
Real-Time Systems, 5, 31-62 (1993)

© 1993 Kluwer Academic Publishers. Manufactured in The Netherlands.

Predicting Program Execution Times by Analyzing
Static and Dynamic Program Paths*

CHANG YUN PARK

Department of Computer Science and Engineering, FR-35, University of Washington, Seattle, WA 98195?

Abstract. This paper describes a method to predict guaranteed and tight deterministic execution time bounds

of a sequential program. The basic prediction technique is a static analysis based on simple timing schema for

source-level language constructs, which gives accurate predictions in many cases. Using powerful user-provided

information, dynamic path analysis refines looser predictions by eliminating infeasible paths and decomposing

the possible execution behaviors in a pathwise manner. Overall prediction cost is scalable with respect to desired

precision, controlling the amount of information provided. We introduce a formal path model for dynamic path

analysis, where user execution information is represented by a set of program paths. With a well-defined practical

high-level interface language, user information can be used in an easy and efficient way. We also introduce a

method to verify given user information with known program verification techniques. Initial experiments with

a timing tool show that safe and tight predictions are possible fbr a wide range of programs. The tool can also

provide predictions for interesting subsets of program executions.

1. Introduct ion

Our general goals are to develop techniques for predicting the deterministic timing behavior

of high-level language programs. Achieving these goals would allow a priori analysis of

the timing properties of software. In a recent study [20], [17], we introduced a static analysis

technique based on source-level timing schema. It gives tight execution time bounds for

many programs, but looser ones for some complex programs. An early experiment showed

that a main source of loose predictions is the effects of infeasible paths which can be derived

from the static program structure but can never be executed in practice. The problem of

infeasible paths is inherent in a static analysis, which achieves simplicity by ignoring the

details of dynamic behavior. We have developed a method for analyzing dynamic program

behavior to eliminate infeasible paths of a program, and have used it in conjunction with

the static timing prediction technique to predict tighter time bounds of the program.

A timing prediction method for real-time systems should be able to find guaranteed and

sufficiently accurate estimations for the best and worst execution times of a program with

reasonable cost. This is incompatible with a pure measurement technique, because only

the measurements on the best and worst cases can guarantee safet); but they are very ex-

pensive or almost impossible in some complicated systems. Our prediction technique gives

guaranteed time bounds and provides flexibility to control their accuracy versus prediction

cost. The simple static analysis predicts safe timing estimations which are also reasonably

*This research was supported in part by the Office of Naval Research under grant number N00014-89-J-1040.

tThe author's current address is EECS Department, University of Michigan, Ann Arbor MI 48109,

cypark@eecs.umich.edu 313-936-0370.

32 c.Y. PARK

accurate in many cases. Dynamic program analysis refines these estimations by eliminating

the effects of infeasible paths while keeping safety. The complexity of program analysis

and prediction accuracy are proportional to the amount of provided information about the

dynamic behavior of a program. Overall prediction cost is scalable with the degree of preci-

sion desired in prediction.

We analyze dynamic program paths based on execution information given by a user. We

model user information as welt as a program as a set of paths, and intersect them to eliminate

infeasible paths and to predict the patterns of possible behavior. Using a well-defined in-

terface language, a user describes his/her knowledge of program execution in an easy and

verifiable way. Timing prediction is performed by the simple technique based on timing

schema of the earlier study, but it can give much tighter results with the help of dynamic

path analysis. To validate our idea, we have built a new timing tool expanded with path

analysis and have made experiments with sample programs.

In this work, we assume that a program is correct and written in a high-level procedural

sequential language, where recursive procedure call is not allowed. (Timing prediction of

concurrent programs is not the subject of this paper; some related discussion will be made

in the future work in Section 8.) We also assume that a program has finite execution cases

(i.e., finite loop iterations). Our method can be applied directly to a program written in

a contemporary language, without modifying it with newly extended language features.

(In the experiments, we predict the behavior and time bounds of a program written in a

C subset, compiled by the GNU C compiler and run on a 68010-based stand-alone SUN2.)

There have been several other studies about predicting the execution times of a program

[22], [13], [19]. One of the common problems here is that predictions are loose for com-

plex programs due to infeasible paths. [19] introduced a few language constructs including

marker, the maximum execution times of a statement. A user can provide information as

a part of a program using those language constructs; however, they are not expressive enough

to describe some general execution information. Recently, [15] developed a method of pro-

gram transformation by partial evaluation. Given a general program, a new specialized

and so more predictable program is created by a partial evaluator using knowledge from

a user or environment. The method is basically the same as ours in the sense of analyzing

a program based on execution information, but their information is at the variable level

(e.g., the value of a variable) while ours is at the statement or higher level. Although the

partial evaluation technique may deduce information automatically, it requires complex pro-

gram manipulation. It also seems somewhat inflexible in handling partial information. There

are also some studies on semantics-preserving program transformation of concurrent pro-

grams [14], [23]. However, they focus on simplifying a program based on static semantics

to make schedulability analysis efficient, while we focus on analyzing the dynamic behavior

of a program to predict more accurate execution times. Predicting execution times with

high-level user information was mentioned in a real-time programming language FLEX

[11]. A performance analysis tool predicts the performance of a program by integrating

measured time data into a parametric model supplied by a programmer. Its predictions

with confidence level may derive realistic performance, but they are stochastic performance

that cannot guarantee safety. An extreme case is introduced in [3], where a tool provides

the times of program components, and a user writes a timing program, which computes

the execution times of program using the provided times.

PREDICTING PROGRAM EXECUTION TIMES 33

Program analysis has been studied in many areas, and our work shares some ideas with

those studies. Code optimization has used control and data flow analysis for a long time,

but it basically handles only static behavior based on syntactic information. Test data genera-

tion also performs path analysis to select test paths. Infeasible paths are also a problem

here because a selected path may be found infeasible while generating data. There are only

a few testing studies addressing this problem; one of them used informal allegations which

are similar to primitive execution information [24]. Symbolic execution has been used in

many program analysis studies (e.g., [25]). It is a general way to figure out dynamic behavior

of a program, but its complexity makes it almost intractable. [6] introduced a program

simplification method, which is somewhat similar to [15]. A program is decomposed into

subprograms in a pathwise manner, based on state constraints which are inserted into a

program by a user. We decompose the behavior only without modifying a program. Path-

oriented static program analysis was mentioned in [16]. In the study, both a program and

a constraint are represented by an extended regular expression, and it is proved using dataflow

analysis techniques if the program satisfies the constraint. However, the analysis counts

only static behavior, and the goal is verification rather than analysis as in our study. Con-

strained expressions, a similar technique at design level, was presented in [1].

Our study shows several interesting points. First, the dynamic behavior of a program

can be analyzed with the help of user information. The formal path model with a well-

defined interface language provides a systematic way to exploit a user's high-level knowledge.

Second, predictions can be very tight even for complex procedures. Adding dynamic path

analysis makes it possible for a simple technique based on timing schema to predict tight

bounds regardless of the complexity of a program. We can also produce many potentially

useful results such as execution patterns and performances of some specific cases. Third,

a prediction can be refined by a separate and scalable compensation step. A prediction

method can be kept simple ignoring complications beyond statement-level. If more precise

predictions are wanted, dynamic path analysis compensates predictions by reconsidering

the ignored complications. Since the two processes are independent, path analysis does

not degrade the simplicity of prediction. We believe that this approach is more efficient

than an approach that makes the prediction method more complex.

Section 2 summarizes our earlier prediction approach and experiments. Section 3 ex-

plains user execution information and introduces a formal path model as the theoretical

basis of our path analysis. In the next three sections, a practical approach is explained discuss-

ing the following problems respectively: how to represent user execution information, how

to verify the correctness of information given, and how to process information with a pro-

gram. Section 7 shows experimental results with a timing tool that implements our timing

prediction with dynamic path analysis. We close this paper mentioning future work in the

final section.

2. Summary of Timing Schema Approach

Our prediction approach is based on the notion of timing schema for source program con-

structs, which are essentially formulae for computing the lower and upper bounds for their

execution times [20]. Timing schema decompose a statement into the component blocks,

34 c.Y. PARK

and later compute the times of the statement by composing the predictions of those blocks

according to the system-independent language semantics. The times of a component block

which are dependent on implementation are predicted through object code prediction and

machine analysis. Applying these decomposition, prediction and composition recursively,

we can compute the time bounds of a statement, compound statement and procedure. The

time prediction T of a statement or a block S is represented by a pair of lower and upper

bound (i.e., T(S) = [tlow, tup]), where each bound tlo w and tup estimates the best and worst

execution time, respectively. For example, the execution times of a simple C statement

S1 : whi l e (a) a- -; can be predicted as shown in Figure 1. It shows how a statement

is decomposed and predicted according to its timing schema on a target system, a GNU

compiler and a MC68010 processor in this example.

Statement:

s l : while (a) a--;

Timing Schema:

For loop statement S : while (exp) strut ;

T(S) = (N+l) x T(exp) + NxT(stmt) + T(while,N)

where N is a pair of loop bounds (i.e., N = [n,,in, nma~]), provided by a user.

