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Abstract

Background: Predicting progression from a stage of Mild Cognitive Impairment to dementia is a major pursuit in

current research. It is broadly accepted that cognition declines with a continuum between MCI and dementia. As such,

cohorts of MCI patients are usually heterogeneous, containing patients at different stages of the neurodegenerative

process. This hampers the prognostic task. Nevertheless, when learning prognostic models, most studies use the entire

cohort of MCI patients regardless of their disease stages. In this paper, we propose a Time Windows approach to

predict conversion to dementia, learning with patients stratified using time windows, thus fine-tuning the prognosis

regarding the time to conversion.

Methods: In the proposed Time Windows approach, we grouped patients based on the clinical information of

whether they converted (converter MCI) or remained MCI (stable MCI) within a specific time window. We tested

time windows of 2, 3, 4 and 5 years. We developed a prognostic model for each time window using clinical and

neuropsychological data and compared this approach with the commonly used in the literature, where all

patients are used to learn the models, named as First Last approach. This enables to move from the traditional

question “Will a MCI patient convert to dementia somewhere in the future” to the question “Will a MCI patient

convert to dementia in a specific time window”.

Results: The proposed Time Windows approach outperformed the First Last approach. The results showed that we

can predict conversion to dementia as early as 5 years before the event with an AUC of 0.88 in the cross-validation set

and 0.76 in an independent validation set.

Conclusions: Prognostic models using time windows have higher performance when predicting progression from

MCI to dementia, when compared to the prognostic approach commonly used in the literature. Furthermore, the

proposed Time Windows approach is more relevant from a clinical point of view, predicting conversion within a

temporal interval rather than sometime in the future and allowing clinicians to timely adjust treatments and clinical

appointments.
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Background
Decline in cognitive functions, together with other evi-

dences of neurological degeneration, become increasingly

likely as people age (some at an earlier age others at a faster

rate) [1]. Therefore, distinguishing normal aging from

cognitive decline due to pathological processes and un-

derstanding the individualized disease diagnostic and

prognostic patterns are ongoing research challenges.

Neurodegenerative diseases causing cognitive impairment,

such as Alzheimer’s disease (AD) and other forms of de-

mentia (dementia with Lewy Bodies (DLB), frontotem-

poral dementia (FTD), Vascular dementia (VaD)) are

amongst the best studied diseases of the central nervous

system due to its devastating effects on patients and their

families, and to the socio-economic impact in modern so-

cieties [2]. Nowadays, over 46 million people live with de-

mentia (mostly AD) worldwide and this number is

estimated to increase to 131.5 million by 2050 [2]. Unfor-

tunately, by the time patients meet criteria for dementia,

the brain has suffered sufficient damage to severely impact

cognition and autonomy. With this in mind, recognizing

putative progress to dementia when patients experience

only mild cognitive deficits, at a stage of Mild Cognitive

Impairment (MCI), is paramount to develop disease-

modifying therapies and identifying appropriate thera-

peutic windows [3–9]. Clinical studies with MCI patients

have reported higher risk rates of conversion to dementia

(in particularly to AD) than community studies, sug-

gesting these patients as a group of singular interest to

follow-up studies and interventions [10, 11]. In a recent

systematic review [12], MCI diagnosis was associated

with an annual conversion rate up to 20%, however

with substantial variation in risk estimates.

In this context, researchers have followed a number of

different directions for prognostic prediction in MCI.

Some explored biological markers, such as those in cere-

brospinal fluid (CSF) or brain imaging (using magnetic

resonance imaging (MRI) or positron emission tomog-

raphy (PET) technologies) [3, 13–20]. Others used

neuropsychological tests (NPTs) alone [8, 10, 11, 21–25]

or in combination with biological markers [9, 26–31].

The latter strategy seems to achieve better predictive

performances than using the markers independently

[3, 9, 15, 30–32]. Despite the efforts, to date, no single

biomarker to predict conversion from MCI to demen-

tia with high accuracy was yet found [9].

Furthermore, it is widely recognized that neurodegen-

erative diseases take many years to manifest, slowly

draining the cognitive capabilities of those they afflict.

This makes it hard to ascertain where a given MCI pa-

tient stands in the continuum of the disease. As such,

cohorts of MCI patients are usually very heterogeneous,

with patients at different stages of the neurodegenerative

process. This patients’ heterogeneity, if not considered,

introduces noise in the prognosis methods, decreasing

their reliability [16, 31, 33]. To our knowledge few

studies take this issue into consideration [33, 34].

Some addressed this question [16, 35] by performing

an a posteriori evaluation of the results, looking for

differences induced by the conversion time. Doyle et al.

[16] developed a continuous index of disease progression

based in multivariate ordinal regression and showed that

patients considered as “late converters” (converting in a

24–36 months follow-up) were characterized by a differ-

ent distribution from those that converted within a

12 months follow-up. Adaszewski et al. [35] tested diag-

nostic accuracy at different points of conversion to AD

(4 years before dementia to 2 years of clinical dementia)

using Support Vector Machines (SVMs) classification with

structural magnetic resonance imaging. However, a het-

erogeneous cohort of MCI patients is used to learn the

model and the emergent differences putatively caused by

the time a patient takes to convert are evaluated a poster-

iori. We name this approach as First Last (FL) approach,

as it combines the baseline and the clinical outcome at the

last evaluation of each patient when building the learning

examples, regardless their time to conversion.

