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Abstract

Background Gleason grading of prostate cancer is an important prognostic factor, but suffers

from poor reproducibility, particularly among non-subspecialist pathologists. Although arti-

ficial intelligence (A.I.) tools have demonstrated Gleason grading on-par with expert

pathologists, it remains an open question whether and to what extent A.I. grading translates

to better prognostication.

Methods In this study, we developed a system to predict prostate cancer-specific mortality

via A.I.-based Gleason grading and subsequently evaluated its ability to risk-stratify patients

on an independent retrospective cohort of 2807 prostatectomy cases from a single European

center with 5–25 years of follow-up (median: 13, interquartile range 9–17).

Results Here, we show that the A.I.’s risk scores produced a C-index of 0.84 (95% CI

0.80–0.87) for prostate cancer-specific mortality. Upon discretizing these risk scores into

risk groups analogous to pathologist Grade Groups (GG), the A.I. has a C-index of 0.82 (95%

CI 0.78–0.85). On the subset of cases with a GG provided in the original pathology report

(n= 1517), the A.I.’s C-indices are 0.87 and 0.85 for continuous and discrete grading,

respectively, compared to 0.79 (95% CI 0.71–0.86) for GG obtained from the reports. These

represent improvements of 0.08 (95% CI 0.01–0.15) and 0.07 (95% CI 0.00–0.14),

respectively.

Conclusions Our results suggest that A.I.-based Gleason grading can lead to effective risk

stratification, and warrants further evaluation for improving disease management.
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Plain language summary
Gleason grading is the process by

which pathologists assess the mor-

phology of prostate tumors. The

assigned Grade Group tells us about

the likely clinical course of people

with prostate cancer and helps doc-

tors to make decisions on treatment.

The process is complex and sub-

jective, with frequent disagreement

amongst pathologists. In this study,

we develop and evaluate an approach

to Gleason grading based on artificial

intelligence, rather than pathologists’

assessment, to predict risk of dying of

prostate cancer. Looking back at

tumors and data from 2,807 people

diagnosed with prostate cancer, we

find that our approach is better at

predicting outcomes compared to

grading by pathologists alone. These

findings suggest that artificial intelli-

gence might help doctors to accu-

rately determine the probable clinical

course of people with prostate can-

cer, which, in turn, will guide

treatment.
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Prostate cancer affects one in nine men in their lifetime1, but
disease aggressiveness and prognosis can vary substantially
among individuals. The histological growth patterns of the

tumor, as characterized by the Gleason grading system, are a
major determinant of disease progression and criterion for
selection of therapy. Based on the prevalence of these patterns,
one of five Grade Groups (GG) is assigned2. The GG is among the
most important prognostic factors for prostate cancer patients,
and is used to help select the treatment plan most appropriate for
a patient’s risk of disease progression3.

The Gleason system is used at distinct points in the clinical
management of prostate cancer. For patients undergoing diag-
nostic biopsies, if tumor is identified, the GG impacts the decision
between active surveillance vs. definitive treatment options, such
as surgical removal of the prostate or radiation therapy3. For
patients who subsequently undergo a surgical resection of the
prostate (radical prostatectomy), the GG is one key component of
decisions regarding adjuvant treatment, such as radiotherapy or
hormone therapy4,5. In large clinical trials, use of adjuvant
therapy following prostatectomy has demonstrated benefits, such
as improved progression-free survival for some patients, but can
also result in substantial adverse side effects6–8. As such, several
post-prostatectomy nomograms9 have been developed, in order
to better predict clinical outcomes following the definitive treat-
ment, with the goal of identifying the patients most likely to
benefit from adjuvant therapy. Gleason grading of prostatectomy
specimens represents a key prognostic element in many of these
nomograms, and is a central component of the risk categories
defined by the National Comprehensive Cancer Network5.

Due to the complexity and intrinsic subjectivity of the system,
Gleason grading suffers from large discordance rates between
pathologists (30–50%)10–15. However, grades from experts (such
as those with several years of experience, primarily practicing
urologic pathology, or those with urologic subspeciality training)
are more consistent and result in more accurate risk stratification
than grades from less experienced pathologists16–19, suggesting an
opportunity to improve the clinical utility of the system by
improving grading consistency and accuracy. To this end, several
artificial intelligence (A.I.) algorithms for Gleason grading have
been developed and validated, using expert-provided Gleason
scores20–23. However, an evaluation of the prognostic value of
these algorithms and a direct comparison to the prognostic value
of Gleason grading provided by pathologists has not been con-
ducted. While the GG for biopsies, as well as prostatectomy
specimens both provide important prognostic information2, ret-
rospective studies to evaluate long-term clinical outcomes is more
straightforward from prostatectomy cases given widely divergent
treatment pathways following biopsy alone.

