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Abstract—The Border Gateway Protocol (BGP) maintains
inter-domain routing information by announcing and withdraw-
ing IP prefixes, possibly resulting in temporary prefix unreacha-
bility. Prefix availability observed from different vantage points
in the Internet can be lower than standards promised by Service
Level Agreements (SLAs).

In this paper, we develop a framework for predicting long-term
prefix availability, given short-duration prefix information from
publicly available BGP routing databases. We compare three
prediction models, and find that bagged decision trees perform
the best when predicting for long future durations, whereas a
simple model works well for short prediction durations. We
show that mean time to failure and to recovery outperform
past availability in terms of their importance for predicting
availability for long durations. We also find that predictability
is higher in the year 2009, compared to four years earlier. Our
models allow ISPs to adjust BGP routing policies if predicted
availability is low, and the models are useful for cloud computing
systems, P2P, and VoIP applications.

I. I NTRODUCTION

The Border Gateway Protocol (BGP), the de-facto Internet
inter-domain routing protocol, propagates reachability infor-
mation by announcing paths toprefixes. Autonomous Systems
(ASes) maintain these paths to prefixes in their routing tables,
and conditionally update this information when route update
messages (announcements and withdrawals) are received. Con-
tinuous prefix reachability over time is critical to the smooth
operation of the Internet. This is captured using the metricof
availability, defined as the time duration when the prefix is
reachable divided by the total time duration we are interested
in. While typical system availability metrics for telephone
networks exceedfive 9s,i.e., 99.999%, computer networks are
known to have lower availability [16].

Internet Service Providers (ISPs) usually provide availability
guarantees on their backbone network through Service Level
Agreements (SLAs). However, content providers are more
interested in their service availability as observed from various
points in the Internet, and a routing path being advertised is
essential to maintaining traffic flow. There have been unsuc-
cessful attempts at extending SLAs to several ISPs [14] or
estimating service availability between two end points [8].
Meanwhile, several Internet reachability problems have been
reported, such as the YouTube prefix hijack which lasted about
two hours [20], and several undersea cable cuts, e.g., [2].

Measuring prefix availability is non-trivial without an ex-
tensive measurement infrastructure comprising many vantage
points.Data planemeasurements are inherently discontinuous
and increase network traffic. A shortfall in measured availabil-
ity necessitates areactiveapproach to correct the problem after

the fact.
This paper takes apredictive approach towards the long-

term control plane (BGP-advertised) availability of prefixes
from several vantage points in the Internet. We construct
models for predicting availability, and show that, given a long-
enoughlearning durationfor a prefix, we can simply predict
its future availability to be equal to its past availability(Sec-
tion IV-A). However, if the learning duration is short compared
to the prediction duration, we use data-mining based prediction
models constructed using routing information of other Internet
prefixes (e.g., from RouteViews [15]). A predicted long-term
availability value which falls short of requirements couldlead
to changes in BGP policies of the ISP regulating the prefix
advertisements. For example, one can change the MED or
community attributes, or increase the penalty threshold associ-
ated with route flap damping to a high availability requirement
prefix to ensure fewer flaps [3]. Additional applications of our
work include Content Distribution Networks (CDNs), cloud
computing, VoIP and P2P networks, all of which can use the
highest predicted availability replica/server/peer.

Internet prefix characteristics can convey valuable informa-
tion about other (not necessarily in the same AS) prefixes. We
use randomly selected prefixes from RouteViews to build data-
mining based prediction models, which are used to predict
availability of unrelated prefixes. This theme is common in
several other disciplines, like medicine, where one uses known
symptoms of patients with a diagnosed disease to try to
diagnose patients with an unknown condition. To the best of
our knowledge, no other work has exploited the similarity
of prefixes in the Internet; a few studies, e.g., [18], applied
predictive modeling in the context of BGP, but they only
examined problem ASes in the path to a particular prefix.

The remainder of this paper is organized as follows. We
define the problem that we study in Section II. Section III
describes our methodology. We evaluate and compare three
prediction models in Section IV. Section V summarizes related
work, and Section VI concludes the paper.