GNU C compiler's code generation rule and code for SI:

s t a r t _ l o o p L1 :

exp t s t l a6@(-4) ; I 1

S = = = > e x i t i f _ f a l s e S l = = = > j e q L2 ; 12

s t m t s u b q l # 1 , a 6 @ (- 4) ; 13

e n d _ l o o p j r a L1 ; 14

L2 :

Code Prediction:

T(exp) : T(a) = T(I1)

T(stmt) : T(a--) = T(I3)

T(while,N) : N x T(I2,fail) + T(I2,succ) + N x T(I4)

where "I2,fai l" is conditional jump instruction I2 whose branch is not taken.

Machine (MC68010) Analysis:

T(I1) = [16 , 16] (clock cycles)

T(I2,fail) = [6, 6]

T(I2,succ) = [10, 10]

T(I3) = [24, 24]

T(I4) = [10, 10]

Time Computation:

Suppose a user gives [0, 1] as loop bounds knowing that a is 0 or 1. Then,

T(S1) = (N + 1) × T(a) + N x T(a--) + T(while,N)

= (N + 1) x T(I1) + N x T(13) + N x T(12, fail) + T(12, succ)+ N x T(14)

= ([0, 1] + 1) x [16, 16] + [0, 1] x [24, 24] + [0, 11 x [6, 61 + [10, 10] + [0, 1] x [10, 101

= [26, 82](clock cycles)

Figure 1. Timing schema and predicting the execution times of a while statement.

PREDICTING PROGRAM EXECUTION TIMES 35

We believe that software timing properties should be reasoned about at the source language

level, where a program is written, analyzed, debugged and maintained. Even for timing

prediction, the lower level (e.g., assembly-level) analysis results in more loss than gain,

because high-level information (e.g., algorithm or statement relations) is usually more

valuable than low-level one (e.g., code optimization). We also expect that many code op-

timizations can be handled by adjusting the granularity of decomposition and parameteriz-

ing timing schema.

We built a timing tool predicting the execution times of a program written in a subset

of C, compiled by GNU C compiler and executed on a MC68010-based standalone SUN2

[17]. The toot could be partitioned cleanly into an abstract system-independent portion

and a lower level system-dependent part. The major issues were to determine the granularity"

of an atomic block covering the effect of compiler's default optimization, and to handle

machine nondeterminism such as instructions with variable execution times and unavoidable

system interference (clock interrupt and memory refresh). We compared predictions by

the tool with measured times of the best and worst execution cases for sample programs.

The experiments showed that the simple timing schema approach can provide safe and useful

predictions. However, predictions are looser for some complex programs having infeasible

paths. Since timing schema cannot handle inter-relations among statements, predictions

include the times of infeasible paths. For tighter prediction, the method needed to be ex-

tended to take into account of the relations of statements and to eliminate the effect of in-

feasible paths.

3. Execution Information and Path Model

3.1. Execution Information

While organized with given language constructs, a program may encode some unintended

behavior in the structure along with intended behavior. The unintended behavior, however,

is prevented at runtime by constraints encoded with program logic and implicit data value

assumption. Thus, the program structure only is not sufficient to figure out the real execu-

tion behavior of a program. Execution information is information about the execution

behavior of a program, such as a programmer's intentions and constraints encoded in the

program. It can be used to remove some infeasible paths, which are formed in program-

ming but not intended in execution.

We believe that execution information can be supplied by a user, usually" a programmer.

Since a programmer knows the details about the applied algorithm, program logics and

specifications when he/she writes a program, it is not difficult to provide some execution

information for the program. In some sense, execution information is another description

of a program, explaining how it works in real execution. Some mechanical methods such

as symbolic execution may also extract execution information from a program. However,

they only work in some restricted cases and are very complex; some user information such

as loop bounds is still necessary. User information, as long as it is correct, is usually more

refined and flexible to use than one detected in a mechanical way. (Since a user may give

wrong information, its correctness must be verified. We will explain it in Section 5.)

36 c.Y. PARK

Any hints on program execution can be execution information. Examples include an itera-

tion number for a loop statement and relations among statements (e.g., two statements S1

and $2 must be executed together). We observe the following characteristics of user execu-

tion information:

• Incompleteness. It is unrealistic to expect a user has complete knowledge of every pro-

gram behavior. Knowledge may also be limited to local behavior in some program

segments. A user usually gives multiple statements of partial information.

• High-level. The basic element of user information is mostly a statement or higher level

one (e.g., sequence of statements). Some lower-level information, such as the value of

a variable, can be replaced with statement-level information through a manual or an

automatic deduction process.

• Conditional and Scope-dependent. User information may have conditional clauses (e.g.,

if S1 is executed, $2 is not executed), and information on the same statement may vary

depending on the applied scope (e.g., S1 is executed a maximum of 10 times in loop

L1, but never executed more than 100 times in outer loop L2).

• Interprocedural. As a program is modularized, it is composed of many small procedures.

Thus, some execution information crosses procedure boundaries, giving the relations

among procedures.

3.2. Path Model

We define a path as a sequence of program statements where a statement is represented

by a label. A path is called a program path if it is defined in a program, following the

control flow of the program from the start to the end. A program path is feasible if it is

executable on some data set. An infeasible path means a program path which is not feasi-

ble; that is, it is possible statically, but impossible dynamically. We also use a subpath

to mean the subsequence of a path.

In our path model, each statement of user execution information is represented by a set

of paths in a constructive way. For an information statement, we construct a set of all paths

satisfying its intended constraint and thus being feasible with respect to the information

only. The set should include all feasible paths of a program, but it excludes infeasible paths

which violate the constraint. For example, if a user has information, statement a is always

executed, it is represented by the set of all paths passing a. The set includes no path not

passing through a. No information becomes a set of all paths (i.e., all paths are feasible

with no information).

There are two main reasons why we chose the path model. First, a set of paths is a general

and uniform way to describe various user execution information. Second, both a program

and information are represented in the same language. By representing information with

paths, the problem of information processing becomes that of path processing, and we can

use well-known operations and results in path processing.

The path model is illustrated in Figure 2. Let Ae be the set of all statically possible pro-

gram paths, a path representation of program P. Ap includes a set of all feasible paths X e

but also has some infeasible program paths, which our goal is to eliminate. Let Ip be user

PREDICTING PROGRAM EXECUTION TIMES 37

Z*

Figure 2. Path model.

execution information of P, also as a set of paths, Since user information is usually partial,

Ie is also usually a partial approximation to Xe. It may include some infeasible paths that

are not constrained by the information. Ip can also include even nonprogram paths (i.e.,

the portion of Ie not in At,), because the information may mention the local behavior of

some program segments, not that of the whole program. However, as constructed towards

X e, Ip must include all feasible paths X,,,.

The operation of filtering infeasible paths can be achieved by simply intersecting A e and

I e, because both of them are supersets of Xp, and le excludes some infeasible paths. The

intersection result, X~ is a safe estimation of Xp; we call X]~ the set of possibly executable

paths. It still may have some infeasible paths not excluded by Ip, but it covers all feasible

paths. The portion of 1 e not in Ae is also eliminated by Ap. The difference between Ae

and X],(Ae - X[~) becomes the eliminated infeasible paths. In summary, the relations

among the path sets are

xb = Ae n Ip (1)

Xe c_ Xb c_ Ae (2)

Relation 2 is also true in timing. For a set of paths H, let T(H) be a time interval for

the execution times of the paths in II. (We use the same timing notation T(II) for a set

of paths as for a program T(P), because a program is represented as a set of program paths

in path analysis.) Then,

B B
T(Xe) ~_ T(Xb) c T(Ae)

B B
where interval inclusion operator c_ is defined as Nllows: [a, b] ~ [c, d] - (c _< a)

A (b __< d). Thus, T(Xb) is also a safe estimation to the execution time of P, and it is tighter

than T(Ap) based on the program structure only.

38 c.Y. PARK

symbols ::
alphabets(Z) : a set of statement labels
operators: + , . , * , n ,
parenthesis : (,)
empty set : 0
wild cards :

* means any string of any statements (~*)
_ means any string of statements not containing adjacent statements

(i.e., x_y = x(~ - {x, y})*y)
path ::

a regular expression of symbols

Figure 3. Path language based on regular expression.

Our language for path description (say path language) is regular expressions extended

with the operators for intersection and negation, as summarized in Figure 3. These two

operators do not increase descriptive power, but they allow compact representation of some

information requiring an exponential length expression in regular expressions without this

extension. We also introduce two wild cards, " * " (different from the Kleene star *) and

" _ " . Figure 4 shows the path descriptions of a program and some user information in

our path language. Note that Ap requires neither intersection, negation nor any wild cards.

The details of statement naming will be described later (Section 4.2).

The choice of regular expressions was obvious because it is a formal language widely

used in many areas including program representation. Its properties are well-known, and

most operation and decision algorithms have also been developed. The descriptive power

is at least sufficient to describe all feasible paths (Xp), because we assume a program has

only finite feasible paths. Other good points are that its wild cards are good at abstraction

for partial information, and it (its recursive definition) uniformly treats a statement, a path

and a set of paths, which is helpful for handling interprocedural information.

