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Abstract. This paper describes a method to predict guaranteed and tight deterministic execution time bounds 

of a sequential program. The basic prediction technique is a static analysis based on simple timing schema for 

source-level language constructs, which gives accurate predictions in many cases. Using powerful user-provided 

information, dynamic path analysis refines looser predictions by eliminating infeasible paths and decomposing 

the possible execution behaviors in a pathwise manner. Overall prediction cost is scalable with respect to desired 

precision, controlling the amount of information provided. We introduce a formal path model for dynamic path 

analysis, where user execution information is represented by a set of program paths. With a well-defined practical 

high-level interface language, user information can be used in an easy and efficient way. We also introduce a 

method to verify given user information with known program verification techniques. Initial experiments with 

a timing tool show that safe and tight predictions are possible fbr a wide range of programs. The tool can also 

provide predictions for interesting subsets of program executions. 

1. Introduct ion 

Our general goals are to develop techniques for predicting the deterministic timing behavior 

of high-level language programs. Achieving these goals would allow a priori analysis of 

the timing properties of software. In a recent study [20], [17], we introduced a static analysis 

technique based on source-level timing schema. It gives tight execution time bounds for 

many programs, but looser ones for some complex programs. An early experiment showed 

that a main source of loose predictions is the effects of infeasible paths which can be derived 

from the static program structure but can never be executed in practice. The problem of 

infeasible paths is inherent in a static analysis, which achieves simplicity by ignoring the 

details of dynamic behavior. We have developed a method for analyzing dynamic program 

behavior to eliminate infeasible paths of a program, and have used it in conjunction with 

the static timing prediction technique to predict tighter time bounds of the program. 

A timing prediction method for real-time systems should be able to find guaranteed and 

sufficiently accurate estimations for the best and worst execution times of a program with 

reasonable cost. This is incompatible with a pure measurement technique, because only 

the measurements on the best and worst cases can guarantee safet); but they are very ex- 

pensive or almost impossible in some complicated systems. Our prediction technique gives 

guaranteed time bounds and provides flexibility to control their accuracy versus prediction 

cost. The simple static analysis predicts safe timing estimations which are also reasonably 
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accurate in many cases. Dynamic program analysis refines these estimations by eliminating 

the effects of infeasible paths while keeping safety. The complexity of program analysis 

and prediction accuracy are proportional to the amount of provided information about the 

dynamic behavior of a program. Overall prediction cost is scalable with the degree of preci- 

sion desired in prediction. 

We analyze dynamic program paths based on execution information given by a user. We 

model user information as welt as a program as a set of paths, and intersect them to eliminate 

infeasible paths and to predict the patterns of possible behavior. Using a well-defined in- 

terface language, a user describes his/her knowledge of program execution in an easy and 

verifiable way. Timing prediction is performed by the simple technique based on timing 

schema of the earlier study, but it can give much tighter results with the help of dynamic 

path analysis. To validate our idea, we have built a new timing tool expanded with path 

analysis and have made experiments with sample programs. 

In this work, we assume that a program is correct and written in a high-level procedural 

sequential language, where recursive procedure call is not allowed. (Timing prediction of 

concurrent programs is not the subject of this paper; some related discussion will be made 

in the future work in Section 8.) We also assume that a program has finite execution cases 

(i.e., finite loop iterations). Our method can be applied directly to a program written in 

a contemporary language, without modifying it with newly extended language features. 

(In the experiments, we predict the behavior and time bounds of a program written in a 

C subset, compiled by the GNU C compiler and run on a 68010-based stand-alone SUN2.) 

There have been several other studies about predicting the execution times of a program 

[22], [13], [19]. One of the common problems here is that predictions are loose for com- 

plex programs due to infeasible paths. [19] introduced a few language constructs including 

marker, the maximum execution times of a statement. A user can provide information as 

a part of a program using those language constructs; however, they are not expressive enough 

to describe some general execution information. Recently, [15] developed a method of pro- 

gram transformation by partial evaluation. Given a general program, a new specialized 

and so more predictable program is created by a partial evaluator using knowledge from 

a user or environment. The method is basically the same as ours in the sense of analyzing 

a program based on execution information, but their information is at the variable level 

(e.g., the value of a variable) while ours is at the statement or higher level. Although the 

partial evaluation technique may deduce information automatically, it requires complex pro- 

gram manipulation. It also seems somewhat inflexible in handling partial information. There 

are also some studies on semantics-preserving program transformation of concurrent pro- 

grams [14], [23]. However, they focus on simplifying a program based on static semantics 

to make schedulability analysis efficient, while we focus on analyzing the dynamic behavior 

of a program to predict more accurate execution times. Predicting execution times with 

high-level user information was mentioned in a real-time programming language FLEX 

[11]. A performance analysis tool predicts the performance of a program by integrating 

measured time data into a parametric model supplied by a programmer. Its predictions 

with confidence level may derive realistic performance, but they are stochastic performance 

that cannot guarantee safety. An extreme case is introduced in [3], where a tool provides 

the times of program components, and a user writes a timing program, which computes 

the execution times of program using the provided times. 
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Program analysis has been studied in many areas, and our work shares some ideas with 

those studies. Code optimization has used control and data flow analysis for a long time, 

but it basically handles only static behavior based on syntactic information. Test data genera- 

tion also performs path analysis to select test paths. Infeasible paths are also a problem 

here because a selected path may be found infeasible while generating data. There are only 

a few testing studies addressing this problem; one of them used informal allegations which 

are similar to primitive execution information [24]. Symbolic execution has been used in 

many program analysis studies (e.g., [25]). It is a general way to figure out dynamic behavior 

of a program, but its complexity makes it almost intractable. [6] introduced a program 

simplification method, which is somewhat similar to [15]. A program is decomposed into 

subprograms in a pathwise manner, based on state constraints which are inserted into a 

program by a user. We decompose the behavior only without modifying a program. Path- 

oriented static program analysis was mentioned in [16]. In the study, both a program and 

a constraint are represented by an extended regular expression, and it is proved using dataflow 

analysis techniques if the program satisfies the constraint. However, the analysis counts 

only static behavior, and the goal is verification rather than analysis as in our study. Con- 

strained expressions, a similar technique at design level, was presented in [1]. 

Our study shows several interesting points. First, the dynamic behavior of a program 

can be analyzed with the help of user information. The formal path model with a well- 

defined interface language provides a systematic way to exploit a user's high-level knowledge. 

Second, predictions can be very tight even for complex procedures. Adding dynamic path 

analysis makes it possible for a simple technique based on timing schema to predict tight 

bounds regardless of the complexity of a program. We can also produce many potentially 

useful results such as execution patterns and performances of some specific cases. Third, 

a prediction can be refined by a separate and scalable compensation step. A prediction 

method can be kept simple ignoring complications beyond statement-level. If more precise 

predictions are wanted, dynamic path analysis compensates predictions by reconsidering 

the ignored complications. Since the two processes are independent, path analysis does 

not degrade the simplicity of prediction. We believe that this approach is more efficient 

than an approach that makes the prediction method more complex. 

Section 2 summarizes our earlier prediction approach and experiments. Section 3 ex- 

plains user execution information and introduces a formal path model as the theoretical 

basis of our path analysis. In the next three sections, a practical approach is explained discuss- 

ing the following problems respectively: how to represent user execution information, how 

to verify the correctness of information given, and how to process information with a pro- 

gram. Section 7 shows experimental results with a timing tool that implements our timing 

prediction with dynamic path analysis. We close this paper mentioning future work in the 

final section. 

2. Summary of Timing Schema Approach 

Our prediction approach is based on the notion of timing schema for source program con- 

structs, which are essentially formulae for computing the lower and upper bounds for their 

execution times [20]. Timing schema decompose a statement into the component blocks, 
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and later compute the times of the statement by composing the predictions of those blocks 

according to the system-independent language semantics. The times of a component block 

which are dependent on implementation are predicted through object code prediction and 

machine analysis. Applying these decomposition, prediction and composition recursively, 

we can compute the time bounds of a statement, compound statement and procedure. The 

time prediction T of a statement or a block S is represented by a pair of lower and upper 

bound (i.e., T(S) = [tlow, tup]), where each bound tlo w and tup estimates the best and worst 

execution time, respectively. For example, the execution times of a simple C statement 

S1 : whi l e (a) a- -; can be predicted as shown in Figure 1. It shows how a statement 

is decomposed and predicted according to its timing schema on a target system, a GNU 

compiler and a MC68010 processor in this example. 

Statement: 

s l :  while (a) a--; 

Timing Schema: 

For loop statement S : while (exp) strut ; 

T(S) = (N+l) x T(exp) + NxT(stmt) + T(while,N) 

where N is a pair of loop bounds (i.e., N = [n,,in, nma~]), provided by a user. 