Building on prior work22,24, we first trained an A.I. system to
accurately classify and quantitate Gleason patterns on prosta-
tectomy specimens, and further demonstrate that A.I.-based
Gleason pattern (GP) quantitations can be used to provide better
risk stratification than the Gleason GG from the original pros-
tatectomy pathology reports.

Methods
Data. All available slides for archived prostate cancer resection
cases between 1995 and 2014 in the Biobank Graz25,26 at the
Medical University of Graz were retrieved, de-identified, and
scanned using a Leica Aperio AT2 scanner at 40× magnification
(0.25 μm/pixel). The standard protocol for radical prostatectomy
submission at the institution was to submit the entire prostate
(right and left lobes, additionally divided into ventral and dorsal
portions, and serially sectioned apex to base approximately every
3–5 mm). To our knowledge, there was no change in surgical

procedure type over the time period studied. Robotic surgery was
not used.

Gleason patterns (Gleason scores) were extracted from the
original pathology reports and translated to their corresponding
GG2. Tertiary patterns, which were reported in only 22 of the
2807 cases (<1%), were not used in this study. Clinicopathologic
variables, such as pathologic TNM staging, were also extracted
from the pathology reports. Disease-specific survival (DSS) was
inferred from International Classification of Diseases codes
obtained from medical death certificates from the Statistik
Austria database. Codes considered for prostate cancer-related
death were C61 (malignant neoplasm of prostate) and C68
(malignant neoplasm of other and unspecified urinary organs).
Institutional Review Board approval for this retrospective study,
using anonymized slides and associated pathologic and clinical
data, was obtained from the Medical University of Graz (Protocol
no. 32-026 ex 19/20). Need for informed consent was waived
because the project was performed with anonymized data.

Validation set 1 included all available cases from 1995 to 2014
after application of the exclusion criteria (n= 2807; Table 1 and
Supplementary Fig. S1). Because Gleason scoring at the Medical
University of Graz was adopted in routine practice from 2000
onward, validation set 2 included all cases from 2000 onward for
which a Gleason score was available (n= 1517; Table 1).
Sensitivity analysis for inclusion of Gleason grades prior to the
year 2000 (before Gleason scoring became routine at the
institution) is presented in Supplementary Table S1. The specific
purpose of validation set 2 is to allow for a direct comparison of
the prognostic performance of the A.I. with that of the pathologist
Gleason Grades.

All slides underwent manual review by pathologists (see
“Pathologist cohort and QC details” in the Supplementary
Methods) to confirm stain type and tissue type. Inclusion/
exclusion criteria are described in Supplementary Fig. S1. Briefly,
immunohistochemically stained slides were excluded from
analysis and only slides containing primarily prostatic tissue
were included. Slides containing exclusively prostatic tissue were
included in their entirety. Slides with both prostatic tissue and
seminal vesicle tissue were included, but processed using a
prostatic tissue model meant to provide only prostatic tissue to
the Gleason grading model (for more details on its development
and performance, see “Prostatic tissue segmentation model”
in Supplementary Methods and Supplementary Figs. S1 and S2).

Gleason grading model. We previously developed two A.I. sys-
tems: one for Gleason grading prostatectomy specimens24 based
on a classic “inception” neural network architecture, and a second
for Gleason grading biopsy specimens based on a customized
neural network architecture22. For this work, we used the pros-
tatectomy dataset from the first study to train a new model using
the customized neural network architecture introduced in the
second study. The training dataset contained 112 million
pathologist-annotated “image patches” from an independent set
of prostatectomy cases from different institutions than the vali-
dation data used in this study. Briefly, the system takes as input
512 × 512 pixel image patches (at 10× magnification, 1 μm per
pixel) and classifies each patch as one of four categories: non-
tumor, GP 3, 4, or 5. The hyperparameters used for training this
network were determined using a random grid search that opti-
mized for tuning set classification accuracy over 50 potential
settings, and are described in Supplementary Table S2 and
“Gleason grading model tuning” in the Supplementary Methods.

