those factors were
subsequently used to predict the risk of SNB. The results obtained
for each predictive method and the accuracy of models developed
are presented below.

MR Model
The results of theMR analysis indicated that specific pre-planting
predictor variables significantly contributed to the MR model
(F-statistic = 51.55; P < 0.0001, n = 431). Cultivar resistance,
longitude and wheat residue were the most important pre-
planting factors identified by MR to influence the severity of SNB
(Table 3). The quadratic effect of longitude also influenced the
risk of SNB. Latitude, seed treatment with fungicide, and seeding
rate were not significant (P> 0.05) predictors ofMaxDS andwere
hence, not included in the final model.

Based on 15 randomizations of the test dataset, the proportion
of variability (R2) of MaxDS in the test dataset explained by
factors identified by MR was low with an average of 0.32
(Figure 2A). When MaxDS in the test dataset was classified
as low- or high-disease, the average correct classification rate
of the MR model was 0.74 (Figure 2B). The specificity of the
model was very high with an average rate of 0.91 (Figure 2C),
while average sensitivity was the lowest among four modeling
approaches with an average rate of 0.38 (Figure 2D). The final
MR model developed using all the 431 disease cases in the study
explained 33% of the variation in MaxDS (Table 3). The final
MR model had a correct classification rate of 0.74 (Table 4).
The sensitivity of the final MR model was low with a value of

TABLE 3 | Results of MR analysis conducted to explain variation in

maximum severity of Stagonospora nodorum blotch in winter wheat

based on pre-planting variables using data collected in North Carolina

from 2012 to 2014.

Variable Estimate Standard error t-value P > |t|

Intercept 0.20 2.157 0.09 0.9276

Cultivar resistance 2.24 0.401 5.60 0.0001

Longitude (LON) 1.99 0.569 3.49 0.0005

Wheat residue 0.05 0.017 3.21 0.0014

[LON]2 10.90 0.886 12.32 0.0001

0.40, while the specificity was very high with a value of 0.90
(Table 4).

ANN Model
Analysis of the disease cases using the ANN methodology
indicated that latitude, longitude, wheat residue, and cultivar
resistance were the most important predictor variables (in
decreasing order) that affected disease severity, with relative
importance values ranging from >10 to 32% (Figure 3). Seeding
rate and seed treatment were found to be of less importance
(<10%) in the ANN (Figure 3). Increasing the number of
nodes in the hidden layer reduced the root mean squared error
(RMSE) and the final architecture of the ANN model was
optimized at 12 nodes in the hidden layer based on lowest
cross-validated RMSE.

Based on 15 randomized test datasets, the ANN model
identified factors that explained a moderate proportion of the
variability in MaxDS, with a mean of 0.63 (Figure 2A). MaxDS
in the test dataset was correctly classified as low- or high-disease
at an average rate of 0.78 (Figure 2B). The specificity of the
ANN model was high with a mean rate of 0.91 (Figure 2C),
while sensitivity of the model was low with an average rate of
0.49 (Figure 2D). When all the disease cases in the study were
used for model development, the final ANNmodel accounted for
73% of the total variation in MaxDS (Table 3). Values of MaxDS
predicted by the final ANN model and assigned to the low- or
high-disease classes resulted in a correct classification rate of 0.83
(Table 4). The sensitivity of the final ANN model was moderate
with a rate of 0.60, while the specificity was very high with a rate
of 0.93 (Table 4).

CART Model
The CART model selected based on the lowest Akaike’s
Information Criterion had a total of 25 nodes. The tree was
further pruned to seven terminal nodes without compromising
the classification ability of the tree. The correct classification rates
for the 7-node and 25-node trees were 0.83 and 0.85, respectively.
The proportion of total variability in MaxDS explained by the
CART model based on the test dataset was high with an average
rate of 0.72 (Figure 2A). The correct classification rate of MaxDS
in the test dataset was also high with a mean rate of 0.80
(Figure 2B). Based on the test dataset, the specificity of the
CART model was high with an average rate of 0.88, while average
sensitivity of the model was moderate with a mean rate of 0.63
(Figure 2).