GNU C compiler's code generation rule and code for SI: 

s t a r t _ l o o p  L1 : 

exp  t s t l  a6@(-4 )  ; I 1 

S = = = >  e x i t  i f _ f a l s e  S l  = = = >  j e q  L2 ; 12 

s t m t  s u b q l  # 1 , a 6 @ ( - 4 )  ; 13 

e n d _ l o o p  j r a  L1 ; 14 

L2 :  

Code Prediction: 

T(exp) : T(a) = T(I1) 

T(stmt) : T(a--) = T(I3) 

T(while,N) : N x T(I2,fail) + T(I2,succ) + N x T(I4) 

where "I2,fai l"  is conditional jump instruction I2 whose branch is not taken. 

Machine (MC68010) Analysis: 

T(I1) = [ 16 , 16 ] (clock cycles) 

T(I2,fail) = [ 6, 6 ] 

T(I2,succ) = [ 10, 10 ] 

T(I3) = [ 24, 24 ] 

T(I4) = [ 10, 10]  

Time Computation: 

Suppose a user gives [0, 1] as loop bounds knowing that a is 0 or 1. Then, 

T(S1) = (N + 1) × T(a) + N x T(a--) + T(while,N) 

= (N + 1) x T(I1) + N x T(13) + N x T(12, fail) + T(12, succ )+  N x T(14) 

= ([0, 1] + 1) x [16, 16] + [0, 1] x [24, 24] + [0, 11 x [6, 61 + [10, 10] + [0, 1] x [10, 101 

= [26, 82](clock cycles) 

Figure 1. Timing schema and predicting the execution times of a while statement. 
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We believe that software timing properties should be reasoned about at the source language 

level, where a program is written, analyzed, debugged and maintained. Even for timing 

prediction, the lower level (e.g., assembly-level) analysis results in more loss than gain, 

because high-level information (e.g., algorithm or statement relations) is usually more 

valuable than low-level one (e.g., code optimization). We also expect that many code op- 

timizations can be handled by adjusting the granularity of decomposition and parameteriz- 

ing timing schema. 

We built a timing tool predicting the execution times of a program written in a subset 

of C, compiled by GNU C compiler and executed on a MC68010-based standalone SUN2 

[17]. The toot could be partitioned cleanly into an abstract system-independent portion 

and a lower level system-dependent part. The major issues were to determine the granularity" 

of an atomic block covering the effect of compiler's default optimization, and to handle 

machine nondeterminism such as instructions with variable execution times and unavoidable 

system interference (clock interrupt and memory refresh). We compared predictions by 

the tool with measured times of the best and worst execution cases for sample programs. 

The experiments showed that the simple timing schema approach can provide safe and useful 

predictions. However, predictions are looser for some complex programs having infeasible 

paths. Since timing schema cannot handle inter-relations among statements, predictions 

include the times of infeasible paths. For tighter prediction, the method needed to be ex- 

tended to take into account of the relations of statements and to eliminate the effect of in- 

feasible paths. 

3. Execution Information and Path Model 

3.1. Execution Information 

While organized with given language constructs, a program may encode some unintended 

behavior in the structure along with intended behavior. The unintended behavior, however, 

is prevented at runtime by constraints encoded with program logic and implicit data value 

assumption. Thus, the program structure only is not sufficient to figure out the real execu- 

tion behavior of a program. Execution information is information about the execution 

behavior of a program, such as a programmer's intentions and constraints encoded in the 

program. It can be used to remove some infeasible paths, which are formed in program- 

ming but not intended in execution. 

We believe that execution information can be supplied by a user, usually" a programmer. 

Since a programmer knows the details about the applied algorithm, program logics and 

specifications when he/she writes a program, it is not difficult to provide some execution 

information for the program. In some sense, execution information is another description 

of a program, explaining how it works in real execution. Some mechanical methods such 

as symbolic execution may also extract execution information from a program. However, 

they only work in some restricted cases and are very complex; some user information such 

as loop bounds is still necessary. User information, as long as it is correct, is usually more 

refined and flexible to use than one detected in a mechanical way. (Since a user may give 

wrong information, its correctness must be verified. We will explain it in Section 5.) 
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Any hints on program execution can be execution information. Examples include an itera- 

tion number for a loop statement and relations among statements (e.g., two statements S1 

and $2 must be executed together). We observe the following characteristics of user execu- 

tion information: 

• Incompleteness. It is unrealistic to expect a user has complete knowledge of every pro- 

gram behavior. Knowledge may also be limited to local behavior in some program 

segments. A user usually gives multiple statements of partial information. 

• High-level. The basic element of user information is mostly a statement or higher level 

one (e.g., sequence of statements). Some lower-level information, such as the value of 

a variable, can be replaced with statement-level information through a manual or an 

automatic deduction process. 

• Conditional and Scope-dependent. User information may have conditional clauses (e.g., 

if S1 is executed, $2 is not executed), and information on the same statement may vary 

depending on the applied scope (e.g., S1 is executed a maximum of 10 times in loop 

L1, but never executed more than 100 times in outer loop L2). 

• Interprocedural. As a program is modularized, it is composed of many small procedures. 

Thus, some execution information crosses procedure boundaries, giving the relations 

among procedures. 

3.2. Path Model 

We define a path as a sequence of program statements where a statement is represented 

by a label. A path is called a program path if it is defined in a program, following the 

control flow of the program from the start to the end. A program path is feasible if it is 

executable on some data set. An infeasible path means a program path which is not feasi- 

ble; that is, it is possible statically, but impossible dynamically. We also use a subpath 

to mean the subsequence of a path. 

In our path model, each statement of user execution information is represented by a set 

of paths in a constructive way. For an information statement, we construct a set of all paths 

satisfying its intended constraint and thus being feasible with respect to the information 

only. The set should include all feasible paths of a program, but it excludes infeasible paths 

which violate the constraint. For example, if a user has information, statement a is always 

executed, it is represented by the set of all paths passing a. The set includes no path not 

passing through a. No information becomes a set of all paths (i.e., all paths are feasible 

with no information). 

There are two main reasons why we chose the path model. First, a set of paths is a general 

and uniform way to describe various user execution information. Second, both a program 

and information are represented in the same language. By representing information with 

paths, the problem of information processing becomes that of  path processing, and we can 

use well-known operations and results in path processing. 

The path model is illustrated in Figure 2. Let Ae be the set of all statically possible pro- 

gram paths, a path representation of program P. Ap includes a set of all feasible paths X e 

but also has some infeasible program paths, which our goal is to eliminate. Let Ip be user 
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Z* 

Figure 2. Path model. 

execution information of P, also as a set of paths, Since user information is usually partial, 

Ie is also usually a partial approximation to Xe. It may include some infeasible paths that 

are not constrained by the information. Ip can also include even nonprogram paths (i.e., 

the portion of Ie not in At,), because the information may mention the local behavior of 

some program segments, not that of the whole program. However, as constructed towards 

X e, Ip must include all feasible paths X,,,. 

The operation of filtering infeasible paths can be achieved by simply intersecting A e and 

I e, because both of them are supersets of Xp, and le excludes some infeasible paths. The 

intersection result, X~ is a safe estimation of Xp; we call X]~ the set of possibly executable 

paths. It still may have some infeasible paths not excluded by Ip, but it covers all feasible 

paths. The portion of 1 e not in Ae is also eliminated by Ap. The difference between Ae 

and X],(Ae - X[~) becomes the eliminated infeasible paths. In summary, the relations 

among the path sets are 

xb = Ae n Ip (1) 

Xe c_ Xb c_ Ae (2) 

Relation 2 is also true in timing. For a set of paths H, let T(H) be a time interval for 

the execution times of the paths in II. (We use the same timing notation T(II) for a set 

of paths as for a program T(P), because a program is represented as a set of program paths 

in path analysis.) Then, 

B B 
T(Xe) ~_ T(Xb) c T(Ae) 

B B 
where interval inclusion operator c_ is defined as Nllows: [a, b] ~ [c, d] - (c _< a) 

A (b __< d). Thus, T(Xb) is also a safe estimation to the execution time of P, and it is tighter 

than T(Ap) based on the program structure only. 
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symbols :: 
alphabets(Z) : a set of statement labels 
operators: + , .  , * ,  n , 
parenthesis : ( , ) 
empty set : 0 
wild cards : 

* means any string of any statements (~*) 
_ means any string of statements not containing adjacent statements 

(i.e., x_y = x(~ - {x, y})*y ) 
path :: 

a regular expression of symbols 

Figure 3. Path language based on regular expression. 

Our language for path description (say path  language) is regular expressions extended 

with the operators for intersection and negation, as summarized in Figure 3. These two 

operators do not increase descriptive power, but they allow compact representation of some 

information requiring an exponential length expression in regular expressions without this 

extension. We also introduce two wild cards, " * "  (different from the Kleene star *) and 

" _ " .  Figure 4 shows the path descriptions of  a program and some user information in 

our path language. Note that Ap requires neither intersection, negation nor any wild cards. 