As discussed in Section 3.1, a user usually gives multiple statements of local and partial

information. As combined conjunctively, those partial information statements compose more

global and specific information for the program. In the path model, each information state-

ment becomes a set of paths (I~), and combining partial information can be done by inter-

secting the sets of information paths. Equation 1 can be rewritten as follows

x b = Ae n l e

= Ap n (I~ n t~ . . . t~)

= (. . . ((A e n I~) n I ~) . . .)

A set of information (I~) is usually described by concatenations of some specific sub-

paths and nonspecific subpaths. Specific subpaths composed of statement labels represent

the meaning of the information. Nonspecific ones make the specific ones into a set of paths

PREDICTING PROGRAM EXECUTION TIMES 39

Program

c h e c k _ d a t a ()

{

i n t i , m o r e c h e c k , w r o n g o n e ;

morecheck = 1; J = O; w r o n g o n e = - 1 ;

L : w h i } e (rnorecheck)

L B : {

i f (d a t a [i] < O)

A : { w r o n g o n e = i ; m o r e c h e c k = O; }

e l s e

B: i f (+ + i > = d a t a s i z e) rnorecheck = O;

}

i f (wrengone >= O)

C: { hand I e_except ion (wrongone) ; r e t u r n O; }

e l s e

C' : r e t u r n 1 ;

}

Program Path (Ap)

L" (LB " (A + B))* • (C + C')

User Information and Ip

1. The loop is executed 10 times since the size of data is known externally to be 10,

(LB) 10

2. If A is executed, the loop is finished and C is executed next.

~(*A*) + A " C*

Figure 4. Path descriptions of simple program and path information.

that includes all feasible paths. Nonspecific subpaths, usually wild cards, may be very

abstract, because after intersecting A e, X# has only program paths of P regardless of what

I~ has.

3.3. Pathwise Decomposition

Path processing in the path model is basically to compute Ap 0 lp and determine X~,

all of which are described by regular expressions. Since Xk should tell the behavior of

a program and will be used later in timing prediction, it must be a set of program paths

without any wild cards. We also remove fq and -7, because they cause difficulties in

timing prediction.

Our principle of path processing is pathwise decomposition. As discussed earlier in Sec-

tion 3.1, a program is the result of structured composition of intended behavior. Better

reasoning of a program is possible by decomposing the behavior. In the path model, this

can be achieved by pathwise decomposition meaning that all of the possibly executable

40 C.Y. PARK

paths are decomposed into several subsets where each subset represents a pattern of pro-

gram behavior. During path processing, we express intersection results as a sum of subsets.

Then, after intersecting all information paths,

and each subset II~ represents a group of possible executions having common behavior

patterns.

Pathwise decomposition is also compatible with timing prediction. First, compute the

time bounds of each subset (T(II~,)) using our basic static timing prediction technique. We

may have tighter bounds because each subset describes more specific paths (and thus has

fewer infeasible paths) than Ap. Then T(X]~) is computed as

~(xk) = ~(n~) U T(H~) U . . . U T(H~)

= [min{low(T(IYp))}, max{up(T(IYp))}]

where min and max are the minimum and maximum function, and low(T) and up(T) denote

the lower and upper bound of T, respectively, as defined in Section 2.2.

There exists a known algorithm for resolving intersection and negation in regular ex-

pressions. However, it was proved that the complexity of the problem requires exponential

time in the general case [12]. The length of a regular expression may also increase ex-

ponentially after resolving intersection. These complexity results imply that we need to

find some practical solutions appropriate to our problem domain.

4. Information Description Language

4.1. Two Level Language Scheme

Our regular expression based path language is compact, and makes it possible to represent

a program and user information in the same way. Conceptually, processing is simple enough

to be done by one operation, intersection. However, intersection requires exponential com-

plexity in reality. Another problem is that our path language may be too formal for a user.

Describing one's knowledge with the operators and wild cards of regular expressions seems

to be difficult and error-prone. Finally, we have to develop a method to verify given path

information.

We believed that the above problems of the path language can be addressed by com-

promising the descriptive power for ease of processing and by introducing a high-level user

interface language. A user gives execution information in the interface language which is

somewhat restrictive but easy to use and verify. The given information is then mechan-

ically transformed into the base language, i.e., the path language. The transformed path

information is processed as shown in the path model, but it can be done efficiently because

the information now has some restricted forms only allowed in the interface language.

PREDICTING PROGRAM EXECUTION TIMES 41

The interface language should be a practical high-level subclass of the path language.

It must restrict a user to prevent transformed information from being too complex to process.

However, it should provide sufficient ways to describe necessary and valuable informa-

tion. It should also be high-level for ease of use. Finally, it must be formal not only to

be able to transformed to be the path language but also to be verifiable from a program

text or specifications.

In developing the interface language, we made the following decisions based on the

characteristics of user execution information discussed in Section 4.2.2. First, the language

is statement-based. A statement is the basic object in the language; the notion of a path

may appear in a restricted way, only through path grouping. Second, it is logic-based; in-

formation is expressed as logical relations among statements. The above two decisions come

from the observation that a sequence may cause difficulty in intersection, and it can be

replaced with logical descriptions in most cases. Logic-based information may also be com-

patible with existing verification technqiues based on program logic. Third, information

on iteration numbers for a loop and on the execution counts of a significant statement (i.e.,

how many times it is executed) should be describable. Although they result in complicated

intersections, they are necessary in determining the realistic behavior of a program and

eventually predicting the times. Finally, to support interprocedural information, we pro-

vide a method to summarize the behavior of a procedure and to export it to other procedures.

4.2. Information Description Language (1DL)

Based on the above decisions, we define the information description language (IDL) as

an interface language directly accessed by a user. Figure 5 shows some IDL information

statements for a procedure. It also shows how interprocedure information between two pro-

cedures is expressed.

The basic element is a statement name, which stands for a statement, compound state-

ment or procedure path in a program. A name for a statement and compound statement

is identified as a label in a program, and a name for a procedure path is defined in the

path group information for the procedure (which will be explained later). We also allow

default naming where a user can address a statement by a hierarchical name derived unam-

biguously from other labeled statements (e.g., A. then denotes the statement executed when

the condition of A is true). A labeled name always overrides the default name. We believe

that properly used default naming is easy to understand and reduces troublesome name

composition.

Many statements are neither labeled in a program nor mentioned in IDL informations

directly or by default. They are totally invisible in program analysis, not because they are

less important but because they are executed simply as specified by the program structure

or a user has no information on them. Their timing behavior must be kept intact during

program analysis and be counted in timing computation of a program.

Table 1 shows the syntax of IDL. IDL information consists of two parts, execution

information and path group information. The basic unit of IDL execution information is

INFO-CLAUSE, which describes relations among statements and the execution counts of

a statement. Path group information part is composed of lines of GROUP-SENTENCE,

each of which describes one instance of path grouping.

42 C.Y. PARK

• Procedure

c h e c k _ d a t a ()

{

i n t i , rao recheck , w rongone ;

morecheck = i ; i = O; w rongone = -1 ;

L: w h i l e (morecheck)

{

i f (d a t a [i] < O)

A: { w rongone ~ i ; mo recheck = O; }

e l s e

B: i f (++ i >= d a t a s i z e) morecheck = O;

}

i f (wrongone >= O)

C: { hand I e _ e x c e p t i on (wrongone) ; r e t u r n O; }

e l s e r e t u r n 1;

}

• Information

1. loop L [1,10] times;

(Loop L is iterated [1,10] times; the size of data is known as 10.)

2. samepath(A,C);

(Statements A and C must be executed together.)

3. (not A) imply loop L 10 times ;

(If A is not executed, then L is iterated 10 times.)

4. execute A[0,1] times inside L;

(The exception case A is executed at most once inside L.)

5. pathgroup EXCEPTCASE passing C ;

(All paths passing through C are grouped into EXCEPTCASE.)

• Another Procedure

t a s k 1 ()

{

A: d s t a t u s = c h e c k _ d a t a () ; / * i n voke ' ' c h e c k _ d a t a ' ' * /

i f (! d s t a t u s)

B: c l e a r _ d a t a () ;

}

• Interprocedural Information

1. samepath(A.check~data.EXCEPTCASE , B) ;

(Statement C in "check_data" must be on the same path with statement B in "task1".)

Figure 5. Example of IDL information.

PREDICTING PROGRAM EXECUTION TIMES 43

Table 1. The syntax of IDL.