A.I. risk scores and risk groups. The Gleason grading model was
run at stride 256 (at 10× magnification, 1 μm per pixel) on all
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prostate tissue patches. The classification of each patch as non-
tumor or GP 3, 4, or 5 was determined via argmax on re-weighted
predicted class probabilities24. For each case, the percentage of
prostate tumor patches that belong to Gleason patterns 3, 4, and 5
were subsequently computed by counting the numbers of patches
categorized as each pattern across all slides for each case. A.I. risk
scores were computed by fitting a Cox regression model using
these case-level GP percentages as input, and the right-censored
outcomes as the events (see workflow diagram in Supplementary
Fig. S2). This approach was pursued first (rather than direct
mapping of %GPs to GG as done by pathologists) due to the
prognostic importance of precise GP quantitation27, as well as the
exhaustive nature of A.I. grading that rarely leads to classifica-
tions of GG1 (e.g., 100% GP3) and GG4 (e.g., 100% GP4). Sen-
sitivity analyses evaluating additional ways of obtaining risk
groups from %GPs, including direct mapping of %GPs to GG and
a temporal-split methodology, demonstrated qualitatively similar
results and are presented in Supplementary Table S3.

GP 3 percentage was dropped as an input feature to avoid
linear dependence between features. Leave-one-case-out cross-
validation was used to adjust for optimism, similar to the tenfold
cross-validation used in Epstein et al.2. A.I. risk groups were
derived from the A.I. risk scores by discretizing the A.I. risk

scores to match the number and frequency of pathologist GG in
validation set 2. Discretization thresholds for both validation sets
are provided in Supplementary Table S4.

Statistical analysis. Primary and secondary analyses were pre-
specified and documented prior to evaluation on the validation
sets. The primary analysis consisted of the comparison of C-
indices for DSS between pathologist GG and the A.I. risk scores
(Table 2). The secondary analysis consisted of the comparison
between C-indices for pathologist GG and the discretized A.I. risk
groups. All other analyses were exploratory.

The prognostic performance of the pathologist GG, the A.I.
risk scores, and the A.I. risk groups were measured using Harrel’s
C-index28, a generalization of area under the receiver operating
characteristic curve for time-censored data. Confidence intervals
for both the C-index of A.I. and pathologists, and the differences
between them, were computed via bootstrap resampling29 with
1000 samples.

In Kaplan–Meier analysis of the pathologist GG and A.I. risk
groups, the multivariate log-rank test was used to test for differences
in survival curves across groups. All survival analysis were
conducted using the Lifelines python package30 (version 0.25.4).

Table 1 Cohort characteristics.

Validation set 1 Validation set 2
(subset of set 1)

Number of cases 2807 1517
Number of slides Total 83,645 47,626

Median per case (interquartile range) 29 (25, 34) 30 (26, 35)
Overall survival (OS) Median years of follow-up (interquartile range) 13.1 (8.5, 17.2) 11.2 (7.4, 15.2)

Censored (%) 2150 (77%) 1306 (86%)
Observed (%) 657 (23%) 211 (14%)

Disease-specific survival (DSS) (%) Censored 2673 (95%) 1464 (97%)
Observed 134 (5%) 53 (3%)

Grade Group (%) 1 611 (22%) 608 (40%)
2 476 (17%) 473 (31%)
3 224 (8%) 224 (15%)
4 128 (5%) 127 (8%)
5 85 (3%) 85 (6%)
Unknown 1283 (46%) 0 (0%)

Pathologic T-stage (%) T2 1640 (58%) 1113 (73%)
T3 791 (28%) 366 (24%)
T4 25 (1%) 6 (<1%)
Unknown 351 (13%) 32 (2%)

Age at diagnosis (%) <60 952 (34%) 537 (35%)
60–70 1546 (55%) 817 (54%)
≥70 309 (11%) 163 (11%)

Margin status (%) Negative 448 (16%) 153 (10%)
Positive 242 (9%) 96 (6%)
Unknown 2117 (75%) 1268 (84%)

Pathologic N-stage (%) N0 1395 (50%) 879 (58%)
N1 77 (3%) 62 (4%)
N2 13 (<1%) 4 (<1%)
N3 10 (<1%) 8 (1%)
Unknown 1312 (47%) 564 (37%)

Received hormone or chemotherapy (%) Yes 53 (2%) 33 (2%)
No/unknown 2754 (98%) 1484 (98%)

Received radiation therapy (%) Yes 277 (10%) 176 (12%)
No/unknown 2530 (90%) 1341 (88%)

Biochemical recurrence (%) Censored 338 (12%) 228 (15%)
Observed 95 (3%) 55 (4%)
No follow-up 2374 (85%) 1234 (81%)