Longitude, latitude, cultivar resistance, and wheat residue
were identified by the CART model as the most important
predictor variables influencing the severity of SNB, and were
used in the final CART model (Figure 4). Seeding rate and
seed treatment were not identified as important factors affecting
disease severity and were not used in the final CART model. The
proportion of variation in MaxDS explained by the final CART
model was 0.47 (Table 4). The average rate at which predicted
values of MaxDS were correctly assigned to the low- or high-
disease class based on the final CART model was high with a
rate of 0.83. The final CART model had a moderate degree of
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FIGURE 2 | Performance in predicting Stagonospora nodorum blotch (SNB) of wheat of a multiple regression (MR) model and three machine learning

models: ANN, categorical and regression tree (CART), and random forest (RF). Based on running averages of 15 randomizations of the test dataset which

comprised 10% of 431 cases collected in the study. (A) coefficient of determination; (B) correct classification rate, i.e., proportion of cases correctly classified as

low-severity (<30% disease severity) or high-severity (≥30% disease severity); (C) specificity, the proportion of cases correctly classified as low-disease; and (D)

sensitivity, the proportion of cases correctly classified as high-disease. Symbols represent mean values for any given number of randomizations of the test dataset,

while the vertical bars represent standard errors of the mean based on the total number of randomizations evaluated. Means whose standard error bars do not

overlap are statistically different at α = 0.05.

sensitivity with a value of 0.55, while the specificity of the model
was the highest with a value of 0.95 (Table 4).

RF Model
As expected, the number of trees in the RF model influenced
the proportion of variability in MaxDS explained by the model.
Increasing K from 1 to 30 trees increased R2 from 0.74 to 0.77
(Figure 5) and an additional increase inK from 31 to 100 resulted
in a marginal increase in R2 to 0.79, The value of R2 stabilized
with K ranging from 150 to 300 trees and the final RF model was
obtained by aggregating 300 base models. The optimized number
of variables used at each split in the final RF model was m = 3.
In decreasing order of importance, the variables were longitude,
wheat residue, cultivar resistance, and latitude (Figure 5). Like all
other modeling methods, seeding rate and seed treatment were
not identified by the RF model as having an important effect on
disease severity.

Based on randomized test datasets, the proportion of
variability in MaxDS explained by the RF model was significantly
(P < 0.05) higher than that of all other models tested with
an average of rate of 78% (Figure 2A). The average correct
classification rate of MaxDS in the test dataset for the RF was 0.81
which was significantly (P < 0.05) higher than that of the MR
and ANN models, but not significantly different from that of the
CART model (Figure 2B). Based on the test dataset, the average
specificity of the RF model was 0.87, which was significantly
(P < 0.05) lower than that of other models tested except the
CARTmodel (Figure 2C). The sensitivity of the RFmodel was the
highest among the four modeling techniques with a mean of 0.67,
which was significantly (P < 0.05) higher than the sensitivity of
other models except the CART model (Figure 2D). The final RF
model explained the highest amount of variation in MaxDS with
a value of 79% (Table 4). The rate at which predicted values of
MaxDS were correctly assigned to the low- or high-disease classes
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TABLE 4 | Classification rates, sensitivity, specificity and prediction

accuracy of final models developed using MR and machine learning

techniques to predict the risk of Stagonospora nodorum blotch in winter

wheat based on pre-planting variables using data collected in North

Carolina from 2012 to 2014.

Machine learning

model a

Test statistic MRa ANN CART RF

Coeff. of determination (R2) b 0.33 0.73 0.47 0.79

Correct classification c 0.74 0.83 0.83 0.81

Sensitivity d 0.40 0.60 0.55 0.69

Specificity d 0.90 0.93 0.95 0.86

AUC e 0.76 0.91 0.89 0.93

Kappa (SE) f 0.33

(0.049)

0.57

(0.044)

0.55

(0.044)

0.55

(0.043)

aMR = Multiple regression model, ANN = Neural network model,

CART = Categorical and regression tree model and RF = Random forest

model. bCoefficient of determination that indicates the amount of variation in

MaxDS explained by the predictor variables from regression of observed on

predicted disease values. cCorrect classification rate refers to the proportion of

correctly classified cases within the dataset. dSensitivity is the proportion of cases

correctly classified as high-disease (≥30% disease severity); Specificity is the

proportion of cases correctly classified as low-disease (<30% disease severity).
eArea under the receiver operating curve, an estimator of the prediction accuracy

of the model. fStatistic for an estimator of the degree of agreement between

observed values and model predictions beyond random chance; SE = standard

error.

FIGURE 3 | Importance of pre-planting variables as identified by the

neural network model. Variable importance was determined using the

‘weights’ method of Garson (1991). CR = cultivar resistance rating (RR) for

Stagonospora nodorum blotch, LAT = latitude, LON = longitude,

SR = seeding rate, ST = see treatment, and WR = wheat residue on soil

surface.

in the final RF model was 0.81. The final RF model also had the
highest sensitivity among all the models tested with a rate of 0.69
(Table 4).