In this work, we propose a Time Windows approach

to tackle the MCI-to-AD conversion problem. We used

NPTs and the time to conversion of MCI patients is

handled during the construction of machine learning

examples, where the set of patients is divided into sub-

groups according to their conversion time and later

used by classifiers. As such, unlike other studies, the

prognostic model is trained with time-homogeneous

MCI groups and thus learns already from putatively dif-

ferent progression patterns of disease. Two precedent

works used temporal approaches to study progression

to Alzheimer’s disease using neuroimaging data [33, 34].

Different groups of converting MCI patients were created

by using scans (from FDG-PTE [33] or MRI [34]) col-

lected at 6 to 36 months before the subjects fulfill the AD

criteria. Then, distinct prognostic models were learned

for each of those groups and the single group of non-

converting MCI patients. Although this case constructs

learning examples differently and uses other data types,

the results corroborate our hypothesis that prognostic

predictions can be improved by learning with subjects

at similar stages of the disease. Our approach is differ-

ent from the already proposed [33, 34] since we stratify

both stable and converter MCI patients while in the

previous studies only the converting group is homoge-

nized. We note that in this context a stable MCI patient

in a time window may become a converter MCI patient

in a larger time window as happens in clinical practice.

We also emphasize that the follow-up time used in our

work is longer (time windows of 4 and 5-years were

studied). Furthermore, we tested the Time Windows
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approach with neuropsychological data, which to our

knowledge was not done so far. The reason behind this

decision is the fact that we believe it is fundamental to

study the predictive power of NPTs, since they are

widely used in clinical practice in alternative to more

expensive and often invasive approaches and these tests

are still a hallmark for diagnosis of dementia and MCI.

In fact, the technology required for PET imaging and

other biomarkers may not be widely available, while

NPTs are routinely used in clinical practice. In addition,

current theoretical models suggest that neuropsycho-

logical data may be more important in identifying MCI

patients who are closer to convert to dementia, while

neuroimaging and biological markers may identify the

presence of neurodegenerative pathology in subjects

that will develop dementia in the future [8, 36]. More-

over, although machine learning approaches are gaining

relevance in dementia research [15, 33], studies includ-

ing only NPTs are mostly based on traditional statistical

analysis instead of machine learning.

Another advantage of the proposed approach, learning

with homogeneous groups instead of learning with het-

erogeneous groups as it is widely performed using the

FL approach, concerns the relevance of the clinical ques-

tion addressed. From a clinical standpoint, knowing that

a MCI patient will convert to dementia but not knowing

if this will happen in the following year or in the next

20 years is not particularly useful. However, knowing

that the conversion will occur in a particular time

window, for instance within 5 years, is clearly useful.

This allows the clinicians to adjust the therapeutics to

match the effective progression of the disease and to

schedule clinical appointments accordingly.

Figure 1 illustrates the problem addressed in this work:

using neuropsychological data to predict whether a patient

with MCI will convert to dementia using specific time

windows (2, 3, 4 and 5 years) and comparing it with the

First Last approach, where time windows are not used.

Methods

We start by describing the data. Then, we describe each

step of the proposed supervised learning approach using

learning examples with time windows (illustrated in Fig. 2).

This approach comprises four steps, further discussed in

the following subsections: 1) Creating learning examples

using time windows, 2) Learning the prognostic model, 3)

Validating the prognostic model and 4) Using the model.

Data

Participants were selected from the Cognitive Complaints

Cohort (CCC) [23], a prospective study conducted at the

Faculty of Medicine of Lisbon to investigate the progres-

sion to dementia in subjects with cognitive complaints

based on an extensive neuropsychological evaluation at

one of the participating institutions (Laboratory of Lan-

guage Studies, Santa Maria Hospital, and a Memory

Clinic, both in Lisbon, and the Neurology Department,

University Hospital in Coimbra).

Fig. 1 Creation of learning examples following either the First Last approach or the Time Windows approach. A new class is created to define the

type of patient’s progression (converting (cMCI) or non-converting (sMCI)) in the interval of k years from the baseline assessment (Time Windows

approach) or with no time restrictions (FL approach)
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The inclusion criteria for admission to CCC were pres-

ence of cognitive complaints and completing assessment

with a neuropsychological battery designed to evaluate

multiple cognitive domains and validated for the Portu-

guese population (Bateria de Lisboa para Avaliação das

Demências – BLAD [37]). The exclusion criteria for the

admission to CCC were diagnosis of dementia (according

to DSM-IV [38]) or other disorders that may cause cogni-

tive impairment, namely stroke, brain tumor, significant

head trauma, epilepsy, psychiatric disorders (such as se-

vere depression), uncontrolled medical illness, sensory

deficit or medical treatments interfering with cognitive

function, and alcohol or illicit drug abuse. For the purpose

of this study, participants were diagnosed with Mild

Cognitive Impairment when fulfilling the criteria of the

MCI Working Group of the European Consortium on

Alzheimer’s disease [39]:

(1)Cognitive complaints coming from the patients or

their families;

(2)Report of decline in cognitive functioning relative to

previous abilities during the past year by the patient

or informant;

(3)Presence of cognitive impairment (1.5 standard

deviations below the reference mean) in at least one

neuropsychological test;

(4)Absence of major repercussions on daily life

activities.

At follow-up, participants could also be diagnosed

with dementia according to the DSM-IV [38] criteria.