The details of  statement naming will be described later (Section 4.2). 

The choice of  regular expressions was obvious because it is a formal language widely 

used in many areas including program representation. Its properties are well-known, and 

most operation and decision algorithms have also been developed. The descriptive power 

is at least sufficient to describe all feasible paths (Xp), because we assume a program has 

only finite feasible paths. Other good points are that its wild cards are good at abstraction 

for partial information, and it (its recursive definition) uniformly treats a statement, a path 

and a set of paths, which is helpful for handling interprocedural information. 

As discussed in Section 3.1, a user usually gives multiple statements of local and partial 

information. As combined conjunctively, those partial information statements compose more 

global and specific information for the program. In the path model, each information state- 

ment becomes a set of paths (I~), and combining partial information can be done by inter- 

secting the sets of  information paths. Equation 1 can be rewritten as follows 

x b  = Ae n l e  

= Ap n (I~ n t~ . . .  t~) 

= ( . . . ( ( A e  n I~) n I ~ ) . . . )  

A set of information (I~) is usually described by concatenations of some specific sub- 

paths and nonspecific subpaths. Specific subpaths composed of  statement labels represent 

the meaning of the information. Nonspecific ones make the specific ones into a set of paths 
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Program 

c h e c k _ d a t a ( )  

{ 

i n t  i ,  m o r e c h e c k ,  w r o n g o n e ;  

morecheck = 1;  J = O; w r o n g o n e  = - 1 ;  

L :  w h i } e  (rnorecheck) 

L B :  { 

i f  ( d a t a [ i ]  < O) 

A :  { w r o n g o n e  = i ;  m o r e c h e c k  = O; } 

e l s e  

B:  i f  ( + + i  > =  d a t a s i z e )  rnorecheck = O; 

} 

i f  (wrengone >=  O) 

C: { hand I e_except  ion (wrongone) ; r e t u r n  O; } 

e l s e  

C'  : r e t u r n  1 ; 

} 

Program Path (Ap) 

L"  (LB " (A + B))* • (C + C') 

User Information and Ip 

1. The loop is executed 10 times since the size of data is known externally to be 10, 

_( LB_) 10 

2. If A is executed, the loop is finished and C is executed next. 

~(*A*) + A "  C* 

Figure 4. Path descriptions of simple program and path information. 

that includes all feasible paths. Nonspecific subpaths, usually wild cards, may be very 

abstract, because after intersecting A e, X# has only program paths of P regardless of what 

I~ has. 

3.3. Pathwise Decomposition 

Path processing in the path model is basically to compute Ap 0 lp and determine X~, 

all of which are described by regular expressions. Since Xk should tell the behavior of 

a program and will be used later in timing prediction, it must be a set of program paths 

without any wild cards. We also remove fq and -7, because they cause difficulties in 

timing prediction. 

Our principle of path processing is pathwise decomposition. As discussed earlier in Sec- 

tion 3.1, a program is the result of structured composition of intended behavior. Better 

reasoning of a program is possible by decomposing the behavior. In the path model, this 

can be achieved by pathwise decomposition meaning that all of the possibly executable 
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paths are decomposed into several subsets where each subset represents a pattern of pro- 

gram behavior. During path processing, we express intersection results as a sum of subsets. 

Then, after intersecting all information paths, 

and each subset II~ represents a group of possible executions having common behavior 

patterns. 

Pathwise decomposition is also compatible with timing prediction. First, compute the 

time bounds of each subset (T(II~,)) using our basic static timing prediction technique. We 

may have tighter bounds because each subset describes more specific paths (and thus has 

fewer infeasible paths) than Ap. Then T(X]~) is computed as 

~(xk) = ~(n~) U T(H~) U . . .  U T(H~) 

= [min{low(T(IYp))},  max{up(T(IYp))}] 

where min and max are the minimum and maximum function, and low(T) and up(T) denote 

the lower and upper bound of T, respectively, as defined in Section 2.2. 

There exists a known algorithm for resolving intersection and negation in regular ex- 

pressions. However, it was proved that the complexity of the problem requires exponential 

time in the general case [12]. The length of a regular expression may also increase ex- 

ponentially after resolving intersection. These complexity results imply that we need to 

find some practical solutions appropriate to our problem domain. 

4. Information Description Language 

4.1. Two Level Language Scheme 

Our regular expression based path language is compact, and makes it possible to represent 

a program and user information in the same way. Conceptually, processing is simple enough 

to be done by one operation, intersection. However, intersection requires exponential com- 

plexity in reality. Another problem is that our path language may be too formal for a user. 

Describing one's knowledge with the operators and wild cards of regular expressions seems 

to be difficult and error-prone. Finally, we have to develop a method to verify given path 

information. 

We believed that the above problems of the path language can be addressed by com- 

promising the descriptive power for ease of processing and by introducing a high-level user 

interface language. A user gives execution information in the interface language which is 

somewhat restrictive but easy to use and verify. The given information is then mechan- 

ically transformed into the base language, i.e., the path language. The transformed path 

information is processed as shown in the path model, but it can be done efficiently because 

the information now has some restricted forms only allowed in the interface language. 
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The interface language should be a practical high-level subclass of the path language. 

It must restrict a user to prevent transformed information from being too complex to process. 

However, it should provide sufficient ways to describe necessary and valuable informa- 

tion. It should also be high-level for ease of use. Finally, it must be formal not only to 

be able to transformed to be the path language but also to be verifiable from a program 

text or specifications. 

In developing the interface language, we made the following decisions based on the 

characteristics of user execution information discussed in Section 4.2.2. First, the language 

is statement-based. A statement is the basic object in the language; the notion of a path 

may appear in a restricted way, only through path grouping. Second, it is logic-based; in- 

formation is expressed as logical relations among statements. The above two decisions come 

from the observation that a sequence may cause difficulty in intersection, and it can be 

replaced with logical descriptions in most cases. Logic-based information may also be com- 

patible with existing verification technqiues based on program logic. Third, information 

on iteration numbers for a loop and on the execution counts of  a significant statement (i.e., 

how many times it is executed) should be describable. Although they result in complicated 

intersections, they are necessary in determining the realistic behavior of a program and 

eventually predicting the times. Finally, to support interprocedural information, we pro- 

vide a method to summarize the behavior of a procedure and to export it to other procedures. 

4.2. Information Description Language (1DL) 

Based on the above decisions, we define the information description language (IDL) as 

an interface language directly accessed by a user. Figure 5 shows some IDL information 

statements for a procedure. It also shows how interprocedure information between two pro- 

cedures is expressed. 

The basic element is a statement name, which stands for a statement, compound state- 

ment or procedure path in a program. A name for a statement and compound statement 

is identified as a label in a program, and a name for a procedure path is defined in the 

path group information for the procedure (which will be explained later). We also allow 

default naming where a user can address a statement by a hierarchical name derived unam- 

biguously from other labeled statements (e.g., A. then denotes the statement executed when 

the condition of A is true). A labeled name always overrides the default name. We believe 

that properly used default naming is easy to understand and reduces troublesome name 

composition. 

Many statements are neither labeled in a program nor mentioned in IDL informations 

directly or by default. They are totally invisible in program analysis, not because they are 

less important but because they are executed simply as specified by the program structure 

or a user has no information on them. Their timing behavior must be kept intact during 

program analysis and be counted in timing computation of a program. 

Table 1 shows the syntax of IDL. IDL information consists of two parts, execution 

information and path group information. The basic unit of IDL execution information is 

INFO-CLAUSE, which describes relations among statements and the execution counts of 

a statement. Path group information part is composed of lines of GROUP-SENTENCE, 

each of which describes one instance of path grouping. 
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• Procedure 

c h e c k _ d a t a ( )  

{ 

i n t  i ,  rao recheck ,  w rongone ;  

morecheck  = i ;  i = O; w rongone  = -1 ;  

L: w h i l e  (morecheck )  

{ 

i f  ( d a t a [ i ]  < O) 

A: { w rongone  ~ i ;  mo recheck  = O; } 

e l s e  

B: i f  (++ i  >= d a t a s i z e )  morecheck  = O; 

} 

i f  (wrongone >= O) 

C: { hand I e _ e x c e p t  i on (wrongone)  ; r e t u r n  O; } 

e l s e  r e t u r n  1; 

} 

• Information 

1. loop L [1,10] times; 

(Loop L is iterated [1,10] times; the size of data is known as 10.) 

2. samepath(A,C); 

(Statements A and C must be executed together.) 

3. (not A) imply loop L 10 times ; 

(If A is not executed, then L is iterated 10 times.) 

4. execute A[0,1] times inside L; 

(The exception case A is executed at most once inside L.) 

5. pathgroup EXCEPTCASE passing C ; 

(All paths passing through C are grouped into EXCEPTCASE.) 