Model Performance
The accuracy of the models was assessed based on coefficients
of determination of the final models, sensitivity-specificity ROC

FIGURE 4 | Classification and regression tree used to estimate

severity of Stagonospora nodorum blotch in winter wheat based on

pre-planting predictor variables collected in North Carolina from 2012

to 2014. Low (L) disease class = disease severity <30%, and high (H)

class = disease severity ≥30%. The original tree had 25 nodes but was

pruned to seven terminal nodes. Within the tree, predictor variables are shown

in rectangles, while response variables are shown in circles. CR = cultivar RR

for Stagonospora nodorum blotch, LAT = latitude, LON = longitude (degrees

W), and WR = wheat residue on soil surface.

analysis, and the Kappa statistic. As indicated above, the final
RF model had the highest coefficient of determination followed
by the ANN and CART models, while the R2 value for the MR
was the lowest (Table 4). The RF also had the highest area under
the ROC curve (AUC = 0.93), followed by the ANN and CART
models, while AUC value for the MR model was the lowest with
an AUC of 0.81 (Table 4). The MR model had the lowest Kappa
value (κ = 0.37), which indicates a low degree of agreement of
MR model predictions beyond random chance. However, Kappa
values for CART, ANN, and RF models were comparably higher
with values ranging from κ = 0.55 to 0.57 (Table 4), which
indicates an acceptable degree of agreement of the three machine
learning model predictions beyond chance.

DISCUSSION

Pre-planting factors previously correlated with the late-season
severity of SNB (e.g., Luke et al., 1983; Mehra et al., 2015) were
used to develop risk assessment models that could be useful
in making disease management decisions prior to planting of
the wheat crop. Two analytical techniques, MR and machine
learning, were used to develop models to predict MaxDS from
eight pre-planting predictor variables using data collected across
diverse ecological conditions, disease histories and cropping
practices in North Carolina. Models developed in this study
identified longitude, latitude, cultivar resistance and amount
of wheat residue as significant predictors of SNB severity.
Assessment of the accuracy of the models using the ROC curve
analysis showed that the RF model was the most accurate
classifier for assessing the risk of SNB. To our knowledge, this
work represents the first use of RF to predict disease risk in plant-
based systems and the first study to develop pre-planting risk
assessment models for SNB in wheat.
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FIGURE 5 | Performance of the RF model depicting: (A) coefficient of determination as a function of the number of trees in the model and (B)

importance of pre-planting predictor variables. The importance of a predictor variable is determined by the percent increase in the mean square error after

permuting a specific predictor variable. CR = cultivar resistance for Stagonospora nodorum blotch, LAT = latitude, LON = longitude, SR = seeding rate, ST = seed

treatment, and WR = wheat residue on soil surface.

In winter wheat, the role of field location, previous crop,
cultivar resistance, amount of wheat residue on the soil surface,
seed treatment, and tillage in the development of SNB is well
documented (King et al., 1983; Luke et al., 1983; Leath et al.,

1993; Stover et al., 1996; Milus and Chalkley, 1997; Solomon
et al., 2006; Weisz, 2013). However, the relative importance of
each of these factors to the severity and risk of SNB has never
been determined. In addition, a clear understanding of the most
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important pre-planting factors that influence the risk of SNB was
previously lacking. The threemachine learningmodels developed
in this study identified longitude, latitude, cultivar resistance, and
wheat residue as significant predictors of the SNB severity. The
MR model also identified all these factors, except latitude, as
significant predictors of SNB. These results also validate previous
reports on the effect of location, cultivar resistance and wheat
residue on the severity SNB (e.g., Holmes and Colhoun, 1975;
Luke et al., 1983; Weisz, 2013), and indicate that these predictors
are useful in predicting the risk of SNB in winter wheat.