II. PROBLEM DEFINITION

We define theavailability prediction problemto be the
prediction of the BGP-advertised availability of a prefix, given
its attributes computed by observing BGP updates for the
learning duration, and the availability and attributes of other
prefixes (if needed).

We compute availability in thecontrol plane from a par-
ticular vantage point by marking the time of an announce-
ment/withdrawal of a prefix as the time when it goes up/down
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w.r.t. the vantage point and matching our predictions against
this computed availability. Instead of predicting continuous
availability values, we discretize availability, and predict the
availability classof a prefix. This is because, for diagnosis or
detection purposes, our interest lies in predicting whether the
availability value is above or below an acceptable threshold
(e.g., that advertised in an SLA), and not the specific value of
the availability. Discretizing gives us the added advantage of
using confusion matrix-based measures, e.g., false positives,
to assess prediction performance.

We address the following questions:
1) How to discretize availability? How many classes and

what threshold values should be used?
2) Given a set of prefixes with associated attributes and

availability classes, how accurately can one predict the
availability classes of other prefixes, and which predic-
tion models work best?

3) Which attributes of a prefix are most important in
predicting availability?

4) How long should one observe prefix attributes so that
its availability can be accurately inferred?

III. M ETHODOLOGY

A. Datasets

We utilize routing tables and updates from RouteViews [15]
for the months of January 2005, January 2007, February 2008,
and March 2009 to build and test our prediction models.
The months span a reasonable time period. This prevents
biasing our model selection process towards datasets from a
particular timeframe when some event (e.g., undersea cable
cut) may have occurred. We filter routing table transfers as
described in [9]. In most of this paper, we study one month of
data at a time, with the task of predicting the availability of
combinations observed in the month using attributes observed
in the first 25% of the month, i.e., about one week (we vary
the learning duration in Section IV-E).

B. Defining and Discretizing Availability

For the RouteViews data, the vantage points, with respect
to which prefix availability is computed, are the RouteViews
peers. We define acombination as a (peer, prefix) tuple,
indicating that the prefix was observed by the peer in the
dataset. We compute attributes of these combinations and use
that for building and evaluating our prediction models. In
what follows, a combination isup or down when the peer
associated with the combination has the corresponding prefix
in an announced or withdrawn state respectively.

The computation of the availability of a combination for a
particular time period proceeds as follows. The first routing
table of the period is used to initialize the state of each
combination present in the table toup (U). We maintain the
state of each combination at each point in time, and at the time
of each state change due to an update, we record a downtime
or an uptime depending on the state change. After processing
all the update files, we add an extra up or downtime depending
upon the last state of the combination. For example, if the last

state change was to D and was reported at timet1, and if the
data period ended at timet2, as indicated by the timestamp
of the last update, we record a downtime with valuet2 − t1.
The availability of the combination is computed by dividing
the total time that the combination was up by the total time
period, only if it has at least one recorded uptime or downtime
so that its availability is non-trivial.

We discretize the continuous availability value into two
availability classes, namelyhigh and low using a single
threshold of 0.99999. The percentage ofhigh availability
combinations is 56.10%, 60.76%, 62.17%, and 68.75% for the
months of Jan. 05, Jan. 07, Feb. 08, and Mar. 09 respectively.

C. Model Space and Performance Metrics

We investigate three prediction models: a simple baseline
prediction model, and two data-mining based prediction mod-
els, namely Näıve Bayes, and decision trees (with and without
bagging) [17], as presented in [9]. The performance of each
prediction model is studied usingn-fold incremental cross-
validation [17], with n = 10, appliedk = 5 times.