The study was conducted in accordance with the Declar-

ation of Helsinki, and was approved by the local ethics

committee. Informed consent to participate in the study

was obtained from all participants.

From the CCC cohort of 915 patients, 803 cases ful-

filled the criteria for MCI diagnosis at baseline (Fig. 3a).

Only patients with follow-up were selected, which was

the case for 719 patients, who had mean age (M ± SD)

of 69.4 ± 8.5 years, formal education (M ± SD) of

8.2 ± 4.7 years, follow-up (M ± SD) of 3.3 ± 2.8 years

and, gender distribution (male/female) of 289/430. 257

(36%) patients converted to dementia (converter MCI)

and the remaining 462 (64%) cases did not convert

throughout the study (stable MCI). Demographic and clin-

ical characterization data is presented in Table 1. Differ-

ences among converting and non-converting MCI patients

were assessed by independent samples t-tests for numerical

data (age and years of formal education) and by the χ^2

Pearson Chi-Square for nominal data (gender), using

IBM SPSS Statistics 24 (released version 24.0.0.0). A

p-value <0.05 was assumed as statistically significant.

Fig. 2 Workflow of the proposed supervised learning approach to predict MCI-to-dementia conversion, based on time windows. It comprises four

steps: 1) Data Preprocessing (construction of learning examples based on time windows), 2) Model Learning (tune the model for each time win-

dow and FL datasets), 3) Model Validation (validate the model (tuned to the CV set) with an independent validation set) and 4) Using the model

(Prognostic prediction of new MCI patients)
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The dataset includes 129 variables covering clinical,

demographic and neuropsychological data. These vari-

ables are further described in appendix by means of two

tables: one describes the cognitive domains assessed by

each measure and the other reports the mean average and

missing values percentage for each feature and group of

patients used in this study [See Additional files 1 and 2].

The neuropsychological assessment was standardized ac-

cording to age and education norms for the Portuguese

population and z-scores were calculated.

Since subjects were evaluated by different clinicians in

two Portuguese hospitals (in Lisbon and Coimbra) we

may distinguish two independent cohorts of patients

from this cohort (Fig. 3b and c). For the purpose of the

proposed supervised learning approach, the patients

recruited in Lisbon (n = 604) constitute the cross-

validation (CV) set and are used to learn the prognostic

prediction model, while the patients recruited in Coim-

bra (n = 115) are subsequently used as an independent

validation set to validate the model.

Supervised learning approach using learning examples

created with time windows

The first step of the proposed supervised learning ap-

proach consists in creating the learning examples using

time windows. Then, the model and parameters are

tuned to the CV set under a cross-validation scheme

(Learning the model, Fig. 2) and finally validated using

an independent validation set (Validating the model,

Fig. 2). The model predicts whether a patient diagnosed

with MCI at baseline converts to dementia (or remains

MCI) at time baseline + k. The time k (in years) corre-

sponds to the considered time window. The model may

then be used in clinical practice (Using the model, Fig. 2).

This process is repeated for each time window and FL

datasets. The prognostic prediction approach was im-

plemented in Java using WEKA functionalities (version

3.7.1) [40].

Creating learning examples using time windows

The original data must be transformed to create learning

examples to be used by supervised learning techniques.

A learning example depends on the changes in the pa-

tients’ diagnostic between the baseline and a follow-up

evaluation (prognosis). It is composed by: 1) the baseline

assessment of a MCI patient (first evaluation), and 2) a

new attribute representing the type of progression of

that patient (conversion or non-conversion), computed

using the clinical diagnosis at a follow-up evaluation

(usually called class label). This latter evaluation (used to

compute the class) is the last evaluation in the FL ap-

proach and an evaluation inside the time window in the

proposed approach. We note that since we are perform-

ing prognostic prediction, NPTs used to learn the model

a) b)

c)

Fig. 3 Flow chart of the final number of Cognitive Complaints Cohort (CCC) participants: a complete cohort; b cohort of patients recruited in

Lisbon; c cohort of patients recruited in Coimbra

Table 1 Baseline demographic and clinical characterization data

Converter MCI
(n = 257)

Stable MCI
(n = 462)

p-value

Age, years (M ± SD) 71.7 ± 7.8 68.1 ± 8.6 < 10−8

Gender (male/female) 93/164 196/266 0.102#

Formal education, years (M ± SD) 8.9 ± 4.9 8.8 ± 4.7 0.612

Follow-up time, years (M ± SD) 2.9 ± 2.3 3.5 ± 3.0 0.007

Group comparisons (converter MCI vs. stable MCI) were performed with

independent samples t-tests (or χ^2 Pearson Chi-Square test when appropriate#).

Statistically significant (p < 0.05)
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are never used to compute de class. We propose a new

strategy to create learning examples using time to con-

version to pool patients in similar stages of disease

(termed Time Windows approach). Figure 1 illustrates

the creation of learning examples using the Time Win-

dows approach in comparison with the widely used in

the literature, the First Last approach. Follows a descrip-

tion of learning example creation for these approaches.

(1) First Last approach: Combines the baseline with

the last evaluation of each patient. If the patient was

diagnosed as MCI at the last evaluation, a learning ex-

ample labelled as stable MCI (sMCI) is created. If the

final diagnostic is dementia the learning example is la-

belled as converter MCI (cMCI). The features (clinical

and neuropsychological measures) are taken from the

baseline evaluation while the class is computed using

the clinical information in the last evaluation from the

patient. Note that this evaluation might be close to the

baseline for some patients and years later for others.