Stagonospora nodorum blotch is frequently problematic
in the western and northeastern parts of North Carolina
(Weisz, 2013). Thus, it is not surprising that longitude was an
important predictor of SNB in North Carolina, with all the
models identifying longitude as one of the two most important
predictors, along with latitude. The effect of longitude on SNB
severity can be seen directly in the MR model by the significant
quadratic effect of standardized longitude which indicates that
predicted disease severity is higher in the east and west and lower
in the central parts of the state. This was especially evident under
conventional tillage, where high levels of SNB were observed
in western parts of the state (data not shown). The importance
of longitude as a predictor can be explained by variation in
environmental conditions that favor the development of SNB.
In this study, rainfall amounts recorded in experimental sites in
the eastern or western part of the state were 10 to 80% higher
than in sites located in the central part of the state (Mehra et al.,
unpublished results). The level and frequency of precipitation are
both known to favor the development of SNB in wheat (Verreet
and Hoffmann, 1990). The median latitude was slightly higher
in the high-disease class than in the low-disease class but the
effects of latitude on SNB severity were highly dependent on the
previous crop.

Previous crop, tillage and wheat residue were highly correlated
and wheat residue was identified as the best predictor for the
risk of SNB among these three pre-planting factors. The limited
importance of previous crop and tillage could be explained by
the fact that these two variables are an indirect measure of
the survival of P. nodorum from one season to the next, a
characteristic that is better reflected by wheat residue. Similar
observations were also reported in a study that evaluated the
importance of pre-planting factors for the risk of gray leaf spot
of maize (Paul and Munkvold, 2004). In addition, even under
conventional tillage with incomplete burial of residue, 10% of
residue remains on the soil surface (Stubbs et al., 2004), which can
result in an end-of-season disease severity similar to that in fields
with 30% residue that can result from no-till fields (Mehra et al.,
2015). The amount of residue in no-till fields also depends on the
previous crop, with higher residue levels resulting when wheat is
planted after wheat as compared to when another crop is planted
between two wheat crops. The tillage effects on disease severity in
the latter case would not be easily distinguishable from the effects
of tillage with complete burial of residue since both practices
would result in little or no residue to influence disease severity.
None of the modeling approaches identified seed treatment or
seeding rate as useful predictors of SNB risk. The seed used in
the present study was certified and was free of P. nodorum, which

explains why seed treatment was not an important factor. The
reduced seeding rate used in this studymay not have been enough
lower to generate a significance difference in SNB compared to
the normal seeding rate. Further reductions in seeding rates may
result in high SNB compared to the normal rates, but growers
are not likely to use such low seeding rates due to potential yield
penalties.

Predicting the risk of disease plays an important role in the
decision making and planning process for disease management
in plant pathosystems. Historically, regression models have been
widely used to predict epidemics of plant diseases (Rosso and
Hansen, 2003; Uddin et al., 2003; Paul and Munkvold, 2005;
Del Ponte et al., 2006; Olatinwo et al., 2008). In this study,
while the MR model had a very high specificity and thus, was
a very good predictor of low disease severity at the end of the
season, the model explained less than 50% of total variability
in the dataset. The MR model was also a poor predictor of the
high-disease class as evidenced by its low sensitivity. The MR
model was also the least accurate in predicting the risk of SNB as
indicated by its lowest AUC. Highly accurate decision rules that
combine high levels of sensitivity and specificity will be required
for any predictive system to be useful in management of plant
diseases (Gent et al., 2013). Regression analysis has the advantage
of simplicity and produces a model equation with parameter
estimates that can be directly related to scientific hypotheses
and thus, has been the main choice for modeling disease risk
in botanical epidemiology. However, other approaches such
as ANNs and decision trees have been useful in developing
predictive models in several scientific fields (Gutierrez, 2015).
Application of these alternative methods has been limited but is
slowly gaining interest in plant disease epidemiology.

Artificial neural networks have been used to model the
risk of disease development in plant-pathosystems (Batchelor
et al., 1997; De Wolf and Francl, 2000; Chakraborty et al.,
2004). However, applications of ANN in these systems did not
establish the relative importance of predictor variables. The ANN
algorithm used in the present study allowed for estimation of the
relative importance of each predictor variable in assessing the
risk of SNB. The ANN model developed here performed much
better than the MR model, with a good balance between model
sensitivity and specificity. Often, prediction is more important
than explanation in standard back-propagation ANN models,
and model construction is not easily understood (Frasconi et al.,
1993; Hastie et al., 2009), which has created a perception of
a ‘black box’ that has limited the use of ANN models. The
inability to easily calculate standardized coefficients for each
independent variable and the difficulty in interpreting weights
from the network analysis are also other weaknesses of ANN
models (Frasconi et al., 1993; Ottenbacher et al., 2004). In this
study, transparency was increased and the explanatory power
of the ANN model was improved by determining the relative
contribution and importance of each predictor variable to the
prediction of SNB severity. The number of nodes in the hidden
layer required in the optimized model was twelve, which was
greater than the number of important predictors in the model.
This suggests that the relationship between MaxDS and pre-
planting variables is non-linear and hence will not be fitted well
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by the MR model without adding higher-order interactions and
polynomial terms. In contrast, nodes in the hidden layer of
the ANN model intrinsically captured the non-linearity between
MaxDS and predictor variables.