• Another Procedure 

t a s k 1 ( )  

{ 

A:  d s t a t u s  = c h e c k _ d a t a ( ) ;  / *  i n voke  ' ' c h e c k _ d a t a ' '  * /  

i f  ( ! d s t a t u s )  

B: c l e a r _ d a t a ( ) ;  

} 

• Interprocedural Information 

1. samepath(A.check~data.EXCEPTCASE , B) ; 

(Statement C in "check_data" must be on the same path with statement B in "task1".) 

Figure 5. Example of IDL information. 
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Table 1. The syntax of IDL. 

INFORMATION 

tNFO LINES 

INFO~INE 

INFO_SENTENCE 

INFO CLAUSE 

ALWAYS 
SPATH 

NPATH 
XPATH 
LOOP 
TIMES 
IMPLY 

SCOPE 
CONSTANT 

COND 

GROUP_LINES 

GROUP_SENTENCE 

::= INFO_LINES t GROUP~LINES 

I INFO_LINES GROUP LINES 
:: = INFO_LINE 

I INFO_L1NES INFO LINE 
::= INFO__SENTENCE 

t INFO_LINE or INFO SENTENCE 
::= INFO_CLAUSE [ SCOPE ] ';' 

::= ALWAYS [ SPATH [ NPATH I XPATH 

I LOOP [ TIMES I IMPLY 
] INFO~CLAUSE or INFO_CLAUSE 

[ INFO_CLAUSE and INFO_CLAUSE 

:: = always '(' STMT [, STMT] ')' 
::= samepath '(' STMT , STMT [, STMT] ')' 

:: = nopath '(' STMT, STMT [, STMT] ')' 
::= exclusive '(' STMT , STMT [, STMT] ')' 
:: = loop STMT CONSTANT times 
::= execute STMT CONSTANT times 
::= COND imply INFO_CLAUSE 

::= inside STMT 

:: = INTEGER 
I '[' INTEGER ',' INTEGER ']' 

::= STMT [ '( 'COND ')' 
[ not COND 
[ COND or COND 

] COND and COND 

:: = GROUP_SENTENCE 
GROUP_LINES GROUPSENTENCE 

::= pathgroup STMT passing COND "' 

A statement  name  is also used to specify the scope, the boundary  where  informat ion 

is effective. As we discussed in Section 3.1, a user  informat ion statement may be true in  

one  scope bu t  may be false in other  scopes. To avoid confus ion,  a user  can specify the 

scope of his /her  informat ion  as the name  of  the bounding  statement, ff the scope is not  

specified explicitly, the default scope becomes the nearest  c o m m o n  enclosing compound  

statement of  the statements appearing in given informat ion;  the only  exception is a lways 

clause where  the default scope becomes  a procedure.  We introduce two default labels S.$s 

and S.$t for the start and end of non-s imple  1 statement S. They may not  be used in an 

IDL description, but  appear in translated path information as delimiters specifying a scope. 

These delimiters not  on ly  make path informat ion precise without  confus ion but  also make 

path processing easier by localizing intersection. 

Instead of giving a formal semantics  for IDL,  we here explain its mean ing  informally. 

Four  of seven INFO__CLAUSEs are constraints on the relations among  statements. 

always(A) means  that statement A is always executed in all paths. I f  two statements are 

always executed together, a user  can say samepa th (A,B) ,  mean ing  A and  B must  be on 
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the same path. Similarly, "nopath(A,B)" is used when there must be no path passing both 

A and B, and "exclusive(A,B)" when A is executed if and only if B is not executed. 2 For 

the execution counts of a statement, two clauses are provided, loop L N times means that 

loop statement L iterates N times, and execute A M times says that A is executed M times 

inside given scope. Finally, C imply I describes conditional information saying if condition 

C is true then information I is true. A statement appearing in condition (COND) means 

the execution of the statement. For example, (A) imply always(B) means that if A is exe- 

cuted, then B is executed. The meanings of higher-level constructs are obvious. As an ex- 

ample, "nopath(A) inside L 1 ; or execute A 1 times inside L2 ;" means that statement 

A is not executed inside L1 or it is executed only once inside L2. 

Path group information does not eliminate infeasible paths; it is applied to organize the 

results of path processing and to express interprocedural information. After all execution 

information is processed in a pathwise manner. X~ is decomposed into several subsets. 

However, this decomposition does not always provide a summary that a user wants to know; 

it may be too coarse or too refined to extract the patterns of behavior. Thus, we provide 

a user with ability to define cases that he/she wants to know. A pathgroup information 

pathgroup PATHNAME passing COND has the meaning that all paths in Xb satisfying 

COND are grouped and named as PATHNAME. In IDL a condition clause is restricted 

to have only statements conneced by logical operators. 

One purpose of path grouping is to analyze the execution patterns of a procedure. In 

addition to the execution time bounds of all cases, a user may be interested in case by case 

analysis. (For example, for the procedure ' ' check_da t a '  ' in Figure 5, a user may want 

to know the execution times for the case when an exception happens.) Through path grouping, 

one can define some execution cases of a procedure and have predictions on them, the 

behavior as paths and the timing as bounds. With some qualification, each path group 

becomes a more specific representative of the procedure. Thus, we treat it like a separate 

procedure whose name is extended with the path group name as a qualifier (i.e., 

check_data. EXCEPTCASE). 

The other purpose is to simplify handling interprocedural information. The easiest way 

to describe interprocedural information is to access the statement names of other procedures 

directly as the statements in the same procedure. However, it implies that the procedures 

should be processed together. A procedure should be analyzed whenever it is called, and 

the size of path representation grows. Path grouping provides an indirect (but structured) 

way to access statements across procedures. If all paths passing through a statement are 

grouped by path group information, interprocedural information to a statement may be 

replaced with information to the path group name. Since the behavior of the path group 

has already been analyzed, we simply use the exported results without processing the pro- 

cedure again. Certainly, interprocedural information with path group names is less expressive 

than information described directly with statement names, because a condition clause in 

path group information only has statements. We expect, however, that many useful inter- 

procedural information statements can be expressed with path group names. 

4.3. IDL Translation 

User information written in IDL is translated into regular expressions which represent the 

set of information paths (Ie) in the path model. Translation is done following the structure 
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of IDL; IDL information is translated line by line, and inside a line it is done in bottom-up 

fashion from statements to clauses and to sentences. 

The summary of translation rules is given in Table 2. The basic idea in translation is 

to construct a set of paths satisfying the constraints meant by an IDL statement; all feasible 

paths (Xp) must be included into the set because they certainly satisfy the constraints. 

Regular expressions for an information clause can be built easily according to their logical 

semantics. For an information sentence, its scope, determined by default if not specified 

explicitly, should be translated. Since a scope is basically a condition that the clause is 

true only if the scope statement is executed, we have to add paths where the scope is not 

executed. For the case that the scope is executed, its paths are constructed as a Kleene 

closure of the translated clause with the distinguished delimiters for the start and end of 

the scope. (We call this closure a scope closure.) 
It is worthwhile to note that translated regular expressions have only a few patterns. Of 

course, this is the goal to introduce a restrictive interface language. Since information paths 

are not so general but somewhat structured now, we can find an efficient algorithm 

Table 2. IDL translation rules. 

1. Statement names  in condition clause 

A = (*A*) 

2. Logical operators 

and = n 

or ~ + 

not ~ -~ 

3. Information clause 

(a) always(A) 

(*A*) 
(b) samcpath(A,B) 

(*A*) N (*B*) + -~(*A*)('I~(*B*) 

(c) nopath(A,B) 

= -1 ((*A*)N(*B*)) 

(d) exclusive(A,B) 

= (*A*)A-~(*B*) + -~(*A*)A(*B*) 

(e) loop A K times 

= ~ (*A*)+_A.$s A.$c (~A.$c) K A . $ t  _ 

where A.$c denotes the default name for the loop condition of A. 

(f) execute A K times 

= ( _ A _ )  K 

(g) C imply I c 

- lac + aC N alc 
where a c and alc represents the translated regular expressions of C and 1 o respectively, 

4. Information Sentence 

I C inside S ; 

= -1 (*S*) + (_ S.$s ai¢ S.$t _)* 

where S.$s and S.$t are special default statement labels for the start and end of S. The scope S is determined 

by default if it is not given explicitly. 
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intersecting them with program paths (Ap). Here, we emphasize again that IDL is one of 

many possible subclasses of path language. We chose IDL by trading off between ex- 

pressiveness and processibility based on the characteristics of user information. The appro- 

priateness of IDL can be validated through a lot of experimental work. (We will address 

it in Section 7.) 

5. Verification of  User Information 

Since we eliminate paths in prediction based on user information, the correctness of given 

user information is critical to the correctness of predicted results. If  a user gives wrong 

information, the tool may eliminate some executable paths, and predictions neglecting those 

paths may be unsafe. What does it mean that information is correct? We say that user in- 

formation is correct if every execution of a program follows its semantic or constraints. 