This approach aims to answer the question: “Will a

patient convert to dementia somewhere in the fu-

ture?”. Besides being the prevalent strategy in the field,

it does not deal with the heterogeneity of the MCI

population [27].

(2) Time Windows approach: Reduces the time span of

the FL approach to a specified temporal frame. A cMCI

learning example is created whenever the patient is diag-

nosed with dementia in a follow-up evaluation whose

distance from the baseline is less than the predefined

time window (Fig. 1, example A). Patients who remain

MCI after the time window period lead to a sMCI learn-

ing example (Fig. 1, example B). Patients may originate

learning examples assigned to different classes depend-

ing on the time windows width. A given patient may be

sMCI in a smaller window and originate a converting

learning example in a larger window. This is actually

what mimics real world situations: a clinician assigns the

most likely prognostic for a given patient and this prog-

nostic may change in a later follow-up assessment. We

note, however, that not considering these cases would be

incoherent as there is no guarantee that a stable MCI

would never convert to dementia. In this context, the

prognostic refers to a specific time windows and may

change if the window changes. Some cases must be dis-

regarded per time window, due to lack of temporal in-

formation. For instance, if in the last evaluation the

patient remains MCI, but the distance between evalua-

tions is shorter than the time window, he/she is dis-

carded since we cannot guarantee that this patient will

not convert until the end of the considered time window

(Fig. 1, example C). Similarly, if the patient is diagnosed

with dementia in an evaluation outside the window, we

cannot guarantee that he/she had already converted

within the predefined time window (Fig. 1, example D).

In this scenario, the proposed Time Windows approach

reduces the heterogeneity in MCI population caused by

the slow cognitive decline characteristic in dementia. As a

result, we foresee more accurate prognostic models, as

classifiers learn from a set of patients with similar disease

progression patterns. In addition, we highlight the clinical

relevance of this approach, which allow clinicians to

timely adequate treatments to patients and schedule ap-

pointments at the hospital.

Learning the prognostic model

A prognostic model is trained for each time window and

FL dataset following a grid-search strategy, where a set

of classifiers and respective parameters, as well as prepro-

cessing options, are tuned (Fig. 2, Learning the model). A

cross-validation (CV) procedure is repeated with fold

randomization for each classification experiment in order

to access model generalization. A grid search is performed

to find the optimal set of parameters per classifier. The

best parameters are those that achieve the best average on

a given evaluation metric across the cross-validations re-

sults. The proposed supervised learning approach using

time windows may be used with any classifier, preprocess-

ing options and/or types of data.

In this study, we tested the approach with the settings

described below and using the cohort of patients re-

cruited in Lisbon (CV set). A 5-fold cross-validation pro-

cedure was repeated 10 times with fold randomization

for each classification experiment. In order to access the

robustness of our hypothesis, we used classifiers that rely

on different approaches to the classification problem:

Naïve Bayes classifier (NB), Decision Tree (DT) with J48

algorithm as well as Random Forest (RF), Gaussian

(SVM RBF) and Polynomial-kernel (SVM Poly) Support

Vector Machines (SVMs) using SMO implementation,

k-Nearest Neighbor classifier (with IBK implementation,

kNN), and Logistic Regression (LR). Table 2 shows the

parameters and corresponding ranges tested for each clas-

sifier. The grid search criterion was the maximization of

Table 2 Set of parameters and corresponding ranges tested for

each classifier within the grid search scheme

Classifier Parameters and respective range

NB Gaussian or Supervised Discrimination or Kernel

DT Confidence ∈ [0.05,0.5]

SVM RBF Complexity ∈ [10−1, 101] and γ ∈ [10−2, 102]

SVM Poly Complexity ∈ [10−1, 101] and Degree ∈ {1, 2, 3}

kNN #Neighbors ∈ [1, 11]

RF #Iterations ∈ [5, 30]

LR Ridge ∈ [10−9, 10−6]

Note: DT: Decision Tree classifier, kNN: k-nearest neighbor classifier, SVM Poly:

polynomial-kernel Support Vector Machines, SVM RB: Gaussian-kernel Support

Vector Machines, NB: Naïve Bayes classifier, LR: Logistic Regression and

RF: Random Forest
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the value of the Area Under the ROC Curve [41], as this

metric is widely used in binary classification and is appro-

priate to deal with class imbalance. For simplicity, this

metric is referred to as AUC throughout the text. The sen-

sitivity (proportion of actual converting patients (cMCI)

which are correctly classified) and specificity (proportion

of non-converting patients (SMCI) which are correctly

identified) evaluation metrics are also reported.

Since the use of preprocessing techniques to deal with

a large number of (possibly irrelevant) features, missing

values or imbalanced classes may have a significant im-

pact on both classification performance and model sim-

plification and interpretability, the worth of using/not

using feature selection and/or dealing with missing

values and/or class imbalance should be tested.

In this study, we used Correlation-based (CFS) feature

selection [42] to obtain a relevant feature subset. CFS is

a filter feature selection (FS) algorithm as the value of a

features’ subset is evaluated without taking into account

the learning algorithm that is applied afterwards. The

method evaluates the worth of a subset of features by

resorting to heuristics that consider both the usefulness

of individual features to predict the class (in this case,

whether the patient converts to dementia (cMCI) or main-

tains the MCI diagnostic (sMCI)) and the correlation be-

tween them.