We use the confusion matrix-based measures of Accuracy,
True Positive Rate (TPR), False Positive Rate (FPR), and
Kappa statistic [17] to evaluate the performance of prediction
models. Unfortunately, confusion matrix-based measures can
be misleading with a skewed class distribution. A better metric
is obtained by using Receiver Operating Characteristic (ROC)
curves [17], [5], which plot the TPR versus the FPR, and are
independent of class skew. We use the Area Under the ROC
Curve (AUC) as a performance metric. This is the probability
that the model will rank a randomly chosenhigh instance
higher than a randomly chosenlow instance. A purely random
classifier (which randomly selects the class label) has an AUC
of 0.5, whereas a perfect classifier has an AUC of 1.

IV. PREDICTION MODELS

A. Simple Prediction

We first consider a simple model, which does not learn
based on other combinations, but merely predicts the future
availability of a combination to be the same as itspast
availability (its availability during the learning duration). Thus,
if the past availabilityof a combination exceeds 99.999%, the
predicted class label ishigh, otherwise it islow.

The performance metrics computed for the simple model
for the four months of data, and averaged overnk = 50 runs,
are listed in Table I. The results show that, while the TPR of
the simple model is high, its FPR is high as well. However, the
simple classifier outperforms a random classifier (as indicated
by theκ statistic), and hence forms a baseline model to which
other sophisticated models can be compared.

The simple model does not rank instances in terms of prob-
abilities of being classified ashigh/low, and hence produces
a single point in the ROC space. For computing ROC based
metrics, we take a typical run of the model with confusion
matrix measures close to their average values. The instances
which are classified ashigh and low are randomly reordered
within their respective groups, and then are ranked with the
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TABLE I
RESULTS WITH THE SIMPLE PREDICTION MODEL

Month Accuracy (%) TPR FPR κ AUC

Jan. 05 67.68 0.9946 0.7195 0.2959 0.6319
Jan. 07 72.08 0.9961 0.6905 0.3444 0.6223
Feb. 08 77.97 0.9971 0.5704 0.4778 0.7076
Mar. 09 83.34 0.9977 0.5466 0.5327 0.7208

(predicted) highs higher than thelows. We now vary the
prediction threshold, as in Algorithm 2 of [5] to compute
the points on a ROC curve. The AUC is computed, using
Algorithm 3 of [5], for the typical run and averaged across 50
runs.
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Fig. 1. ROC plots for the simple prediction model for Jan 07

The ROC curve for the simple prediction model for a
typical month is depicted in Fig. 1. The plots show the
original model performance (in Table I) as a point (“star”)
on the ROC plots, along with the performance of a random
classifier. The performance of simple prediction is clearly
better than a random classifier, but there are occasions when
it performs as good as a random one. Recent months show
better performance, with a TPR close to 1 being reached for
a smaller FPR.

B. Computing Attributes

In this section, we study the attributes of a combination,
which are computed from RouteViews data and used to
train data-mining based prediction models. The attributesare
selected to relate to the availability of the combination, and
to be easily computable so that the learning system is fast.
It is important to note that these attributes do not necessarily
cause high/low availability; we are looking for correlation not
causality. Correlation is sufficient for a prediction model to be
successful.

We compute the following attributes of each combination
for the learning period: (1) Prefix length, (2) Update fre-
quency, (3) Mean Time to Failure (MTTF), and (4) Mean
Time to Recovery (MTTR). We investigate these attributes
further in [9], and show that they are statistically significantly
different between thehigh and low classes. Although we
compute the attributes of every combination with at least one
recorded uptime or downtime, we randomly downsample this
set of combinations to a set of 5000 combinations with their
attributes, and use that to build and test models.

C. Decision Trees

We implement decision trees using the C4.5 algorithm
in Weka [17] (open-source data mining software) and use
Reduced Error Pruning (REP) as the pruning technique. The
high variance of decision trees can be reduced bybootstrap
aggregating (bagging)[17].