INFORMATION

tNFO LINES

INFO~INE

INFO_SENTENCE

INFO CLAUSE

ALWAYS
SPATH

NPATH
XPATH
LOOP
TIMES
IMPLY

SCOPE
CONSTANT

COND

GROUP_LINES

GROUP_SENTENCE

::= INFO_LINES t GROUP~LINES

I INFO_LINES GROUP LINES
:: = INFO_LINE

I INFO_L1NES INFO LINE
::= INFO__SENTENCE

t INFO_LINE or INFO SENTENCE
::= INFO_CLAUSE [SCOPE] ';'

::= ALWAYS [SPATH [NPATH I XPATH

I LOOP [TIMES I IMPLY
] INFO~CLAUSE or INFO_CLAUSE

[INFO_CLAUSE and INFO_CLAUSE

:: = always '(' STMT [, STMT] ')'
::= samepath '(' STMT , STMT [, STMT] ')'

:: = nopath '(' STMT, STMT [, STMT] ')'
::= exclusive '(' STMT , STMT [, STMT] ')'
:: = loop STMT CONSTANT times
::= execute STMT CONSTANT times
::= COND imply INFO_CLAUSE

::= inside STMT

:: = INTEGER
I '[' INTEGER ',' INTEGER ']'

::= STMT ['('COND ')'
[not COND
[COND or COND

] COND and COND

:: = GROUP_SENTENCE
GROUP_LINES GROUPSENTENCE

::= pathgroup STMT passing COND "'

A statement name is also used to specify the scope, the boundary where informat ion

is effective. As we discussed in Section 3.1, a user informat ion statement may be true in

one scope bu t may be false in other scopes. To avoid confus ion, a user can specify the

scope of his /her informat ion as the name of the bounding statement, ff the scope is not

specified explicitly, the default scope becomes the nearest c o m m o n enclosing compound

statement of the statements appearing in given informat ion; the only exception is a lways

clause where the default scope becomes a procedure. We introduce two default labels S.$s

and S.$t for the start and end of non-s imple 1 statement S. They may not be used in an

IDL description, but appear in translated path information as delimiters specifying a scope.

These delimiters not on ly make path informat ion precise without confus ion but also make

path processing easier by localizing intersection.

Instead of giving a formal semantics for IDL, we here explain its mean ing informally.

Four of seven INFO__CLAUSEs are constraints on the relations among statements.

always(A) means that statement A is always executed in all paths. I f two statements are

always executed together, a user can say samepa th (A,B) , mean ing A and B must be on

44 c.Y. PARK

the same path. Similarly, "nopath(A,B)" is used when there must be no path passing both

A and B, and "exclusive(A,B)" when A is executed if and only if B is not executed. 2 For

the execution counts of a statement, two clauses are provided, loop L N times means that

loop statement L iterates N times, and execute A M times says that A is executed M times

inside given scope. Finally, C imply I describes conditional information saying if condition

C is true then information I is true. A statement appearing in condition (COND) means

the execution of the statement. For example, (A) imply always(B) means that if A is exe-

cuted, then B is executed. The meanings of higher-level constructs are obvious. As an ex-

ample, "nopath(A) inside L 1 ; or execute A 1 times inside L2 ;" means that statement

A is not executed inside L1 or it is executed only once inside L2.

Path group information does not eliminate infeasible paths; it is applied to organize the

results of path processing and to express interprocedural information. After all execution

information is processed in a pathwise manner. X~ is decomposed into several subsets.

However, this decomposition does not always provide a summary that a user wants to know;

it may be too coarse or too refined to extract the patterns of behavior. Thus, we provide

a user with ability to define cases that he/she wants to know. A pathgroup information

pathgroup PATHNAME passing COND has the meaning that all paths in Xb satisfying

COND are grouped and named as PATHNAME. In IDL a condition clause is restricted

to have only statements conneced by logical operators.

One purpose of path grouping is to analyze the execution patterns of a procedure. In

addition to the execution time bounds of all cases, a user may be interested in case by case

analysis. (For example, for the procedure ' ' check_da t a ' ' in Figure 5, a user may want

to know the execution times for the case when an exception happens.) Through path grouping,

one can define some execution cases of a procedure and have predictions on them, the

behavior as paths and the timing as bounds. With some qualification, each path group

becomes a more specific representative of the procedure. Thus, we treat it like a separate

procedure whose name is extended with the path group name as a qualifier (i.e.,

check_data. EXCEPTCASE).

The other purpose is to simplify handling interprocedural information. The easiest way

to describe interprocedural information is to access the statement names of other procedures

directly as the statements in the same procedure. However, it implies that the procedures

should be processed together. A procedure should be analyzed whenever it is called, and

the size of path representation grows. Path grouping provides an indirect (but structured)

way to access statements across procedures. If all paths passing through a statement are

grouped by path group information, interprocedural information to a statement may be

replaced with information to the path group name. Since the behavior of the path group

has already been analyzed, we simply use the exported results without processing the pro-

cedure again. Certainly, interprocedural information with path group names is less expressive

than information described directly with statement names, because a condition clause in

path group information only has statements. We expect, however, that many useful inter-

procedural information statements can be expressed with path group names.

4.3. IDL Translation

User information written in IDL is translated into regular expressions which represent the

set of information paths (Ie) in the path model. Translation is done following the structure

PREDICTING PROGRAM EXECUTION TIMES 45

of IDL; IDL information is translated line by line, and inside a line it is done in bottom-up

fashion from statements to clauses and to sentences.

The summary of translation rules is given in Table 2. The basic idea in translation is

to construct a set of paths satisfying the constraints meant by an IDL statement; all feasible

paths (Xp) must be included into the set because they certainly satisfy the constraints.

Regular expressions for an information clause can be built easily according to their logical

semantics. For an information sentence, its scope, determined by default if not specified

explicitly, should be translated. Since a scope is basically a condition that the clause is

true only if the scope statement is executed, we have to add paths where the scope is not

executed. For the case that the scope is executed, its paths are constructed as a Kleene

closure of the translated clause with the distinguished delimiters for the start and end of

the scope. (We call this closure a scope closure.)
It is worthwhile to note that translated regular expressions have only a few patterns. Of

course, this is the goal to introduce a restrictive interface language. Since information paths

are not so general but somewhat structured now, we can find an efficient algorithm

Table 2. IDL translation rules.

1. Statement names in condition clause

A = (*A*)

2. Logical operators

and = n

or ~ +

not ~ -~

3. Information clause

(a) always(A)

(*A*)
(b) samcpath(A,B)

(*A*) N (*B*) + -~(*A*)('I~(*B*)

(c) nopath(A,B)

= -1 ((*A*)N(*B*))

(d) exclusive(A,B)

= (*A*)A-~(*B*) + -~(*A*)A(*B*)

(e) loop A K times

= ~ (*A*)+_A.$s A.$c (~A.$c) K A . $ t _

where A.$c denotes the default name for the loop condition of A.

(f) execute A K times

= (_ A _) K

(g) C imply I c

- lac + aC N alc
where a c and alc represents the translated regular expressions of C and 1 o respectively,

4. Information Sentence

I C inside S ;

= -1 (*S*) + (_ S.$s ai¢ S.$t _)*

where S.$s and S.$t are special default statement labels for the start and end of S. The scope S is determined

by default if it is not given explicitly.

46 C.¥. PARK

intersecting them with program paths (Ap). Here, we emphasize again that IDL is one of

many possible subclasses of path language. We chose IDL by trading off between ex-

pressiveness and processibility based on the characteristics of user information. The appro-

priateness of IDL can be validated through a lot of experimental work. (We will address

it in Section 7.)

5. Verification of User Information

Since we eliminate paths in prediction based on user information, the correctness of given

user information is critical to the correctness of predicted results. If a user gives wrong

information, the tool may eliminate some executable paths, and predictions neglecting those

paths may be unsafe. What does it mean that information is correct? We say that user in-

formation is correct if every execution of a program follows its semantic or constraints.

(In the formal path model, le is correct if Xj, ___ It,.) To prove correctness, all execution

cases should be reasoned about from a program text and all preconditions on which the

program is running. Preconditions (e.g., the domain of data values) may be not specified

explicitly in a program, but imposed implicitly by specifications such as assumptions on

the environment.

In this work, we do not introduce a technique or a tool to check the correctness of given

user information automatically. It is already known that proving a properties of a program

is undecidable in general. There have been some program verification tools (e.g., [16]),

but our user information is more sophisticated than their capability because it specifies

high-level dynamic properties. Our goal is to provide a user with a formal way to reason

about the correctness of his/her information. Actual verifiction should be made by a user

according to the procedure. The message here is that our user information is sufficiently

formal to prove its correctness, and verification can be done by well-known techniques.

The basic strategy is to use an assertional program logic; Figure 6 illustrates the pro-

cedure. First, user information for a program is transformed to an assertion on program

variables. Then by proving that the assertion is true in the extended program with a proper

program logic, such as Hoare logic [5], or Dijkstra's weakest-precondition [4], we can

verify the correctness of the information. Some assertions cannot be verified by a program

text only, because they are related to some assumptions on the system and/or environment.

Knowledge of those assumptions provided from specifications is transformed to precondi-

tions at the beginning of the program. We chose program logic because it is a well-known

powerful technique for program verification. Since our IDL is logic-based, the transfor-

marion is also easy.

Figure 7 shows how a problem of verifying IDL information is reduced to a problem

of program verification. Since information I is about statement A and B with scope L, pro-

gram P is extended by adding 3 statements (enclosed by < >) after A and B and before

L. The assertion to be verified is put at the end of L.

Equivalence relation between the information (/) and the assertion (Ax) is obvious. Since

#A and #B are zero before L and they are incremented only when A and B are executed,

the value of #A and #B after L represents the number of times A and B are executed inside

L, respectively. Thus, the assertion AI is true if and only if both of A and B or neither

PREDICTING PROGRAM EXECUTION TIMES 47

........... A s s e r t i o n s ,] /

Figure d Verification procedure.