(In the formal path model, le is correct if Xj, ___ It,.) To prove correctness, all execution 

cases should be reasoned about from a program text and all preconditions on which the 

program is running. Preconditions (e.g., the domain of data values) may be not specified 

explicitly in a program, but imposed implicitly by specifications such as assumptions on 

the environment. 

In this work, we do not introduce a technique or a tool to check the correctness of given 

user information automatically. It is already known that proving a properties of a program 

is undecidable in general. There have been some program verification tools (e.g., [16]), 

but our user information is more sophisticated than their capability because it specifies 

high-level dynamic properties. Our goal is to provide a user with a formal way to reason 

about the correctness of his/her information. Actual verifiction should be made by a user 

according to the procedure. The message here is that our user information is sufficiently 

formal to prove its correctness, and verification can be done by well-known techniques. 

The basic strategy is to use an assertional program logic; Figure 6 illustrates the pro- 

cedure. First, user information for a program is transformed to an assertion on program 

variables. Then by proving that the assertion is true in the extended program with a proper 

program logic, such as Hoare logic [5], or Dijkstra's weakest-precondition [4], we can 

verify the correctness of the information. Some assertions cannot be verified by a program 

text only, because they are related to some assumptions on the system and/or environment. 

Knowledge of those assumptions provided from specifications is transformed to precondi- 

tions at the beginning of the program. We chose program logic because it is a well-known 

powerful technique for program verification. Since our IDL is logic-based, the transfor- 

marion is also easy. 

Figure 7 shows how a problem of verifying IDL information is reduced to a problem 

of program verification. Since information I is about statement A and B with scope L, pro- 

gram P is extended by adding 3 statements (enclosed by < > )  after A and B and before 

L. The assertion to be verified is put at the end of L. 

Equivalence relation between the information (/) and the assertion (Ax) is obvious. Since 

#A and #B are zero before L and they are incremented only when A and B are executed, 

the value of #A and #B after L represents the number of times A and B are executed inside 

L, respectively. Thus, the assertion AI is true if and only if both of A and B or neither 
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........... A s s e r t i o n s  ,] / 

Figure d Verification procedure. 

* Program 

.P :: 
begin 

L begin 
, , .  

A: SA 

BI. L 

end 

end 

, User Information 
I :: samepath(A,B)inside L ; 

• Assertion and  Extended Program 
p, 

begin 

< ' # A  = #B = 0 ;  > 

L: begin 

A: S a < #A = #A + 1 ; > 

B : S  B < #B = # B  + 1 ;  > 

end 

{ a  t = (#A > 0 A  #B > 0) v (#A = 0 A  #13 -~ 0) } 

end 

Figure 7. An example of problem reduction. 
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of them are executed throughout L; that is, A and B are on the same path. Assertions for 

other types of information can be easily built using predicates on the value of auxiliary 

variables, in a similar way to the IDL translation. For example, A imply always(B) is 

transformed to {(#A = O) V (#B > 0)}. [18] shows the rules generating an assertion from 

an IDL sentence. 

Assuming that every loop is terminated (we assumed that a program is correct and has 

only finite execution paths), most of the assertions can be proved by Hoare logic. From 

the precondition of a program, we apply the axiom of each program statement and prove 

that an assertion is true. If  one wants to prove the termination of a loop, Dijkstra's weakest 

pre-condition or a terminate function [8] can be used. To prove interprocedural informa- 

tion, one has to take care of parameters, return values and global variables. The detailed 

procedure to prove user information and an example of program verification are described 

in [18]. 

6. Path Processing 

61. Intersection Through Information Terms 

As we discussed in Section 4.3, the set of information paths translated from IDL informa- 

tion consists of a few patterns of regular expressions basically having only one statement 

label. Paths are constructed by connecting them with logical operators and encapsulating 

them with a scope closure. We call these patterns information term or simply term (tl). 

Four types of information terms may appear in any translated information paths. We name 

each pattern as follows: 

(*a*) 

(*a*) 

_ a.$s a.$c (_ a.$c) k a .$t_  

(_a _)k 

:ALLPATHTHRU 

:ALLPATHNOTTHRU 

:LOOPBOUNDS 

:EXECCOUNTS 

The first step in path processing is to simplify information paths. We first remove all 

negation operators. Using Demorgan's law recursively, ~ operators in a path expression 

are moved down to the terms and finally combined with an ALLPATHTHRU term to be 

an ALLPATHNOTTHRU or vice versa. 3 Next, we transform it to a disjunctive form. 

Because of a scope closure, it is done at the two levels: inside and outside a scope closure. 

Let ai denote a regular expression for the set of information paths translated form L 

(We call it information expression.) For IL and Is~, an IDL line (INFO~LINE) and a 

sentence (INFO_SENTENCE),  respectively, 

%=%+%. . -+%~ 

For each information sentence, its information expression is composed of a term of the 

scope and a scope closure as follows (see Table 2): 
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%1 = -~(*S*) + ( _ S . $ s  alc S.$t_3" 

where S is the scope of  the sentence, and Ic is its information clause. 

Inside a scope closure, we can transform Gic to a disjunctive from. That is, 

aXc= (tll n t12 n . . .  tin1) + (t2i n t22 o . . .  t2nz) -~- . . .  -~- ( t m l  n fro2 n . . ,  tmnm)  

where t U is an information term. 

Our strategy of path intersection is localized modification. First, intersection is achieved 

by modification. For A n ~r with any regular expressions A and ~r, we resolve intersection 

by modifying A to be included into or. More precisely, we remove all paths in A which 

are not included in a, but no path is modified if it is in or. 

For a regular expression r, let L(r) be the set denoted by r. Since we modify A (say A')  

such that 

L(A')  = L(A) - L(tr) 

where L(cr) means the complement set of  L(a), and 

L(A) - L(a) = L(A) n L(a) = L(A n or) 

we have 

A'  = A A a  

Therefore, the modification resolves intersection. 

The idea of  localization is derived from the following observation. Suppose cr does not 

contain s or t (one may consider s and t special positioning symbols). Then, 

A N ( _ s ~ t _ )  

S A 0  S (A 1 n o-) t A 2 if A = AoSAltA2, and none of  A 0, A 1 and A2 has s or t 

otherwise 

That is, special symbols localize intersection with an expression to intersection with its 

subexpression. 

Suppose A is a set of  program paths, and a is a set of  information paths. Since a usually 

has constraints only on some subpaths within a scope, testing if a path in A is included 

in a or not can be localized, and so can modification. Let cr = ( _ S.$s a'  S .$t_)* Then, 

from the above observation, A O a is resolved by locating every occurrence of scope S 

in A, and intersecting a '  with its subexpression enclosed by S.$s and S.$t. In other words, 

A n a is eventually solved by localized interactions ai n a '  where S.$s c~ i S.$t is a subex- 

pression of A. 
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One important aspect of localization is that a scope closure can be ignored in intersec- 

tion. A scope closure in an information expression is essential to locate a subexpression 

of a program expression to be intersected, but it does not participate in actual intersection. 

As a result, assuming that localization by a scope closure is enforced implicitly, we can 

view an information expression from an IDL line, all  as a disjunctive form of informa- 

tion terms. 

From the path model (Section 4.3), 

X ~ , =  Ap  n lp 

= n n n o7 ) 

: n n n 

where n is the number of information lines. Suppose crjL = (tll n t{2 n . .  i • t ~ , )  + . . .  

+ ( t i l  n t i2  . . .  n tmnm in a disjunctive form as above, then 

n 

n ((t{1 n t{2  n ' ' ' ' = • • • fin,) + . . .  + ( tml  n tm2 . . .  n tmnm) ) 

( . ( (a~  n tj l  ) n t~2 ) o i i i . . . . . . .  tml ) n n = . . . .  tln,) + + ( ((A b n i tin2) . . .  tmnm ) 

where Al~ denotes an intermediate result of intersection with o~L for j < i. 

From the above formula, we can see that path analysis is eventually a sequence of in- 

tersections with information terms. The algorithm intersecting four types of information 

terms is shown in Figure 8. Here, II is a subexpression localized by a scope, which will 

be modified depending on the meaning of a term. Operator o will be explained in the next 

subsection. 

Since path group information only summarizes program behavior, it is processed after 

path processing is finished. Processing path group information is again done by intersec- 

tion. For each path group information, the regular expression translated from its condition 

clause is interseced with Xb, the result of path processing. Since the intersection gives a 

set of program paths which are possibly executable and which satisfy the condition, it 

represents the corresponding path group. After computing the time bounds of the path set, 

we keep them with the given path group name in the procedure time table for reference 

in other procedures. (In fact, we also prepare the time bounds of the complement group 

for a given path group because a path group can be negated.) 