Although attenuated by feature selection, the problem

of missing data still demanded attention and thus missing

values were replaced by their mean or mode, whether the

attribute was numerical or nominal (Missing Value

Imputation, MVI). In addition, class imbalance was

tackled with the Synthetic Minority Over-sampling

Technique (SMOTE) [43]. SMOTE is an oversampling

technique that generates synthetic samples from the

minority class by choosing a set of similar instances

and perturbing the attributes by a random amount.

SMOTE percentages ranged from 0% to the inversion

of the class proportions. In order to ensure the validity

of the results, all preprocessing techniques (FS, MVI

and SMOTE) were only applied to the training data

within each cross-validation fold.

The statistical significance of the classification results

was evaluated on the averaged AUC across the 10×5-fold

CV. The worth of using FS and/or MVI was assessed by

the Wilcoxon Signed Rank Test [44], per time window

and classifier. Friedman Tests [44] were used to infer

whether the results obtained across different classifiers

(per time window) have statistical significant differences.

Pairwise comparisons (using the Wilcoxon Signed Rank

Test) were then performed (with Bonferroni correction

for multiple testing) to assess which of those classifiers

performed significantly better. To infer whether the pre-

dictions made with the Time Windows approach were

significantly different from those obtained with the FL

approach we used the McNemar’s Test [44]. In this case,

the null hypothesis regards the number of correct pre-

dictions made by the Time Windows and the FL ap-

proaches. We used IBM SPSS Statistics 24 (released

version 24.0.0.0) to execute the statistical tests.

Validating the prognostic model

An independent validation set (Fig. 2, Validating the

model) is used to validate the classification model ob-

tained with the CV set and the subset of features and pa-

rameters that best performed in the learning step (Fig. 2,

Learning the model). The validation set is independent

from the CV set, thus providing a good assessment of

model generalization and, simultaneously, a simulation

of real world results. In our case, the parameters and

preprocessing options were selected exclusively using

the Lisbon dataset, which was then used to obtain the

prognostic model we validate using the Coimbra dataset.

Using the prognostic model in clinical settings

The learned prognostic model can then be used to pre-

dict conversion to dementia of new MCI patients. The

proposed supervised learning approach using time win-

dows may be integrated in a medical decision support

system to be used in clinical settings. This clinical deci-

sion support system would predict the most likely prog-

nostic for a new MCI patient based on the past history

of a cohort of patients with known prognostics. This

prognostic may support the decision of clinicians in real

world situations and be useful to adjust treatments and

the frequency of the medical appointments.

Results

We reported the results organized in sections as in the

Methods section: 1) Creating learning examples using

time windows, 2) Learning the prognostic model and 3)

Validating the prognostic model.

Creating learning examples using time windows

The time windows used in this work are constrained by

the follow-up of the cohort under use. In order to avoid

skewed class proportion, we were confined to a time span

between 1 to 5 years. However, from a clinical point of

view, prediction of dementia within 1 year is not very

relevant, since by that time, clinicians can easily attain

a prognosis. Since many related studies predict 3-year

conversion to dementia, including those using ADNI

data [8], we decided to consider this window. We thus

studied time windows ranging from 2 to 5 years. Table

3 shows the proportion of learning examples in the CV

set (patients recruited in Lisbon) and validation set (pa-

tients recruited in Coimbra), for each time window and

FL datasets. It is expected that as time increases the

number of converting patients also increases while the
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number of patients that remains stable (sMCI) de-

creases. Datasets built for smaller (2 years) or larger

(5 years) time windows have therefore a higher-class

imbalance whereas the remaining datasets have minor

imbalance. Class imbalance was tackled by using

SMOTE in the grid search as aforementioned.

Learning the prognostic model

Regarding the benefit of using missing value imputation,

we noticed that Decision Tree, Naïve Bayes and RF classi-

fiers performed better when no imputation was performed

(p < 0.016,Wilcoxon Signed-Rank Test [44]), considering

mean AUC, while kNN benefited from using an imputed

version of data (p < 0.05,Wilcoxon Signed-Rank Test [44]).

We note that in Weka both SVMs (Poly and RBF) and LR

already perform MVI internally. Selecting the most

relevant set of features achieved significantly better re-

sults in most classifiers (kNN, SVM Poly, SVM RBF

and LR; p < 0.03, Wilcoxon Signed-Rank Test [44]), for

all time windows and FL approaches. Although no statis-

tical difference was found for the DT classifier (p < 0.269)

we decided to proceed with feature selection for the sake

of model interpretability. For further analysis, only NB

and RF classifiers proceed without FS as their classification

performance was significantly improved when using the

original set of features (p = 0.00,Wilcoxon Signed-Rank

Test [44]), considering mean AUC.

The selected subset of features, presented in Table 4,

was different for each time window and FL dataset. Par-

ticularly, a larger set of features (n = 35) was used in

the First Last approach when comparing to the Time

Windows approach (n = 29, in average). From the overall

selected features, 14 were commonly chosen throughout

all datasets (FL and Time Windows approaches) and 15

within the time windows. This supports the expected

differences between datasets comprising patients with

distinct times to conversion.