* Program

.P ::
begin

L begin
, , .

A: SA

BI. L

end

end

, User Information
I :: samepath(A,B)inside L ;

• Assertion and Extended Program
p,

begin

< ' # A = #B = 0 ; >

L: begin

A: S a < #A = #A + 1 ; >

B : S B < #B = # B + 1 ; >

end

{ a t = (#A > 0 A #B > 0) v (#A = 0 A #13 -~ 0) }

end

Figure 7. An example of problem reduction.

48 c.Y. PARK

of them are executed throughout L; that is, A and B are on the same path. Assertions for

other types of information can be easily built using predicates on the value of auxiliary

variables, in a similar way to the IDL translation. For example, A imply always(B) is

transformed to {(#A = O) V (#B > 0)}. [18] shows the rules generating an assertion from

an IDL sentence.

Assuming that every loop is terminated (we assumed that a program is correct and has

only finite execution paths), most of the assertions can be proved by Hoare logic. From

the precondition of a program, we apply the axiom of each program statement and prove

that an assertion is true. If one wants to prove the termination of a loop, Dijkstra's weakest

pre-condition or a terminate function [8] can be used. To prove interprocedural informa-

tion, one has to take care of parameters, return values and global variables. The detailed

procedure to prove user information and an example of program verification are described

in [18].

6. Path Processing

61. Intersection Through Information Terms

As we discussed in Section 4.3, the set of information paths translated from IDL informa-

tion consists of a few patterns of regular expressions basically having only one statement

label. Paths are constructed by connecting them with logical operators and encapsulating

them with a scope closure. We call these patterns information term or simply term (tl).

Four types of information terms may appear in any translated information paths. We name

each pattern as follows:

(*a*)

(*a*)

_ a.$s a.$c (_ a.$c) k a .$t_

(_a _)k

:ALLPATHTHRU

:ALLPATHNOTTHRU

:LOOPBOUNDS

:EXECCOUNTS

The first step in path processing is to simplify information paths. We first remove all

negation operators. Using Demorgan's law recursively, ~ operators in a path expression

are moved down to the terms and finally combined with an ALLPATHTHRU term to be

an ALLPATHNOTTHRU or vice versa. 3 Next, we transform it to a disjunctive form.

Because of a scope closure, it is done at the two levels: inside and outside a scope closure.

Let ai denote a regular expression for the set of information paths translated form L

(We call it information expression.) For IL and Is~, an IDL line (INFO~LINE) and a

sentence (INFO_SENTENCE), respectively,

%=%+%. . -+%~

For each information sentence, its information expression is composed of a term of the

scope and a scope closure as follows (see Table 2):

PREDICTING PROGRAM EXECUTION TIMES 49

%1 = -~(*S*) + (_ S . $ s alc S.$t_3"

where S is the scope of the sentence, and Ic is its information clause.

Inside a scope closure, we can transform Gic to a disjunctive from. That is,

aXc= (tll n t12 n . . . tin1) + (t2i n t22 o . . . t2nz) -~- . . . -~- (t m l n fro2 n . . , tmnm)

where t U is an information term.

Our strategy of path intersection is localized modification. First, intersection is achieved

by modification. For A n ~r with any regular expressions A and ~r, we resolve intersection

by modifying A to be included into or. More precisely, we remove all paths in A which

are not included in a, but no path is modified if it is in or.

For a regular expression r, let L(r) be the set denoted by r. Since we modify A (say A')

such that

L(A') = L(A) - L(tr)

where L(cr) means the complement set of L(a), and

L(A) - L(a) = L(A) n L(a) = L(A n or)

we have

A' = A A a

Therefore, the modification resolves intersection.

The idea of localization is derived from the following observation. Suppose cr does not

contain s or t (one may consider s and t special positioning symbols). Then,

A N (_ s ~ t _)

S A 0 S (A 1 n o-) t A 2 if A = AoSAltA2, and none of A 0, A 1 and A2 has s or t

otherwise

That is, special symbols localize intersection with an expression to intersection with its

subexpression.

Suppose A is a set of program paths, and a is a set of information paths. Since a usually

has constraints only on some subpaths within a scope, testing if a path in A is included

in a or not can be localized, and so can modification. Let cr = (_ S.$s a' S .$t_)* Then,

from the above observation, A O a is resolved by locating every occurrence of scope S

in A, and intersecting a ' with its subexpression enclosed by S.$s and S.$t. In other words,

A n a is eventually solved by localized interactions ai n a ' where S.$s c~ i S.$t is a subex-

pression of A.

50 C.Y. PARK

One important aspect of localization is that a scope closure can be ignored in intersec-

tion. A scope closure in an information expression is essential to locate a subexpression

of a program expression to be intersected, but it does not participate in actual intersection.

As a result, assuming that localization by a scope closure is enforced implicitly, we can

view an information expression from an IDL line, all as a disjunctive form of informa-

tion terms.

From the path model (Section 4.3),

X ~ , = Ap n lp

= n n n o7)

: n n n

where n is the number of information lines. Suppose crjL = (tll n t{2 n . . i • t ~ ,) + . . .

+ (t i l n t i2 . . . n tmnm in a disjunctive form as above, then

n

n ((t{1 n t{2 n ' ' ' ' = • • • fin,) + . . . + (tml n tm2 . . . n tmnm))

(. ((a~ n tj l) n t~2) o i i i tml) n n = tln,) + + (((A b n i tin2) . . . tmnm)

where Al~ denotes an intermediate result of intersection with o~L for j < i.

From the above formula, we can see that path analysis is eventually a sequence of in-

tersections with information terms. The algorithm intersecting four types of information

terms is shown in Figure 8. Here, II is a subexpression localized by a scope, which will

be modified depending on the meaning of a term. Operator o will be explained in the next

subsection.

Since path group information only summarizes program behavior, it is processed after

path processing is finished. Processing path group information is again done by intersec-

tion. For each path group information, the regular expression translated from its condition

clause is interseced with Xb, the result of path processing. Since the intersection gives a

set of program paths which are possibly executable and which satisfy the condition, it

represents the corresponding path group. After computing the time bounds of the path set,

we keep them with the given path group name in the procedure time table for reference

in other procedures. (In fact, we also prepare the time bounds of the complement group

for a given path group because a path group can be negated.)

6.2. C o m p l e x In tersec t ion

Although information expressions can have special structures by introducing IDL, its in-

tersection is not always easy. The complex case is when a statement in a loop is constrained.

For example, when an information term is ALLPATHTHRU(a) and a is inside a loop (e.g.,

(a + a ,)I¢ n (*a*)), the intersection result includes every path passing through a at any

iteration of the loop. It is already known that without an intersection operator, this type

PREDICTING PROGRAM EXECUTION TIMES 51

intersect term(H, tl(a))
/* H is a regular expression localized by a scope
tt(a) is an information term on statement a */

{
case (ti(a)) {
ALLPATHNOTTHRU:

every a in II is replaced by 0
simplify II by removing 0

LOOPBOUND:

for every a in II,
replace closure star * with iteration with bounds Ca) as given in t l

ALLPATHTHRU:
if a is not in II then i l ~ 0
if a is inside a loop then II '-- II o t x

if a exists but not inside a loop then

replace all alternative subpaths with 0
simplify II by removing 0

EXECCOUNTS:
1I ~- II o t I

}
}

Figure 8. Algorithm of intersecting terms.

of path set requires an exponential length descript ion enumera t ing all cases. Thus, we take

special care of this complex intersection; resolve it 11o further in path processing and han-

dle it in t ime computat ion. I f I I f l ti is complex, it is marked as I I ~ t,, but treated as

I I V) tl in the remain ing path intersection. Then T(II 0 tt) is est imated during t ime

computat ion.

The method to est imate the t imes of complex intersection is as follows. Let Pbest and

Pworst be the best and worst case path of I I ¢ tt, respectively, such that

Pbes, Pworst E II (> t I

and for any path p ~ II o tt,

low(T(pbest)) <- low(T(p))and up(T(p)) <_ up(T(Pworst))

We first bui ld Pbest and Pworst, and then T(II ¢ tl) is est imated as [low(T(pa~st)),

up(T(Pwor~t))]. The predict ion is safe, because

low(T(pbest)) <- low(T(p)) <_ tb(p) <_ tW(p) <_ up(T(p)) <_ uP(T(pwor, t))

where tb(p) and tW(p) means the best and worst execution t imes of path p.

In bui ld ing the best path Pbest (the worst case is handled in the same way), I I is used

as a basis (template) of path construct ion, and tl works as a constraint accepting the con-

structed path. We start f rom the best case path 7rbest of I I and modify it to be included

into t~, which we call path modification. As long as a modif ied path is kept in I I and in

52 c.Y. PARK

the best case, it becomes the best path of II f'l tt. To be in H, a path is modified only

to another path in II. To keep it in the best case, we minimize modification; since we started

from the best case path, the less we change it, the closer it is to the best case path. Modifica-

tion is done by unwinding a loop, replacing the subpath inside the unwound loop with the

best alternative subpath defined both in II and tt, and arranging (or expanding) the loop

bounds until tt is satisfied. (There may be more than one best and worst path; Pbest and

Pwom become one of them.)