6.2. C o m p l e x  In tersec t ion  

Although information expressions can have special structures by introducing IDL, its in- 

tersection is not always easy. The complex case is when a statement in a loop is constrained. 

For example, when an information term is ALLPATHTHRU(a) and a is inside a loop (e.g., 

(a + a ,)I¢ n (*a*)), the intersection result includes every path passing through a at any 

iteration of the loop. It is already known that without an intersection operator, this type 
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intersect term(H, tl(a)) 
/* H is a regular expression localized by a scope 
tt(a ) is an information term on statement a */ 

{ 
case (ti(a)) { 
ALLPATHNOTTHRU: 

every a in II is replaced by 0 
simplify II by removing 0 

LOOPBOUND: 

for every a in II, 
replace closure star * with iteration with bounds Ca) as given in t l 

ALLPATHTHRU: 
if a is not in II then i l  ~ 0 
if a is inside a loop then II '-- II o t x 

if a exists but not inside a loop then 

replace all alternative subpaths with 0 
simplify II by removing 0 

EXECCOUNTS: 
1I ~- II o t I 

} 
} 

Figure 8. Algorithm of intersecting terms. 

of  path set requires an exponential  length descript ion enumera t ing  all cases. Thus,  we take 

special care of  this complex intersection; resolve it 11o further in path processing and han-  

dle it in t ime computat ion.  I f  I I  f l  ti is complex,  it is marked as I I  ~ t,, but  treated as 

I I  V) tl in the remain ing  path intersection.  Then  T(II 0 tt) is est imated during t ime 

computat ion.  

The method to est imate the t imes of complex intersection is as follows. Let Pbest and 

Pworst be the best  and worst case path of I I ¢  tt, respectively, such that 

Pbes, Pworst E II (> t I 

and for any path p ~ II  o tt, 

low(T(pbest)) <- low(T(p))and up(T(p)) <_ up(T(Pworst) ) 

We first bui ld  Pbest and  Pworst, and then T(II ¢ tl) is est imated as [low(T(pa~st) ), 

up(T(Pwor~t))]. The predict ion is safe, because 

low(T(pbest)) <- low(T(p)) <_ tb(p) <_ tW(p) <_ up(T(p)) <_ uP(T(pwor, t)) 

where tb(p) and tW(p) means  the best and  worst execution t imes of  path p. 

In  bui ld ing the best path Pbest (the worst case is handled in the same way), I I  is used 

as a basis (template) of  path construct ion,  and tl works as a constraint  accepting the con- 

structed path. We start f rom the best case path 7rbest of I I  and modify  it to be  included 

into t~, which  we call path modification. As long as a modif ied path is kept in I I  and in 
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the best case, it becomes the best path of II f'l tt. To be in H, a path is modified only 

to another path in II. To keep it in the best case, we minimize modification; since we started 

from the best case path, the less we change it, the closer it is to the best case path. Modifica- 

tion is done by unwinding a loop, replacing the subpath inside the unwound loop with the 

best alternative subpath defined both in II and tt, and arranging (or expanding) the loop 

bounds until tt is satisfied. (There may be more than one best and worst path; Pbest and 

Pwom become one of them.) 

This path modification works well when there is only one complex intersection in a scope; 

however, it does not if a scope has multiple complex intersections (e.g., re <> t} 0 ~ or (re1 

• (~r 2 <> t})) ~ ~). Because of the relations among the information terms, it is difficult to 

keep a modified path in the best and worst case. There may be some ways, probably com- 

plex, to solve this problem, but we are adopting an easy approximation method here. 

Our approximation method is to select the most effective intersection, meaning the in- 

tersection with a term which gives the tightest predictions. For II o t} <> ~ . . .  o t~, (t~ 

can be on the different scopes inside II), we apply a single complex intersection for each 

t'p and select the best and worst time among the results. That is, 

B 

T(n o t) <> <> t,a) ("1 T(n tl) 

B B 
where interval-bound operator O is defined as follows: [a, b] O [c, d] - [max(a, c), 

rain(b, d)l 4. For any t~,, 

(n o d <> d . . .  o (n t>) 
B 

r ( n o 4 )  

Hence, the approximation is always safe. 

6.3. Time Computation 

Path analysis gives the set of possibly executable paths as a sum of subsets (i.e., Xb = 

1I~, + . . .  + II}). We focus here on how to use this result of path analysis and to com- 

pute a tighter prediction. 

Several methods were considered. One of them is program transformation where for 

each subset 1I~,, the original program (P) is transformed into a new program (pi) whose 

program paths (Az) are equal to II},. We can apply our prediction technique to each 

transformed program as it is, and compute T(X~) by merging the predictions of each pro- 

gram as explained in the path model. The benefit of this method is that path analysis is 

completely transparent to timing prediction. However, the method is likely to be ineffi- 

cient because of transformation cost and repeated timing prediction. Temporally equivalent 

transformation including control cost seems also nontrivial, especially if a program has 

complex structures. 
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Conditional timing schema is another. The timing schema for a statement is expanded 

to a conditional formula to compute different times case by case. Each subset has its own 

timer and counts the corresponding time bounds for a statement, depending on whether 

it has the statement or not (i.e., whether its path passes through the statement). For exam- 

pie, given if statement S : if (B) then St else Se, 

T(B) + T(St) + T(then) 

T(S, II~) = J T(B) + T(Se) "k- r(else) 
L T( S) 

if St ~5 Hip A Se¢ IIip 

if  S e E nZp A St ~ II~p 

otherwise 

where T(S) is the old timing schema covering both cases together. With slight expansion 

of timing schema, we can use the result of program analysis directly in the same timing 

prediction method. Also it is more efficient than program transformation, because a pro- 

gram is read only once and multiple timers are updated together. However, the method 

suffers some complication that timers (T(H~)) should be managed dynamically. 

Both methods provide clean separation for two tasks; path analysis works as an indepen- 

dent preprocessing, and the same or slightly modified timing computation technique can 

be used. However, regardless of implementation complexity and cost, neither method sup- 

ports path modification with respect to time, which is important in handling complex in- 

tersections (Section 6.2). 

The method we chose involves a timed label, where a label of a statement is expanded 

to have not only the identifier of a statement but also the execution times of its components. 

The execution times of each statement are predicted and recorded into its label by the basic 

schema-based prediction method, when the set of all program paths (Ap) is generated from 

a program text. After path analysis, the execution times for the set of possibly executable 

program paths (X~) is computed using the times recorded in the labels. 

In building timed labels, all of the timing information to be used later in time computa- 

tion should be prepared. For a simple statement labeled by a user or default naming, its 

execution times are predicted and recorded into its label. I f  a statement is a labeled but 

nonsimple statement, its time bounds are not determined here because it may be manipulated 

in path processing. Instead, all timing components including control costs are prepared. 

Some of the components whose times are not predictable (e.g., nested nonsimple statements) 

keep a pointer to the corresponding subpath instead of time values. In case a statement 

is unlabeled, its times are determined and added to the times of a labeled statement that 

is in a straight-line with it in execution. This is always possible because there exists at 

least one label given by a user, the procedure name. 

Since each label has its execution times and the timing of each operator 6 is also well 

defined, we can easily compute the time bounds of any subpath of a program at any time, 

even in the middle of path processing. This makes it easy to process a complex intersec- 

tion, which requires a lot of path modification based on its times. The method is also as 

efficient as conditional timing schema. The only drawback is that it imposes conceptually 

more sophisticated combination than the above two methods; instead of two purely separate 

processing steps, timing prediction is divided into two substeps, and path analysis is ac- 

tivated in the middle of them. 
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The complexity of our timing prediction is purely that of path processing, because it 

starts with information analyzed by a user. All the basic steps in path processing: simple 

intersection with an information term, path modification for complex intersection, and time 

computation for each subset of paths (II~,), are linear to the length of a program. It is ob- 

vious that the number of information terms is determined by the amount of user informa- 

tion provided. The number of the subsets also depends on user information. Theoretically, 

it can be as many as the number of program paths; consider the case when a user specifies 

every program path with IDL statements. However, this may not happen in practice (in 

the experiment, less than 10 IDL statements specifying less than 5 subsets for most pro- 

cedures). In summary, considering the size of a program constant, the prediction cost is 

a function of the amount of user information, basically the number of IDL statements. 

Unless the amount is abnormally large, prediction can be made efficiently. 

7. Experiments 

We have built a prototype tool to predict the execution times of a program with the path anal- 

ysis technique based on the path model. The tool inputs a C subset program and user infor- 

mation written in IDL, and outputs the behavior and the execution times of the program: 

the patterns of program paths and their times, the times of user defined path groups, and 

the execution time bounds covering all executions. The target system environment is the 

same as for the earlier timing tool: GNU C compiler and a 68010-based standalone SUN2. 