Table 5 shows the results of the stratified 10 × 5-fold

CV in the CV set (Lisbon dataset), with the optimized

parameters and preprocessing options, for the Time Win-

dows and FL approaches. According to the results, using

the Time Windows approach proved to be advantageous

over the FL approach (p < 0.05, McNemar’s Test [44]). Su-

perior results (in terms of AUC) were reached for the

Time Windows approach in all classification experiments

and across all classifiers, showing that the conclusions are

not dependent on a particular classifier. Sensitivity, which

reflects the ability to predict conversion cases, reached

better performances within the Time Windows approach,

even in the 2-years windows, which has a marked class

imbalance. We note that since sensitivity and specificity

are sensitive to the number of examples labelled as cMCI

and sMCI, respectively, and due to the class imbalance,

we expected an increase on the sensitivity and a decrease

on the specificity with the widening of the temporal win-

dow. Despite this tendency was in general verified excep-

tions occurred. In the 5-years windows, for instance, some

classifiers (DT, kNN, NB and LR) outperformed the speci-

ficity reached with the same classifiers on both the 2-years

window and FL datasets (where sMCI is the class in ma-

jority). In fact, the highest specificity values obtained with

the FL approach were achieved at the cost of much lower

sensitivity values. The results corroborate the advocated

idea: using groups of homogenized MCI patients regard-

ing the time to conversion, and therefore at similar stages

of the disease, leads to better performance of the prognos-

tic models.

Within the Time Windows approach, the best results

were achieved for larger time windows, namely the 4

and 5-years windows, for all classifiers. Although the

highest AUC is consecutively obtained with the 5-years

window it might be worth using the 4-years window,

since higher values of specificity are obtained without

compromising the sensitivity. This may be justified by

the inexistence of class imbalance on the 4-years win-

dow dataset.

Best prognostic model

The AUC values were statistically different (p = 0.00)

across classifiers as assessed by the Friedman Test [44].

Therefore, we selected the classifier (with optimized pa-

rameters) that gave the best prognostic model to use in

further analysis. Following an analysis of pairwise compar-

isons (with significance values corrected for multiple test-

ing), we concluded that Naïve Bayes was significantly

better than the remaining classifiers (for the Time Win-

dows and FL approaches; p < 0.002,Wilcoxon Signed-Rank

Test [44]). NB is a simple probabilistic classifier, yet robust

to class imbalance [45], which has the advantage of

returning a numerical confidence of the results, that in

turn, can be used as a risk measure by the clinicians.

Figure 4 shows the performance obtained with the

Naïve Bayes using the CV set.

Once more, we noticed the superiority of the results

when using the Time Windows approach instead of the

FL approach (p < 0.039, McNemar’s Test [44]) and,

Table 3 Details on CV and validation sets for time windows of

2 to 5 years and the First Last approach

CV set Validation set

sMCI cMCI sMCI cMCI

FL approach 377 (62%) 227 (38%) 85 (74%) 30 (26%)

2-Year window 280 (75%) 94 (25%) 53 (80%) 13 (20%)

3-Year window 206 (60%) 137 (40%) 34 (61%) 22 (39%)

4-Year window 146 (47%) 166 (53%) 22 (47%) 25 (53%)

5-Year window 106 (36%) 190 (64%) 10 (28%) 26 (72%)

Note: sMCI- stable MCI; cMCI – converter MCI
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Table 4 Subset of selected features for each time window and FL dataset

Features FL approach 2-Year window 3-Year window 4-Year window 5-Year window

Age X X X X X

Age of first symptons X X X X

Cancelation Task- A’s time X X X

Cancelation Task – A’s total X X

Digit Span - Forward X

Digit Span - Backward X X X

Verbal Paired-Associate Learning – Easy X X X

Verbal Paired-Associate Learning –Difficult X X X X X

Verbal Paired-Associate Learning – Total X X X X X

Logical Memory Immediate A free recall X X X X X

Logical Memory - A Immediate Cued X X X

Word Recall – Free recall X X X X X

Word Recall –Total X X

Logical Memory with Interference-A X X X X

Orientation (Total) X X X X X

Orientation – Personal X X

Orientation – Spatial X

Orientation – Temporal X X X X X

Orientation- MSQ X

Verbal Fluency X X X

Token Orders (total) X

Cube Draw X

Calculation X

Interpretation of Proverbs – (Verbal Abstraction) X X X

Raven Progressive Matrices X X X X X

Trail Making Test (Part B) - time X

CVLT A list (1sttrial) X X

CVLT A list (3thtrial) X

CVLT A list (4thtrial) X X

CVLT A list (five learning trails total) X X X X

CVLT A list (Total intrusions in 5 recalls) X

Blessed Dementia Scale (Total of Part 1 - Daily living activities) X

Fi_LM_a X X

Fi_LM_a_m100 X X

Cancelation Task – A’s total (Z-score) X X

Digit Span – Forward (Z-score) X X

Digit Span – Backward (Z-score) X X

Digit Span – Total (Z-score) X X X

Verbal Paired-Associate Learning (Z-score) X X X X X

Informatio (Z-score) X X X

Orientation (Total) (Z-score) X X X X X

Orientation- MSQ (Z-score) X X X X X

Word Recall –Total (Z-score) X X

Verbal Fluency (Z-score) X X X X X
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within those, when larger time windows were used. The

FL approach had the lowest performance in all evalu-

ation metrics, with an absolute mean difference of 0.14

(0.14), 0.18 (0.23) and 0.07 (0.001) when comparing to

our best results 5 (and 4)-years window in the AUC,

sensitivity and specificity, respectively.