This path modification works well when there is only one complex intersection in a scope;

however, it does not if a scope has multiple complex intersections (e.g., re <> t} 0 ~ or (re1

• (~r 2 <> t})) ~ ~). Because of the relations among the information terms, it is difficult to

keep a modified path in the best and worst case. There may be some ways, probably com-

plex, to solve this problem, but we are adopting an easy approximation method here.

Our approximation method is to select the most effective intersection, meaning the in-

tersection with a term which gives the tightest predictions. For II o t} <> ~ . . . o t~, (t~

can be on the different scopes inside II), we apply a single complex intersection for each

t'p and select the best and worst time among the results. That is,

B

T(n o t) <> <> t,a) ("1 T(n tl)

B B
where interval-bound operator O is defined as follows: [a, b] O [c, d] - [max(a, c),

rain(b, d)l 4. For any t~,,

(n o d <> d . . . o (n t>)
B

r (n o 4)

Hence, the approximation is always safe.

6.3. Time Computation

Path analysis gives the set of possibly executable paths as a sum of subsets (i.e., Xb =

1I~, + . . . + II}). We focus here on how to use this result of path analysis and to com-

pute a tighter prediction.

Several methods were considered. One of them is program transformation where for

each subset 1I~,, the original program (P) is transformed into a new program (pi) whose

program paths (Az) are equal to II},. We can apply our prediction technique to each

transformed program as it is, and compute T(X~) by merging the predictions of each pro-

gram as explained in the path model. The benefit of this method is that path analysis is

completely transparent to timing prediction. However, the method is likely to be ineffi-

cient because of transformation cost and repeated timing prediction. Temporally equivalent

transformation including control cost seems also nontrivial, especially if a program has

complex structures.

PREDICTING PROGRAM EXECUTION TIMES 53

Conditional timing schema is another. The timing schema for a statement is expanded

to a conditional formula to compute different times case by case. Each subset has its own

timer and counts the corresponding time bounds for a statement, depending on whether

it has the statement or not (i.e., whether its path passes through the statement). For exam-

pie, given if statement S : if (B) then St else Se,

T(B) + T(St) + T(then)

T(S, II~) = J T(B) + T(Se) "k- r(else)
L T(S)

if St ~5 Hip A Se¢ IIip

if S e E nZp A St ~ II~p

otherwise

where T(S) is the old timing schema covering both cases together. With slight expansion

of timing schema, we can use the result of program analysis directly in the same timing

prediction method. Also it is more efficient than program transformation, because a pro-

gram is read only once and multiple timers are updated together. However, the method

suffers some complication that timers (T(H~)) should be managed dynamically.

Both methods provide clean separation for two tasks; path analysis works as an indepen-

dent preprocessing, and the same or slightly modified timing computation technique can

be used. However, regardless of implementation complexity and cost, neither method sup-

ports path modification with respect to time, which is important in handling complex in-

tersections (Section 6.2).

The method we chose involves a timed label, where a label of a statement is expanded

to have not only the identifier of a statement but also the execution times of its components.

The execution times of each statement are predicted and recorded into its label by the basic

schema-based prediction method, when the set of all program paths (Ap) is generated from

a program text. After path analysis, the execution times for the set of possibly executable

program paths (X~) is computed using the times recorded in the labels.

In building timed labels, all of the timing information to be used later in time computa-

tion should be prepared. For a simple statement labeled by a user or default naming, its

execution times are predicted and recorded into its label. I f a statement is a labeled but

nonsimple statement, its time bounds are not determined here because it may be manipulated

in path processing. Instead, all timing components including control costs are prepared.

Some of the components whose times are not predictable (e.g., nested nonsimple statements)

keep a pointer to the corresponding subpath instead of time values. In case a statement

is unlabeled, its times are determined and added to the times of a labeled statement that

is in a straight-line with it in execution. This is always possible because there exists at

least one label given by a user, the procedure name.

Since each label has its execution times and the timing of each operator 6 is also well

defined, we can easily compute the time bounds of any subpath of a program at any time,

even in the middle of path processing. This makes it easy to process a complex intersec-

tion, which requires a lot of path modification based on its times. The method is also as

efficient as conditional timing schema. The only drawback is that it imposes conceptually

more sophisticated combination than the above two methods; instead of two purely separate

processing steps, timing prediction is divided into two substeps, and path analysis is ac-

tivated in the middle of them.

54 c.Y PARK

The complexity of our timing prediction is purely that of path processing, because it

starts with information analyzed by a user. All the basic steps in path processing: simple

intersection with an information term, path modification for complex intersection, and time

computation for each subset of paths (II~,), are linear to the length of a program. It is ob-

vious that the number of information terms is determined by the amount of user informa-

tion provided. The number of the subsets also depends on user information. Theoretically,

it can be as many as the number of program paths; consider the case when a user specifies

every program path with IDL statements. However, this may not happen in practice (in

the experiment, less than 10 IDL statements specifying less than 5 subsets for most pro-

cedures). In summary, considering the size of a program constant, the prediction cost is

a function of the amount of user information, basically the number of IDL statements.

Unless the amount is abnormally large, prediction can be made efficiently.

7. Experiments

We have built a prototype tool to predict the execution times of a program with the path anal-

ysis technique based on the path model. The tool inputs a C subset program and user infor-

mation written in IDL, and outputs the behavior and the execution times of the program:

the patterns of program paths and their times, the times of user defined path groups, and

the execution time bounds covering all executions. The target system environment is the

same as for the earlier timing tool: GNU C compiler and a 68010-based standalone SUN2.

Figure 9 shows the organization of the timing tool. The tool consists of 4 components,

written in about 8,000 lines of C, YACC and LEX code. Timed Ap-Generator inputs a

program text (P) and generates a regular expression (Ap) for the set of all statically possi-

ble program paths of P. While generating Ap, it also predicts the times of each statement

and records them into the corresponding label in Ae as explained in Section 6.3. In Ip-
Generator, the sets of information paths (Ip) are generated. Given IDL statements, Ip-

Generator translates them into regular expressions line by line, and simplifies them as a

disjunctional form of information terms,

Path-Processor eliminates the impossible paths in Ap by performing intersection between

Ap and Ip. It continuously copies and modifies Ae as specified in Ip. The result is the set

of possibly executable program paths (X'p) decomposed into the sum of multiple subsets.

Each subset consists of labels, + , . , ~ (finite iteration) and ~ for complex intersection.

Time-Computation computes the times of each subset in X~, and eventually the time

bounds of Xl; as an estimation of T(P). While computing times, complex intersection is

handled by path manipulation, if it exists.

Figure 10 shows some part of outputs using the tool for the simpte procedure

"check__data?' The program and user information are as in Figure 5 (except that the label

LB for the loop body is not given explicitly). In the figure, ̂ [3, ; and && mean operator

*, • and 0, respectively. The tool analyzed the behavior of the procedure into two patterns

of paths, the exception case (PATH 1) and the normal case (PATH2), and gave their times.

Since the user information also defined a path group EXCEIrl-CASE passing statement

C (Figure 5), the tool gave the times of the path group, which is the same as PATH1 in

this case. Finally, the execution time bounds of "check__data" on all cases were given by

merging the times of both cases.

PREDICTING PROGRAM EXECUTION TIMES 55

Ap I

Path-Processor

I Xp' ,I

Time-Computation

Figure 9. Organization of timing tool.

A l l P a t h s o f ' c h e c k _ d a t a ' :

L (A + B))" [] ; (C + C ')

PATH 1

L (((A + B))~ [1 , 1 0] && (_ A _)~ i

T i m e o f PATH 1 : [6 6 6 , 2 2 8 4]

PATH 2

L (B)~ 10 ; C '

T i m e o f PATH 2 : [1 8 8 6 , 2 0 0 6]

T i m e o f p a t h g r o u p EXCEPTCASE = [6 6 6 , 2 2 8 4]

* * * P r o c e d u r e (c h e c k _ d a t a)

C y c l e s = [6 6 6 , 2 2 8 4]

T i m e s = [6 7 . 7 5 2 1 0 . 9 8] (m i c r o - s e c)

Figure 10. Example of running the too/.

) ; C

56 c.Y. PARK

To validate our idea, we compared predictions with measurements as we did in [17].

We have tested a range of programs including a real-time kernel [2] and some famous

algorithms. Figure 11 shows the time results of some interesting procedures. Each column

in the table stands for predictions without dynamic path analysis, 7 predictions with

dynamic path analysis and measured times, s Some examples are a single procedure (e.g.,

inse~___sort), and others consist of multiple procedures (e.g., mp scheduler consists of

5 procedures and 140 source lines).