We apply the bagged decision tree classifier to predict
availability for the four months of data. The results are
presented in Table II. We perform the Welcht-test [10] to
test for statistical significance w.r.t. the simple model with
randomization. We find that the average AUC performance
increase of 9.03% is significant at 1% significance level,
whereas the accuracy changes are not significant. Hence, we
conclude that bagged decision trees outperform the simple
model with a higher ranking quality (AUC) and no significant
change in accuracy. We also apply bagged decision tree models
using each of Jan. 05, Jan. 07, and Feb. 08 training data to
predict Mar. 09 availability. We find that no AUC changes
were significant at 5% significance level, though a significant
reduction in accuracy was observed when using Jan. 05 and
Jan. 07 to predict Mar. 09 results. This shows that one can
apply models trained with data from a year earlier with no
significant performance degradation, facilitating adoption into
a prediction infrastructure.

TABLE II
RESULTS WITH BAGGED DECISION TREES(% CHANGE FROM SIMPLE

MODEL GIVEN WITHIN PARENTHESES)

Month Accuracy (%) TPR FPR AUC

Jan. 05 67.83 0.9616 0.6746 0.7005
(0.23%) (-3.32%) (-6.24%) (10.86%)

Jan. 07 72.50 0.9779 0.6530 0.7094
(0.58%) (-1.83%) (-5.44%) (14.00)%)

Feb. 08 77.80 0.9927 0.5682 0.7483
(-0.22%) (-0.44%) (-0.39%) (5.75%)

Mar. 09 83.24 0.9976 0.5501 0.7605
(-0.12%) (-0.01%) (0.64%) (5.51%)

D. Classification Attributes

We now explore the importance of the attributes used
in prediction. We start with the results from Table II, and
remove certain attributes of the combinations, which are fed
to the bagged decision tree model. The degradation in various
performance metrics is studied; as degradation increases,the
importance of the removed attribute subsets increases. We
present typical results of removal of some of the attributes
in Table III. The first column of the table indicates which
attributes of the combinations were used for prediction. For
comparison, we build a decision tree model using onlypast
availability, which was used in the simple prediction model.

We conclude that the performance degrades significantly
when only past availability is used as a single attribute with
lower AUC (5-9%) and significantly higher FPR (6-11%).
Together with the simple model results, this implies that past
availability is inadequate for prediction of future availability
when predicting for future durations longer than the learn-
ing duration. Prefix length and update frequency are weaker
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TABLE III
PERCENTAGE CHANGES IN PERFORMANCE METRICS WITH SUBSETS OF

ATTRIBUTES FORMAR. 09. ALL PERCENTAGE CHANGES ARE W.R.T. MAR.
09 RESULTS INTABLE II

Attributes used % change % change % change % change
for prediction in accuracy in TPR in FPR in AUC

Past availability -2.03 0.24 11.11 -5.33
Prefix length, -10.37 -9.83 10.71 -6.63

Update frequency
MTTF -0.85 -1.54 -2.23 -4.40
MTTR -0.005 0.01 0.07 -4.63
MTTR, 0.03 0.02 -0.05 -0.35

Prefix length
Update frequency

MTTF, -0.88 -1.52 -1.97 0.09
Prefix length

Update frequency

attributes since using them causes the AUC to decline by 4-
8%. MTTF and MTTR are most important since using either
causes the least drop in AUC among any single item attribute
set. We also experimented with addingpast availability to
these attribute subsets and found that the performance did not
change significantly. The prediction model selects MTTF and
MTTR as the most important attributes for predicting long-
term availability, showing that they shed valuable insights into
the future.

E. Learning Duration

Lowering the learning duration (thus far at 25%) will lead
to a deterioration in prediction results, since we have less
information for prediction. We study this for a 12 month
prediction duration (January to December 2007). The variation
of AUC and accuracy versus the learning duration percentage
is shown in Fig. 2. It is surprising to note that the accuracy
for a Näıve Bayes model and the simple model is extremely
low for lower percentage durations, most likely because they
are not ensemble predictors like bagged decision trees. The
decision tree model performs very well compared to the other
two, especially at short learning durations (important forlong
duration prediction), with accuracy never falling below 77%.