Comparing the time windows, we may observe an in-

crease in the AUC as the time window grow, suggesting

that the larger the window the more reliable the prog-

nostic model is. However, the drop in the specificity

values, mainly observed in the 5-years window, requires

attention. As aforementioned, it may be worth using the

4-years window, which despite having lower values of

AUC and sensitivity has superior specificity values. The

best outcome was then achieved for the 4 and 5-years

windows approach (AUC: 0.87 ± 0.01/0.88 ± 0.00, sensi-

tivity: 0.82 ± 0.01/0.88 ± 0.01, specificity: 0.78 ± 0.01/

0.71 ± 0.01; 4/5-years windows). To evaluate the impact

of patients who converted between 4 and 5 years regard-

ing the other patients, we inspected how many of these

patients had a correct prognostic prediction. 20 (average

of the 10×5 CV) out of the 24 converting patients were

correctly classified as such. This shows the ability of the

Time Windows approach to predict conversion as earlier

as 5-years before dementia is present.

Despite the class imbalance of the 5-years window

dataset (Table 3), it performed better than similarly im-

balanced datasets (for instance, the 3-year window). This

lead us to the idea that learning the disease patterns of

converter MCI is trickiest than learning the patterns of

patients who remain stable (sMCI). This is suggested by

the smaller fluctuations in the specificity values across

distinct times windows, when compared with the sensi-

tivity values, which had greater fluctuations.

Validating the prognostic model

Table 6 reports the results of the best prognostic model

(Naïve Bayes, subsection “Best prognostic model”) derived

during the train phase, using the validation set (Fig. 2, Val-

idating the model). We recall that these results are not

used to choose the best classifier or parameters, which

was done beforehand (Fig. 2, Learning the model). At this

step, the best prognostic model was evaluated in an

independently (validation) set, for each time window and

FL datasets. Comparing the results of Tables 5 and 6, we

may observe that most of the conclusions drawn for the

CV set are also valid for the validation set. Although the

overall results were slightly lower in the validation set, we

notice that the Time Windows approach performed better

than the FL approach, achieving superior AUC values.

Having a lower performance on the validation set corrob-

orates our expectations as we are using an independent

set, unbiased from the preprocessing and parameters-

tuning procedure. The best outcome was also the one

attained with the 5-years window approach. Conversely to

what happened in the CV set using the NB classifier, the

sensitivity of the 4 and 5-years windows was lower than

the respective specificity values. This showed some weak-

ness of the proposed prognostic model in identifying con-

verting MCI patients, in this study cohort. In general the

results were good with AUC values above 0.72 for the

Time Windows approach suggesting that model overfit-

ting is reduced as aimed by using 10 × 5-fold CV to learn

and tune the models. The effect of class imbalance (while

training the models with the CV set) was not critical in

the validation set. Indeed, acceptable values of sensitivity

and specificity were attained for the 2-years window (0.69

and 0.66 in the validation and CV set, respectively) and for

the 5-years window (0.70 and 0.71 in the validation and

CV set, respectively), correspondingly.

Discussion
We proposed a new approach to create learning examples

based on time windows, which consists in stratifying the

cohort of MCI patients based on their conversion time

(converter MCI), or the time that they remained MCI

(stable MCI). Then, we evaluated its performance on the

prognostic model for MCI-to-dementia conversion by

comparing it with the model learned with the FL approach,

the prevalent strategy in the field [3, 8, 9, 15, 30, 31]. We

showed that, following the FL approach, and thus disre-

garding the heterogeneity of the population under study

caused by the continuous cognitive decline that character-

izes this neurodegenerative disease, hampers the discovery

of more reliable prognostic models and/or biomarkers.

This question had been partially addressed in the literature

Table 4 Subset of selected features for each time window and FL dataset (Continued)

Interpretation of Proverbs – (Verbal Abstraction) (Z-score) X X X X

Raven Progressive Matrices (Z-score) X X X X X

Cancelation task -Toulouse- Pierón (concentration index) (Z-score) X

CVLT A list (five learning trails total) (Z-score) X X

CVLT A list (5sttrial) (Z-score) X X

Logical Memory Immediate A free recall (Z-score) X X X X X

Logical Memory with Interference-A (Z-score) X X X X

The neuropsychological assessment was standardized according to the age and education norms for the Portuguese population and z-scores were calculated
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[33, 34]. Eskildsen et al. [34], homogenized the converter

MCI group regarding the time to conversion, using the

cortical thickness of anatomical MR images collected at 36,

24, 12 and 6 months before conversion to create the learn-

ing examples. Similarly, Cabral et al. [33] created five

groups with PDF-PET images collected at 24, 18, 12, 6 and

0 months before conversion. These converting MCI groups,

along with the single non-converting MCI group, were fed

to machine learning classifiers to perform prognostic. An

overall finding was the enhancement of the evaluation met-

rics with the decrease of the temporal distance to the con-

version event. Despite the relevance of this approach, it has

been mostly explored with neuroimaging data. We believe

that this question is transversal to all biomarker research

and thus we performed a similar study using neuropsycho-

logical data. To our knowledge, this is the first study using

neuropsychological data to predict conversion within a

Time Windows approach. We also used the strategy

presented in previous works [33, 34] with our data, for

sake of comparability. The outcome is shown in appen-

dix [See Additional file 3]. Replicating the methodology

pursuit by [33, 34] with our data benefits from a longer

follow-up period.