For all procedures, predictions are safe regardless of dynamic path analysis, covering

the measured times for the best and worst case. Predictions with static path analysis only

are tight for some procedures (e.g., matrix.__mutiply), but looser for some other procedures

(e.g., calc_center); especially the upper bound of calc center is more than 10 times greater

than the worst execution time. With the help of dynamic path analysis, predictions become

tighter. Counting interference from memory refresh, most of the predictions are very close

to the measured times. The exceptional cases are job_scheduler and queue_insert.

For job_scheduler, dynamic path analysis gives much tighter bounds, but they are still

loose. The given IDL information generates multiple complex intersections, and our ap-

proximation for them (Section 6.2) does not work as well. In case of queue_insert, the

expressiveness of IDL causes a problem. The procedure has two loops in sequence, and

there exists an interesting relation between them: each loop can iterate [0, #__of_processes]

times but the sum of the iterations of the two loops is also in [0 , #__of processes]9.

(This type of loop relation was mentioned as loop sequence in [19].) This information is

describable in our path language, regular expressions (i.e., (L 1 + L2)K), but cannot be

expressed in our subclass interface language, IDL. Path analysis can do nothing because

no information can be provided.

One interesting issue is timing predictability of a procedure. We could classify procedures

into three types as follows. The first type is a procedure whose execution times are predict-

able tightly without dynamic path analysis. This type procedure usually performs some

confined operations. It is interesting that more than half of the tested procedures fall in

this type. A procedure is the second type if its predictions using only simple timing schema

are loose, but they can be refined tight by path analysis using IDL information. We could

find this type in many small algorithms (e.g., sorting) and some high level procedures that

consist of many procedure calls. This type is tess frequent than the first type, but it is

usually critical in determining the execution times of a program. The last type is a pro-

cedure whose predictions are loose even with path analysis. A procedure may need com-

plex information that cannot be described in IDL (e.g., queue__insert), or that is describable

but not sufficiently processable (job_scheduler). We expect that this type of a procedure
is not often found, lo

Certainly, predictability depends on what a program does and which algorithm it im-

plements. However, it is also affected by programming style. For example, we could write

queue_insert2, which is the same procedure as queue___insert except that the two loops

are combined into one loop. As shown in Figure 11, queue__insert2 is much more amenable

to prediction of execution times; no complex information is required for very tight bounds.

(This experiment shows that a timing tool can be used as an aid to write a predictable and

efficient program with respect to performance.)

PREDICTING PROGRAM EXECUTION TIMES 57

Procedures

matrix_multipIy

clock.synch

check_data

insertion_sort

calc_center

rap_scheduler

job.scheduler

queue..insert

queue_insert2

10

predictions
without dynamic

path analysis

predictions
with dynamic
path analysis

7 ; measured
. . . . ~ times

2 2 ~ 7 7 5

i i

I I

II II
r q

I I .~

7 " ' L

100 1000 i0000

L

100000 1000000

Execution Times (#see)

procedure

matrix.mult iply b

cIock.synch c

check_data d

insertion_sort ~

calc_center /

mposcheduler g

job_scheduler h

queue_insert i

" queuednsert2 i

predictions a

without dynamic

path analysis

[6276.82,6696.40]

[186.97,1221.96]

[32.15, 252.00]
[187.17, 3450.10]

[18685.00,400828.43]

[51.88, 4253.31]

[454.71,5950.37]

[58.80,798.51]

[58.80,489.56]

predictions

with dynamic

path analysis

[6276.82,6696.40]

[298.66,1221.96]

[67.75,248.60]
[187.17,2085.04]

[18685.00,30338.89]

[248.21, 3618.12]

[477.29,4480.08]

[58.89,798.51]

[58.80,489.56]

measured

times

(~sec)
6412

[338.5,1153.9]

[73 .1 ,234.9]

[197.2, 2071.1]

[1.9313,28476]

[280.7,3242.6]

[548.6,3444.0]

[60 .5 ,490.4]

[60 .5 ,469.3]

"All predictions and measured times include [0,7]% (average 5%) delay caused by nondeterministic inter-
ference from memory refresh [17]

bThe matrix size is 5 x 5.
*Perform averaging calculation of clocks from at most g sites.
aThe same program in Figure 5 with "handle_exception" taking [24.01 , 25.84] #aec.
~The number of data elements sorted is 10.
SOalculate the center of an object image (a down-scaled procedure of the example in [19]

There is an assumption that the object has a restricted size.
gMultiprocessor scheduler that allocates 5 processors.
nSchedule 10 jobs in earhest deadline first.
/ Inse r t a process into a two-level priority queue.
iA rewritten procedure of "queue.insert".

Figure 11. Time results of sample procedures.

I t is wor thwh i l e to no t e that pa r t i a l i n f o r m a t i o n m a y be e n o u g h to p red ic t suf f ic ien t ly

t ight b o u n d s ; c o m p l e t e k n o w l e d g e of p r o g r a m pa ths is no t a lways necessary= Fo r the s am-

p le p r o c e d u r e m p _ s c h e d u l e r , we cou ld f ind 12 I D L i n f o r m a t i o n s ta tements . E x p e r i m e n t s

58 C.Y. PARK

showed that only half of them are effective to tighten predictions; the other half give minor

gain, or have no effect after approximation. This observation tells us that not all informa-

tion statements have the same value with respect to timing prediction, and that part of them

only can refine predictions tightly enough. Therefore, it is a good strategy for a user to

give information incrementally: give obvious and large-scale information first, and add

more detail if predictions are not sufficiently tight. It can reduce not only unnecessary

processing cost but also overhead to verify given information.

There is no definite answer to the question about which type of information is more

valuable. It all depends on the static structure and the dynamic behavior of a program.

Our empirical observation is as follows. Information on loop iteration number is necessary;

we cannot predict the times without it. Execution count is usually decisive, if it exists (e.g.,

calc center). The complexity results of an algorithm are usually expressed with it. Path

relations, including interproeedure relations, are useful when a program performs some

complicated operations with multiple cases (e.g., mp scheduler).

The results of our experiments show the following points. All the predicted times are

safe. Frequently, tight predictions can be obtained by our efficient static path analysis only.

For most procedures, predictions with dynamic path analysis are fairly tight to the best

and worst case execution times. Complete knowledge may be not necessary, because some

partial information can result in sufficiently accurate predictions. There exist some cases

in which our path analysis with IDL is not sufficiently helpful. These problematic cases

are not the limit of our path model, but the result of our decisions for a practical solution

through IDL, expecting that those cases are ineffectively rare. Some of them can be handled

by rewriting a program in a more predictable way.

8. Future Work

While designing the interface language, the primary concern was processibility with respect

to path intersection and time computation. We started from a general one which allows

a sequence of statements to be a basic object, which is as descriptive as regular expres-

sions. We continued by trial and error to add or delete restrictions, and finally decided

upon IDL. We believe that IDL is very restrictive, maybe close to the minimal in the sense

that if another restriction is added, it cannot describe some useful user information. There

is always a chance to expand IDL and process more powerful user information (e.g., an

information clause can be placed on a condition clause). However, it usually costs more

complex processing; even IDL is not so easy that we need to make an approximation in

time computation. An expansion should be made when it causes no or little increase of

processing complexity, or when experiments tell it necessary for valuable user informa-

tion. One may also define other alternative types of interface languages, but it should be

easy to use, process and verify.

Although we are confident that path processing is correct and effective giving safe and

very tight predictions, there are some questions yet to be answered. How many real pro-

grams need dynamic path analysis to get satisfactory predictions? Is IDL easy to use and

sufficiently descriptive? Is IDL too restrictive to describe some user information? Ease

PREDICTING PROGRAM EXECUTION TIMES 59

of use is somewhat subjective, but it certainly depends on what kind of execution informa-

tion a user has. Usefulness of path analysis may be related with several t~actors including

the complexity of a program, the accuracy of basic prediction method, and the degree of

precision requested. A lot of experimental work, especially with programs used in real

systems, should follow to address these problems.

As a refinement method, our path analysis works well for sequential programs. An emerg-

ing question is whether a similar technique works for concurrent programs too. We have

developed timing schema for concurrent constructs such as locking and message passing

[21], and initial experiments showed that timing prediction of a parallel program is feasi-

ble with those timing schema [9]. Although this simple approach gives safe predictions,

it has the same problem of loose predictions counting impossible cases as most static analysis

methods do. We are investigating a way to apply the same framework of compensation

based on user information. User information should be expanded to include not only paths

for statement relations in a process but also statement and temporal relations with other

processes, especially blocking times (e.g., Process A and B do not request a resource at

the same time). The key issue is again how to generalize execution information.

Prograna behavior analysis based on the path model may be used in some areas other

than timing prediction. For example, it may- help test data generation. Generating test data

usually suffers from an exponential path domain and frequent backtracking because man),

of the paths are revealed as infeasible in the middle of data generation [10]. Eliminating

infeasible paths can reduce many fruitless efforts. Certainly, our path analysis cannot tell

the correctness of a program. However, it may be used to check quickly whether a pro-

gram is compatible with some desired program behavior. By performing path analysis with

IDL descriptions of the desired behavior, we can see whether it is defined in a program

and how other program behavior reacts with it. Path analysis may also supply some run-

time information. With possible behavior decomposed into several cases, one may predict

future behavior in an early stage of execution. This knowledge may be useful in many areas

such as efficient runtime resource management.