The CART modeling technique has previously been applied
to predict the risk of disease in plant- and forest-pathosystems
(Rosso and Hansen, 2003; Paul and Munkvold, 2004; Fan et al.,
2006; Kelly et al., 2007; Copes and Scherm, 2010; Kim et al.,
2014). In this study, the CART model performed better than MR
and was as accurate as the ANN model in predicting the risk of
SNB. Simplicity of themodeling approach is one notable attribute
of CART that allows for determination of variable importance
at each node (De’ath and Fabricius, 2000). CART also generates
an intuitive tree diagram that illustrates the relationship between
the response and the predicted variables. The tree indicated that
several combinations of predictor variables could result in the
same disease-severity class, and that longitude, latitude, wheat
residue and cultivar resistance strongly influenced MaxDS. High
levels of SNB occurred west of longitude 80.6, which is the
Piedmont and foothills of the Appalachian Mountains, while low
and high severity occurred east of longitude 80.6 (the Coastal
Plain and Tidewater regions) depending on the latitude, amount
of wheat residue and cultivar resistance. For example, east of
longitude 76.7 (in the Tidewater), low disease occurred north
of latitude 36.2 (roughly, north of the Albemarle Sound), while
high disease occurred south of latitude 36.2 when a highly
susceptible cultivar was planted. The final CART model, pruned
to seven terminal nodes, predicted SNB classes as well as the
fully grown tree with 25 terminal nodes, and thus, it is likely
to generalize well on an independent dataset (Breiman et al.,
1984).

The RF algorithm, which has previously not been used to
predict the risk of disease in plant-based agricultural systems,
produced the most accurate model to predict the risk of
SNB in winter wheat. Like the other models evaluated, RF
identified location, wheat residue and cultivar resistance as the
key predictors affecting the risk of SNB. The key advantages of RF
include its non-parametric nature, high classification accuracy,
and capability of determining variable importance. However, it
can be difficult to understand the rules used to generate the
final classification due to the large number of trees generated
from resampling the same dataset. The number of trees, K,
and predictor variables used at each node, m, influence the
accuracy of the RF classifier. In this study, different values of
K (1 to 300) and m (1 to 6) were evaluated to optimize these
parameters in the final classifier for a total of 1,800 different
RF models to predict the risk of SNB. As K is increased, the
generalization error decreases and converges to a limit (Breiman,
2001). However, the value of m (which is constant during forest
growth) affects both the correlations between the trees and the
strength of the individual trees. Reducing m reduces correlation
and strength, while increasing m increases both. Thus, it is
preferable to use a large value for K and a small value for m to
reduce the generalization error and correlation between trees in
the forest.

Historically, wheat prices have been low in the United States,
which has reduced profit margins for growers (Weisz et al.,
2011). Thus, only the most accurate predictor models that guide
pre-planting management decisions to minimize unprofitable
spray application are likely to be acceptable to risk-averse
producers as decision tools. In this regard, the RF model could
be a useful pre-planting decision management tool for SNB, as
it performed better during internal validation than the other
models developed in this study. The model can be used to guide
the selection of a specific combination of pre-planting factors
that will result in a reduced risk of SNB. Prior to planting
the crop, growers can input into the model information on
their field location, resistance level of intended cultivar, and
the amount of residue in the field. Images of different levels
of residue can be provided to growers as references for an
estimate of residue levels in their field. Growers can change
the combination of their pre-planting factors if the RF model
predicts a high SNB risk. In addition, where cultural management
practices such as tillage type and crop rotation are difficult
to alter in order to reduce the amount of wheat residue, the
pre-planting model can provide a quantitative assessment of
SNB risk in those situations to facilitate informed decision-
making. Although the machine learning models and especially
the ANN and RF models developed in this study had a high
internal validation accuracy, the models need to be validated
with independent data before they can be integrated into a
management program for SNB. Such an independent validation
of these models would focus on using disease cases collected
from growing seasons with a wide range of disease severity levels
from locations with diverse cultural practices. Comprehensive
economic management decisions for SNB in winter wheat can
made by combining prediction models developed in this study
with yield-loss models of wheat.
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