The results support our view about the strengths of

predicting conversion to dementia within time windows

as this remains true even with different approaches to

time windows and data types. Predicting conversion to

dementia (cMCI) seems to be the trickiest, suggested by

the lower values of sensitivity [33–35]. According to the

previous studies, and using neuroimaging data, the ac-

curacy of the prediction improved as the time to conver-

sion from MCI to AD decreased, conversely to our

results, where we were able to predict dementia as early

as 5-years (AUC: 0.88, specificity: 0.71, sensitivity: 0.88).

Our approach, along with neuropsychological data, was

thus more successful in the long-term prediction, which

we believe to be more useful in the clinical practice and

intervention.

One strength of this work was the length of follow-up.

We are able to predict conversion to dementia within a

long-time span (5 years). Indeed, using neuropsychological

data to detect cognitive decline in initial phases of AD has

faced significant limitations, due to the short follow-up

periods which characterize most cohort studies of conver-

sion to dementia [24, 28, 31, 46]. Our work supports the

view that longer follow-ups might be an asset in the study

of conversion to dementia, as the best results were

achieved with the longest windows used.

Another important point is the sample size. Our cohort

has a reasonable size when comparing to similar studies,

including those that use data from the industrious ADNI

project (study populations of around 200 to 300 patients)

[8, 16, 33]. Using a validation set to evaluate how the clas-

sification model performs when facing new and unknown

Fig. 4 Results obtained with Naïve Bayes, the best classifier for the Time Windows and the First Last approaches, as assessed by the AUC values

within a grid search scheme, under 10 × 5-fold cross validation (using the CV set)

Table 6 Results of the best prognostic model using the independent validation set (patient recruited in Coimbra, Table 3), for the

Time Windows and the First Last approaches

AUC Sensitivity Specificity

FL 2Y 3Y 4Y 5Y FL 2Y 3Y 4Y 5Y FL 2Y 3Y 4Y 5Y

Naïve Bayes 0.61 0.73 0.74 0.72 0.76 0.40 0.69 0.64 0.56 0.56 0.73 0.77 0.76 0.68 0.70

The model was fine-tuned to the CV set (patient recruited in Lisbon, Table 3). cMCI represents the positive class
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data is also to emphasize since it enables to test the model

generalization.

We further highlight the use of neuropsychological

data to predict dementia. NPTs are relatively inexpensive

and non-invasive, can be readily obtained in most clin-

ical settings [23, 24], are required for diagnosis purpose

and have proven their value in tracking the cognitive de-

cline in dementia [8]. Still, their predictive power has

not been fully exploit, as it has been addressed mostly by

classical statistical methods. Indeed, more powerful

methods are mainly focused on more complex data, in-

cluding neuroimaging data and other biological markers.

In the present work, we accomplished successful conclu-

sions by using machine learning classifiers with NPTs.

Beyond dealing with the MCI heterogeneity induced

by the slow progression nature of dementia, the Time

Windows approach takes a step forward in the prognos-

tic research challenge, as it not only predicts whether a

MCI patient will evolve to dementia, but also, a time

window of conversion.

Some limitations also warrant consideration. The best

classifier (and parameters) was chosen based on the

AUC values obtained during the grid search. However, it

would be preferable to also include the sensitivity and

specificity values. It may be worth having smaller AUC

values if it allows having equally good values on the

remaining classification metrics. The same idea stands

for SMOTE which, ideally, should be the lowest possible

or not used. Despite many researchers have focused in

the MCI-to-dementia conversion problem, comparing

these studies is not trivial due to the different data types

used, subject inclusion and exclusion criteria, diagnostic

criteria for MCI and/or dementia, classification frame-

work and evaluation metrics. The set of common features,

as well as the ones that were different across windows,

lack a further analysis, from a clinical standpoint, to clarify

their clinical relevance. This is however out of the scope

of this paper.

Conclusions
We proposed a supervised learning approach to predict

conversion of MCI to dementia based on time windows,

following an innovative strategy to build the learning

examples and compared it with the commonly used

strategy (FL approach). We thus handled the heterogeneity

of the MCI cohort by creating different time-homogenous

groups regarding their time to conversion (Time Windows

approach), when building the learning examples. We stud-

ied the effect of disease staging in the performance of the

prognostic model by learning different models with dif-

ferent groups of MCI patients, and thus fine-tuning the

prognosis regarding the conversion time. The Time

Windows approach is more relevant from a clinical point

of view, as it provides a temporal interval of conversion

thus allowing clinicians to timely adjust treatments and

clinical appointments.

Our results corroborated the hypothesized idea, that

more reliable prognostic models may be obtained if we

handle with the stages of the disease, as Time Windows

approach outperformed the First Last approach. Our

prognostic model, using neuropsychological data, was able

to predict conversion to dementia as early as 5 years

before the event.

In the future, we believe that temporal-based classifi-

cation models may contribute to a better understanding

of conversion to dementia and, hopefully, support the

decision of clinicians in real world situations. We thus

aim to enrich the supervised learning methodology and

develop a decision support system to be used in clinical

settings: the system would predict, with a given confi-

dence, whether the patient was prone to convert, along

with the most likely time window; then, clinicians could

use this information to adjust treatments and the frequency

of the medical appointments.

Hopefully, this study will encourage researchers to

tackle, not only the MCI-to-dementia conversion problem,

but also the disease patterns and time to conversion, so

we can move to the question on whether a MCI patient

will evolve to dementia to the one that predicts the time

that will take for this event to happen.
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