Recently, several studies have mentioned an approach of runtime prediction (e.g., [7]).

Their idea is to express the execution times of a program as a function of the program

variables at compile time, and to evaluate the function at runtime knowing the values of

the variables. It can avoid a pessimistic prediction and thus provide a possibility of better

dynamic decisions, such as the guarantee of a dynamic request from a process. However,

the approach implies additional complexity in compile time analysis (e.g., symbolic com-

putation) and overhead to compute a function at runtime. Our pathwise analysis may be

the better solution for this purpose. We can prepare predictions for each possible execution

case of a program. Then at runtime we check which case is actually being executed and

select the tight predictions dynamically among the predictions prepared. The only overhead

is cost for recording the execution history information on some significant statements, in-

stead of monitoring the values of the variables in the former approach.

Input/output operations are particularly important in real-time systems because they repre-

sent interactions between a system and the environment, and take a major part in system

operations. We modeled an I/O operation as execution of an I/O statement, and applied

the same schema-based static analysis [18]. The main problem in I/O analysis is predict,

ing waiting time for a device or data and interference caused by asynchronous execution

60 c.Y. PARK

in a variety of implementation policies. Our approach was to develop a general framework

and to apply it to a specific case. We developed refinement rules for possible implementa-

tion policies that transform an implementation-independent timing schema to

implementation-dependent, and thus more predictable, timing schema. We also introduced

interference formulas that estimate the effect of I/O interference on program execution times

for given implementation policies of a target system. We showed several examples of analysis

applying the framework to specific cases,

With a program logic extended with a real-time clock, our performance predictions can

reason about other timing properties of a system [20]. Although our predictions are made

on the assumption of maximum parallelism, they can be applied directly in some systems

where a processor is shared in a predefined way (e.g., cyclic executives). Processor shar-

ing with a special task (e.g., interrupt handler) can also be handled easily by slightly modi-

fying predictions for interference from the task. For general processor sharing, one may

depend on scheduling theory. Our predictions are projected to the computation time of

a task, and system timings (basically, deadlines) are determined by checking the feasibility

of the task set. The problem here is how realistic a task model is. The approach we are

considering now is to expand our interference model for general processor sharing. We

consider all delays caused by processor sharing interference, and adjust predictions for

those delays. Starting from a simple environment and adjusting predictions step by step,

we expect to have predictions in a real environment.

In this paper, we introduced an idea combining dynamic path analysis with a timing predic-

tion method. The prediction technique is a simple and efficient static analysis based on

timing schema. Using powerful information provided by a user, dynamic program analysis

eliminates the effects of infeasible paths and refines predictions tight. As a basis to exploit

user information for dynamic path analysis, we developed the formal path model. Its prac-

tical application was achieved by introducing a user interthce language IDL. Experiments

with a timing tool showed that our approach is valid and promising; safe and tight execu-

tion time predictions are possible for a wide range of programs in an effective way.

Acknowledgment

I am grateful to Becky Callison, Travis Craig, Ricardo Pincheira, Sitaram Raju for their

helpful comments and suggestions. Special thanks to Becky Callison and Sitaram Raju for

their very careful reading of this paper. I would like to thank Professor Alan Shaw for

advising me throughout this work with his insight and experience.

Notes

1. A simple statement is a statement that does not contain any other statement (e.g., an assignment statement).

2. Here, exclusive means not mutually exclusive but exclusive or.

3. From the syntax of IDL, a negation operator comes only with ALLPATHTHRU or ALLPATHNOI~HRU.

4. We assume that two interval bounds are overlapping, i.e. (a -< d) A (e --< b).

5. Here, s E H means ~p E H such that p passes through s.

PREDICTING PROGRAM EXECUTION TIMES 61

6. The timing of each regular expression operator is defined as follows:

T(a. b) = T(a) + T(b),

T(a t~) = K × T(a), and
B

T(a + b) = T(a) U T(b) =- [rain(low(T(a)),low(T(b))), max(up(T(a)), up(T(b)))]

7. User input for loop bounds are needed also in the early version tools based on timing schema only [17].

8. We generated a data set for each of program paths that can possibly be the best and worst case with respect

to execution time, and measured the time of 150,000 iterations (15,000 for some procedures) of execution

for each case. The bounds of measured times were computed from the shortest and longest measurements.

9. The first loop searches for an insertion point based on the first-level priority. If there exists a tie, the second

loop decides the proper position based on the second-level priority.

10. In the experiment, we have tested more than 50 programs, and those two are the only examples.

References

1. Avrunin, G., Dillon, L~, Wileden, J., and Riddle, W. 1986. Constrained expressions: Adding analysis capa-

bilities to design methods for concurrent software systems. IEEE Transactions on Software Engineering.

12:278-291.

2. Callison, H., and Shaw, A. 1991. Building a real-time kernel: First step in validating a pure process/Adt

model. Software - - Practice and Experience. 21:337-354~

3. Chen, M. 1987. TAL - - A language for timing analysis. Department of Computer Science~ University of

Texas, Austin.

4. Dijkstra, E. 1976. A Discipline o f Programming. Englewood Cliffs, NJ: Prentice-Hall.

5. Hoare, C. I969. An axiomatic basis for computer programming. Communications o f ACM. 12:576-580.

6. Huang, J. 1990. State constraints and pathwise decomposition of programs. IEEE Transactions on Software

Engineering. 16:880-896.

7. Gehani, N. and Ramamritham, K. 1991. Real-time concurrent C: A language for programming dynamic

real-time systems. The Journal o f Real-Time Systems. 3:377-405.

8. Giles, D. 1981. The Science o f Programming. Berlin/New York: Springer-Verlag. Chapter 12, pp. 149-162.

9. Kim, J. and Shaw, A. 1990. An experiment on predicting and measuring the deterministic execution times

of parallel programs on a multiproeessor. Tech. Report #90-09-01, Dept. of Computer Science and Engineering,

Univ. of Washington, Seattle, WA.

10. Korel, R. 1990. Automated software test data generation. 1EEE Transactions on Software Engineering.

16:870-879.

t 1. Lin, K., Kenny, K., Natarajan, S., and Liu, J. 1990. FLEX: A language for real-time systems programming.

Foundations o f Real-Time Computing: Formal Specifications and Methods. (ed. A. Tilhorg and G. Koob),

Kluwer Academic Publishers. pp. 251-290.

12. McNaughton, R. and Yamada, H. 1960. Regular expressions and state graphs for automata. IRE Transac-

tions on Electronic Computers. 9:39-47.

13. Mok, A., Amerasinghe, P., Chen, M., and Tantisirivat, K, 1989. Evaluating tight execution time bounds

of programs by annotations. Proceedings o f 6th IEEE Workshop on Real-Time Operating Systems and Soft-

ware. pp. 74-80.

14. Niehaus, M. 1991. Program representation and translation for predictable real-time systems. Proceedings

on 12th IEEE Real-Time Systems Symposium, pp. 43-52.

t5. Nirkhe, V. and Pugh, W. 1991. A partial evalnator for the Maruti hard real-time system. Proceedings on

12th IEEE Real-Time Systems Symposium, pp. 64-73.

16. Olender, K. and Osterweil, L. 1990. Cecil: A sequencing constraint language for automatic static analysis

generation. 1EEE Transactions on Software Engineering. 16:268-280.

17. Park, C. and Shaw, A. 1990. Experiments with a program timing tool based on source-level timing schema.

Proceedings on l l th IEEE Real-Time Systems Symposium. pp. 72-81. (A revised version is also in IEEE

Computer, 24:48-57.)

62 c.Y. PARK

18. Park, C. 1992. Predicting deterministic execution times of real-time programs. Ph.D. Thesis, University of

Washington, Department of Computer Science.

19. Pusehner, P. and Koza, Ch. 1989. Calculating the maximum execution time of real-time programs. The Jour-

nal of Real-lime Systems. 1:159-176.

20. Shaw, A. 1989. Reasoning about time in higher-level language software. IEEE Transactions on Software Engi-

neering. 15:875-889.

21. Shaw, A. 1991. Deterministic timing schema for parallel programs. Proceedings of 5th International Parallel

Processing Symposium. pp. 56-63.

22. Stoyenko, A. 1987. A real-time language with a schedulability analyzer. Ph.D. Thesis, Univ. of Toronto, Com-

puter Systems Research Institute, Tech. Report CSRI-206, Toronto.

23. Stoyenko, A. and Marlowe, T. 1992. Polynomial-time transformation and schedulability analysis of parallel

real-time programs with restricted resource contention. Real-Time Systems, 4:307-330.

24. Woodward, M., Hedley, D., and Hennell, M. 1980. Experience with path analysis and testing of programs.

IEEE Transactions on Software Engineering. 6:278-286.

25. Young, M. and Taylor, R. 1988. Combining static concurrency analysis with symbolic execution. IEEE Trans-

actions on Software Engineering, 14:1499-1511.