Figure 9 shows the organization of the timing tool. The tool consists of 4 components, 

written in about 8,000 lines of C, YACC and LEX code. Timed Ap-Generator inputs a 

program text (P) and generates a regular expression (Ap) for the set of all statically possi- 

ble program paths of P. While generating Ap, it also predicts the times of each statement 

and records them into the corresponding label in Ae as explained in Section 6.3. In Ip- 
Generator, the sets of information paths (Ip) are generated. Given IDL statements, Ip- 

Generator translates them into regular expressions line by line, and simplifies them as a 

disjunctional form of information terms, 

Path-Processor eliminates the impossible paths in Ap by performing intersection between 

Ap and Ip. It continuously copies and modifies Ae as specified in Ip. The result is the set 

of possibly executable program paths (X'p) decomposed into the sum of multiple subsets. 

Each subset consists of labels, + , . ,  ~ (finite iteration) and ~ for complex intersection. 

Time-Computation computes the times of each subset in X~, and eventually the time 

bounds of Xl; as an estimation of T(P). While computing times, complex intersection is 

handled by path manipulation, if it exists. 

Figure 10 shows some part of outputs using the tool for the simpte procedure 

"check__data?' The program and user information are as in Figure 5 (except that the label 

LB for the loop body is not given explicitly). In the figure, ̂  [ 3, ; and && mean operator 

*, • and 0, respectively. The tool analyzed the behavior of the procedure into two patterns 

of paths, the exception case (PATH 1) and the normal case (PATH2), and gave their times. 

Since the user information also defined a path group EXCEIrl-CASE passing statement 

C (Figure 5), the tool gave the times of the path group, which is the same as PATH1 in 

this case. Finally, the execution time bounds of "check__data" on all cases were given by 

merging the times of both cases. 
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Ap I 

Path-Processor 

I Xp' ,I 

Time-Computation 

Figure 9. Organization of timing tool. 

A l l  P a t h s  o f  ' c h e c k _ d a t a '  : 

L ( A + B ) )" [ ] ;  ( C + C '  ) 

PATH 1 

L ( ( ( A + B ) )~ [ 1 , 1 0 ]  && ( _ A _ )~ i 

T i m e  o f  PATH 1 : [ 6 6 6  , 2 2 8 4  ] 

PATH 2 

L ( B )~ 10 ;  C '  

T i m e  o f  PATH 2 : [ 1 8 8 6  , 2 0 0 6  ] 

T i m e  o f  p a t h g r o u p  EXCEPTCASE = [ 6 6 6  , 2 2 8 4  ] 

* * *  P r o c e d u r e (  c h e c k _ d a t a  ) 

C y c l e s  = [ 6 6 6  , 2 2 8 4  ] 

T i m e s  = [ 6 7 . 7 5  2 1 0 . 9 8  ] ( m i c r o - s e c )  

Figure 10. Example of running the too/. 

) ; C 
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To validate our idea, we compared predictions with measurements as we did in [17]. 

We have tested a range of programs including a real-time kernel [2] and some famous 

algorithms. Figure 11 shows the time results of some interesting procedures. Each column 

in the table stands for predictions without dynamic path analysis, 7 predictions with 

dynamic path analysis and measured times, s Some examples are a single procedure (e.g., 

inse~___sort), and others consist of multiple procedures (e.g., mp scheduler consists of 

5 procedures and 140 source lines). 

For all procedures, predictions are safe regardless of dynamic path analysis, covering 

the measured times for the best and worst case. Predictions with static path analysis only 

are tight for some procedures (e.g., matrix.__mutiply), but looser for some other procedures 

(e.g., calc_center); especially the upper bound of calc center is more than 10 times greater 

than the worst execution time. With the help of dynamic path analysis, predictions become 

tighter. Counting interference from memory refresh, most of the predictions are very close 

to the measured times. The exceptional cases are job_scheduler and queue_insert. 

For job_scheduler, dynamic path analysis gives much tighter bounds, but they are still 

loose. The given IDL information generates multiple complex intersections, and our ap- 

proximation for them (Section 6.2) does not work as well. In case of queue_insert, the 

expressiveness of IDL causes a problem. The procedure has two loops in sequence, and 

there exists an interesting relation between them: each loop can iterate [ 0, #__of_processes ] 

times but the sum of the iterations of the two loops is also in [ 0 ,  #__of processes ]9. 

(This type of loop relation was mentioned as loop sequence in [19].) This information is 

describable in our path language, regular expressions (i.e., (L 1 + L2)K), but cannot be 

expressed in our subclass interface language, IDL. Path analysis can do nothing because 

no information can be provided. 

One interesting issue is timing predictability of a procedure. We could classify procedures 

into three types as follows. The first type is a procedure whose execution times are predict- 

able tightly without dynamic path analysis. This type procedure usually performs some 

confined operations. It is interesting that more than half of the tested procedures fall in 

this type. A procedure is the second type if its predictions using only simple timing schema 

are loose, but they can be refined tight by path analysis using IDL information. We could 

find this type in many small algorithms (e.g., sorting) and some high level procedures that 

consist of many procedure calls. This type is tess frequent than the first type, but it is 

usually critical in determining the execution times of a program. The last type is a pro- 

cedure whose predictions are loose even with path analysis. A procedure may need com- 

plex information that cannot be described in IDL (e.g., queue__insert), or that is describable 

but not sufficiently processable (job_scheduler). We expect that this type of a procedure 
is not often found, lo 

Certainly, predictability depends on what a program does and which algorithm it im- 

plements. However, it is also affected by programming style. For example, we could write 

queue_insert2, which is the same procedure as queue___insert except that the two loops 

are combined into one loop. As shown in Figure 11, queue__insert2 is much more amenable 

to prediction of execution times; no complex information is required for very tight bounds. 

(This experiment shows that a timing tool can be used as an aid to write a predictable and 

efficient program with respect to performance.) 
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Procedures 

matrix_multipIy 

clock.synch 

check_data 

insertion_sort 

calc_center 

rap_scheduler 

job.scheduler 

queue..insert 

queue_insert2 

10 

predictions 
without dynamic 

path analysis 

predictions 
with dynamic 
path analysis 

7 . . . .  ; measured 
. . . .  ~ times 

2 2 ~ 7 7  . . . .  5 

i . . . . . . . .  i 

I I 

II II 
r q 

I I .~ 

7 . . . . . . . . . . . . .  " ' L  

100 1000 i0000 

L 

100000 1000000 

Execution Times (#see) 

procedure 

matrix.mult iply b 

cIock.synch c 

check_data d 

insertion_sort ~ 

calc_center / 

mposcheduler g 

job_scheduler h 

queue_insert i 

" queuednsert2 i 

predictions a 

without dynamic 

path analysis 

[ 6276.82,6696.40 ] 

[ 186.97,1221.96 ] 

[ 32.15, 252.00 ] 
[ 187.17, 3450.10 ] 

[ 18685.00,400828.43 ] 

[ 51.88, 4253.31 ] 

[ 454.71,5950.37 ] 

[ 58.80,798.51 ] 

[ 58.80,489.56 ] 

predictions 

with dynamic 

path analysis 

[ 6276.82,6696.40 ] 

[ 298.66,1221.96 ] 

[ 67.75,248.60 ] 
[ 187.17,2085.04 ] 

[ 18685.00,30338.89 ] 

[ 248.21, 3618.12 ] 

[ 477.29,4480.08 ] 

[ 58.89,798.51 ] 

[ 58.80,489.56 ] 

measured 

times 

(~sec) 
6412 

[ 338.5,1153.9 ] 

[ 73 .1 ,234.9  ] 

[ 197.2, 2071.1 ] 

[ 1.9313,28476] 

[ 280.7,3242.6 ] 

[ 548.6,3444.0 ] 

[ 60 .5 ,490.4  ] 

[ 60 .5 ,469.3  ] 

"All predictions and measured times include [0,7]% (average 5%) delay caused by nondeterministic inter- 
ference from memory refresh [17] 

bThe matrix size is 5 x 5. 
*Perform averaging calculation of clocks from at most g sites. 
aThe same program in Figure 5 with "handle_exception" taking [ 24.01 , 25.84 ] #aec. 
~The number of data elements sorted is 10. 
SOalculate the center of an object image (a down-scaled procedure of the example in [19] 

There is an assumption that the object has a restricted size. 
gMultiprocessor scheduler that allocates 5 processors. 
nSchedule 10 jobs in earhest deadline first. 
/ Inse r t  a process into a two-level priority queue. 
iA rewritten procedure of "queue.insert". 

Figure 11. Time results of sample procedures. 