With a 5% learning duration, the accuracy and AUC for the
decision tree model are 75.5-79% and 0.69-0.75 respectively.
If these performance levels are acceptable, one can predict
availability for about 20 times the learning duration. If we
require about a 90% accuracy and about 90% AUC, we must
learn from about 50% of the duration. Our prediction frame-
work allows the system administrator to trade off accuracy and
prediction duration with the model complexity.

F. Discussion

A comparison of prediction models on the four months of
data with 25% learning duration is depicted in Fig. 3. The
results show that bagged decision trees perform best among the
models considered for all four datasets as they have the highest
AUC, a 9% average AUC gain over the simple prediction
model, with about the same accuracy.

Bagged decision trees also perform the best for low learning
duration percentages in terms of both accuracy and AUC
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Fig. 2. Effect of learning duration on prediction performance for Jan.-Dec.
07

(Fig. 2). At lower learning duration percentages, bagged
decision trees have a much higher accuracy than other models
and an AUC that matches that of Naı̈ve Bayes. At higher
percentages, i.e. when predicting for a future duration which
is about the same as the learning duration, the simple model is
preferred for its simplicity. Lower percentages pose a harder
prediction problem which is best tackled by a data mining
based solution.

The results in Fig. 3 suggest that for more recent months,
all prediction models perform better in terms of both accuracy
and AUC. The reason is that the behavior of the combinations
over the learning period becomes a better indicator of their
future performance. We can consider this to be a measure of
“Internet health” because a more predictable Internet can aid
in fault diagnosis. This new dimension of Internet health isan
addition to observations made by Liet al. [11].

V. RELATED WORK

Prefix attributes like activity, update count, reachability from
various monitors, prefix churn, and growth, have been studied,
e.g., in [1], [19], [13], [6], but the attributes are not usedto
classify prefixes or predict prefix features, as in this paper.

Changet al. [4] cluster routing updates into events based on
the announcing peers and AS path similarity usingdescriptive
modeling as the data mining technique, which is used for
understanding the data. In contrast, we usepredictive modeling
to predict prefix behavior, specifically availability, given the
observed prefix attributes and a learned prediction model.
Zhanget al. [18] predict the impact of routing changes on the
data plane. They aim to predict reachability problems basedon
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Fig. 3. Results for four months.

problematic ASes in AS paths in the routing updates. Our work
is orthogonal to theirs in the sense that we consider control
plane availability, utilizing four simple attributes computed
from RouteViews data, and we investigate three prediction
models that learn from other prefixes. Recently, Hubble [7]
and iPlane [12] have been developed to detect data plane
reachability problems and predict data plane path properties,
respectively. Our work is complementary to theirs since we
predict control plane availability (or existence of routing paths)
to a prefix from multiple Internet vantage points, while they
sample data plane metrics like latency, bandwidth and loss
rates to end hosts at a low frequency. Our work can be
combined with theirs to improve the performance of several
applications like VoIP, P2P, and CDNs. In cases where no
responsive hosts within a prefix can be found by iPlane,
it cannot make predictions, in which case our availability
predictions will be the only ones available for applications.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have developed a long-term availability
prediction framework. We use a simple prediction model to
predict future availability for a duration shorter or equalto
the learning duration, while learning a prediction model from
a set of Internet prefixes, for longer prediction durations.

We show that a bagged decision tree model, which uses
four easily computable prefix attributes, performs the bestfor
longer prediction durations, with a 9% average gain in AUC
over a simple model. Longer durations pose a more difficult
prediction problem, thereby making data-mining based models
the preferred choice. We learn these models using the attributes
of a random set of Internet prefixes. We find that mean time

to recovery and to failure are the most important attributes
for prediction, and past availability is not a good indicator of
future availability for long-term prediction. To the best of our
knowledge, this is the first work that uses the similarity of
prefix behavior in the Internet to predict properties such as
availability.

We plan to extend our framework to predict availability of
an arbitrary end point as viewed by an arbitrary vantage point
by using techniques similar to [12]. We will also investigate
additional prefix attributes, such as the ASes to which the
prefixes belong, and the AS paths to the prefixes. Finally, we
will rigorously compare control plane to data plane availability.
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