I t  is wor thwh i l e  to no t e  that  pa r t i a l  i n f o r m a t i o n  m a y  be  e n o u g h  to p red ic t  suf f ic ien t ly  

t ight  b o u n d s ;  c o m p l e t e  k n o w l e d g e  of  p r o g r a m  pa ths  is no t  a lways necessary= Fo r  the  s am-  

p le  p r o c e d u r e  m p _ s c h e d u l e r ,  we cou ld  f ind  12 I D L  i n f o r m a t i o n  s ta tements .  E x p e r i m e n t s  
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showed that only half of them are effective to tighten predictions; the other half give minor 

gain, or have no effect after approximation. This observation tells us that not all informa- 

tion statements have the same value with respect to timing prediction, and that part of them 

only can refine predictions tightly enough. Therefore, it is a good strategy for a user to 

give information incrementally: give obvious and large-scale information first, and add 

more detail if predictions are not sufficiently tight. It can reduce not only unnecessary 

processing cost but also overhead to verify given information. 

There is no definite answer to the question about which type of information is more 

valuable. It all depends on the static structure and the dynamic behavior of a program. 

Our empirical observation is as follows. Information on loop iteration number is necessary; 

we cannot predict the times without it. Execution count is usually decisive, if it exists (e.g., 

calc center). The complexity results of an algorithm are usually expressed with it. Path 

relations, including interproeedure relations, are useful when a program performs some 

complicated operations with multiple cases (e.g., mp scheduler). 

The results of our experiments show the following points. All the predicted times are 

safe. Frequently, tight predictions can be obtained by our efficient static path analysis only. 

For most procedures, predictions with dynamic path analysis are fairly tight to the best 

and worst case execution times. Complete knowledge may be not necessary, because some 

partial information can result in sufficiently accurate predictions. There exist some cases 

in which our path analysis with IDL is not sufficiently helpful. These problematic cases 

are not the limit of our path model, but the result of our decisions for a practical solution 

through IDL, expecting that those cases are ineffectively rare. Some of them can be handled 

by rewriting a program in a more predictable way. 

8. Future Work 

While designing the interface language, the primary concern was processibility with respect 

to path intersection and time computation. We started from a general one which allows 

a sequence of statements to be a basic object, which is as descriptive as regular expres- 

sions. We continued by trial and error to add or delete restrictions, and finally decided 

upon IDL. We believe that IDL is very restrictive, maybe close to the minimal in the sense 

that if another restriction is added, it cannot describe some useful user information. There 

is always a chance to expand IDL and process more powerful user information (e.g., an 

information clause can be placed on a condition clause). However, it usually costs more 

complex processing; even IDL is not so easy that we need to make an approximation in 

time computation. An expansion should be made when it causes no or little increase of 

processing complexity, or when experiments tell it necessary for valuable user informa- 

tion. One may also define other alternative types of interface languages, but it should be 

easy to use, process and verify. 

Although we are confident that path processing is correct and effective giving safe and 

very tight predictions, there are some questions yet to be answered. How many real pro- 

grams need dynamic path analysis to get satisfactory predictions? Is IDL easy to use and 

sufficiently descriptive? Is IDL too restrictive to describe some user information? Ease 
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of use is somewhat subjective, but it certainly depends on what kind of execution informa- 

tion a user has. Usefulness of path analysis may be related with several t~actors including 

the complexity of a program, the accuracy of basic prediction method, and the degree of 

precision requested. A lot of experimental work, especially with programs used in real 

systems, should follow to address these problems. 

As a refinement method, our path analysis works well for sequential programs. An emerg- 

ing question is whether a similar technique works for concurrent programs too. We have 

developed timing schema for concurrent constructs such as locking and message passing 

[21], and initial experiments showed that timing prediction of a parallel program is feasi- 

ble with those timing schema [9]. Although this simple approach gives safe predictions, 

it has the same problem of loose predictions counting impossible cases as most static analysis 

methods do. We are investigating a way to apply the same framework of compensation 

based on user information. User information should be expanded to include not only paths 

for statement relations in a process but also statement and temporal relations with other 

processes, especially blocking times (e.g., Process A and B do not request a resource at 

the same time). The key issue is again how to generalize execution information. 

Prograna behavior analysis based on the path model may be used in some areas other 

than timing prediction. For example, it may- help test data generation. Generating test data 

usually suffers from an exponential path domain and frequent backtracking because man), 

of the paths are revealed as infeasible in the middle of data generation [10]. Eliminating 

infeasible paths can reduce many fruitless efforts. Certainly, our path analysis cannot tell 

the correctness of a program. However, it may be used to check quickly whether a pro- 

gram is compatible with some desired program behavior. By performing path analysis with 

IDL descriptions of the desired behavior, we can see whether it is defined in a program 

and how other program behavior reacts with it. Path analysis may also supply some run- 

time information. With possible behavior decomposed into several cases, one may predict 

future behavior in an early stage of execution. This knowledge may be useful in many areas 

such as efficient runtime resource management. 

Recently, several studies have mentioned an approach of runtime prediction (e.g., [7]). 

Their idea is to express the execution times of a program as a function of the program 

variables at compile time, and to evaluate the function at runtime knowing the values of 

the variables. It can avoid a pessimistic prediction and thus provide a possibility of better 

dynamic decisions, such as the guarantee of a dynamic request from a process. However, 

the approach implies additional complexity in compile time analysis (e.g., symbolic com- 

putation) and overhead to compute a function at runtime. Our pathwise analysis may be 

the better solution for this purpose. We can prepare predictions for each possible execution 

case of a program. Then at runtime we check which case is actually being executed and 

select the tight predictions dynamically among the predictions prepared. The only overhead 

is cost for recording the execution history information on some significant statements, in- 

stead of monitoring the values of the variables in the former approach. 

Input/output operations are particularly important in real-time systems because they repre- 

sent interactions between a system and the environment, and take a major part in system 

operations. We modeled an I/O operation as execution of an I/O statement, and applied 

the same schema-based static analysis [18]. The main problem in I/O analysis is predict, 

ing waiting time for a device or data and interference caused by asynchronous execution 
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in a variety of implementation policies. Our approach was to develop a general framework 

and to apply it to a specific case. We developed refinement rules for possible implementa- 

tion policies that transform an implementation-independent timing schema to 

implementation-dependent, and thus more predictable, timing schema. We also introduced 

interference formulas that estimate the effect of I/O interference on program execution times 

for given implementation policies of a target system. We showed several examples of analysis 

applying the framework to specific cases, 

With a program logic extended with a real-time clock, our performance predictions can 

reason about other timing properties of a system [20]. Although our predictions are made 

on the assumption of maximum parallelism, they can be applied directly in some systems 

where a processor is shared in a predefined way (e.g., cyclic executives). Processor shar- 

ing with a special task (e.g., interrupt handler) can also be handled easily by slightly modi- 

fying predictions for interference from the task. For general processor sharing, one may 

depend on scheduling theory. Our predictions are projected to the computation time of 

a task, and system timings (basically, deadlines) are determined by checking the feasibility 

of the task set. The problem here is how realistic a task model is. The approach we are 

considering now is to expand our interference model for general processor sharing. We 

consider all delays caused by processor sharing interference, and adjust predictions for 

those delays. Starting from a simple environment and adjusting predictions step by step, 

we expect to have predictions in a real environment. 

In this paper, we introduced an idea combining dynamic path analysis with a timing predic- 

tion method. The prediction technique is a simple and efficient static analysis based on 

timing schema. Using powerful information provided by a user, dynamic program analysis 

eliminates the effects of infeasible paths and refines predictions tight. As a basis to exploit 

user information for dynamic path analysis, we developed the formal path model. Its prac- 

tical application was achieved by introducing a user interthce language IDL. Experiments 

with a timing tool showed that our approach is valid and promising; safe and tight execu- 

tion time predictions are possible for a wide range of programs in an effective way. 
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Notes 

1. A simple statement is a statement that does not contain any other statement (e.g., an assignment statement). 

2. Here, exclusive means not mutually exclusive but exclusive or. 

3. From the syntax of IDL, a negation operator comes only with ALLPATHTHRU or ALLPATHNOI~HRU.  

4. We assume that two interval bounds are overlapping, i.e. (a -< d) A (e --< b). 

5. Here, s E H means ~p E H such that p passes through s. 
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6. The timing of each regular expression operator is defined as follows: 

T(a. b) = T(a) + T(b), 

T(a t~) = K × T(a), and 
B 

T(a + b) = T(a) U T(b) =- [ rain(low(T(a)),low(T(b)) ), max(up(T(a)), up(T(b)) ) ] 

7. User input for loop bounds are needed also in the early version tools based on timing schema only [17]. 

8. We generated a data set for each of program paths that can possibly be the best and worst case with respect 

to execution time, and measured the time of 150,000 iterations (15,000 for some procedures) of execution 

for each case. The bounds of measured times were computed from the shortest and longest measurements. 

9. The first loop searches for an insertion point based on the first-level priority. If there exists a tie, the second 

loop decides the proper position based on the second-level priority. 

10. In the experiment, we have tested more than 50 programs, and those two are the only examples. 
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