Validation set 1 contains all prostatectomy cases from the Biobank Graz between 1995 and 2014. Validation set 2 was derived by first considering cases in the Gleason grading era at the institution (years
2000–2014; n= 2191), and then further filtering for cases where a Gleason score was recorded and available in the pathology report (n= 1517).
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Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Summary of cohort. All archived slides in prostatectomy cases
from 1995 to 2014 at the Biobank at the Medical University of
Graz in Austria25,26 were digitized. After excluding nine cases for
death within 30 days of surgery and eight cases without evidence
of prostate cancer in the resection, 2807 cases remained (Sup-
plementary Fig. S1). The median follow-up time was 13.1 years
(interquartile range 8.5–17.2). These cases were grouped into two
validations sets: all cases (validation set 1) and the subset of cases
from 2000 to 2014 for which Gleason grading was performed at
the time of pathologic diagnosis and provided in the final
pathology report (n= 1,517 cases, validation set 2). Descriptive
statistics for both validation sets are provided in Table 1.

A.I. and pathologist prognostication. For each case, an A.I.
algorithm assessed the tumor composition and output percen-
tages for the three different Gleason patterns (%GP3, %GP4, and
%GP5). We fit a Cox proportional hazards regression model
directly on these percentages to produce continuous A.I. risk
scores (Supplementary Table S4), using leave-one-out cross-
validation to “adjust for optimism”2. On validation set 1, this
continuous A.I. risk score achieved a C-index of 0.84 (95% CI
0.80–0.87; Table 2). In prespecified primary analysis, on valida-
tion set 2, the C-index for the A.I. risk score (0.87) was sig-
nificantly greater than the C-index for the GG obtained from the
original pathology report (0.79), an improvement of 0.08 (95% CI
0.01–0.15).

To provide an additional comparison to pathologists’ GG
categorizations, we discretized the A.I. risk scores into five “A.I.
risk groups” such that the number of cases per risk group
matched the number of cases in the corresponding GG. Similar to
the A.I. risk score, the C-index for the A.I. risk groups (0.85) was
also greater than the C-index for the pathologist GG (Table 2), an
improvement of 0.07 (95% CI 0.00–0.14). Furthermore,
Kaplan–Meier analyses showed significant risk stratification
across A.I. risk groups across both validation sets (p < 0.001 for
log-rank test, Fig. 1) and univariable Cox regression analyses
showed higher hazard ratios for higher A.I. risk groups
(Supplementary Table S5).

Controlling for treatment. To explore the extent to which post-
surgery treatment impacted the prognostication from the GG at
prostatectomy, we conducted additional subset analyses on cases
with and without known adjuvant or salvage therapy from the
institution, where the prostatectomy was conducted, the Medical

University of Graz (Supplementary Fig. S3). For validation set 2, on
the subset of cases without known additional treatment (n= 1327)
the C-index for the A.I. risk score (0.85) remained greater than the
C-index for the pathologist GG (0.77), an improvement of 0.08
(95% CI 0.01–0.17). On the subset of cases with known additional
treatment (n= 190), similarly the C-index for the A.I. risk score
(0.88) compared favorably to the C-index of the pathologist GG
(0.79), delta of 0.09 (95% CI −0.03 to 0.24). Similar results were
observed for validation set 1 (Supplementary Fig. S3).

Controlling for other features. We also evaluated the prognostic
performance of the A.I. in the context of additional important
pathologic features. Kaplan–Meier analyses showed significant risk
stratification across A.I. risk groups even within groups defined by
low and high T-category (p < 0.001 for log-rank test, Supplemen-
tary Fig. S4). Furthermore, using the A.I. risk groups in a multi-
variable Cox model that also included T-category, surgical margins,
and lymph node metastasis status gave a C-index that trended
higher than using the pathology report-derived GG, and A.I. risk
scores remained independently prognostic with respect to these
additional features (Supplementary Tables S6–8).

Substratification of pathologist grade groups. To better
understand discordances between the A.I. risk groups and
pathologist GG, we first compared 10-year DSS rates for cases,
where the A.I. risk group was higher or lower than the pathologist
GG (Supplementary Table S9). Within each pathologist-
determined GG, the 10-year survival rates were higher for
cases, where the A.I. provided a lower risk classification, especially
for GG ≥ 3. The survival rates also tended to be lower, where the
A.I. provided a higher-risk classification. Second, risk stratifica-
tion by the A.I.’s risk groups 1–2 vs. 3–5 remained significant
within each pathologist-determined GG (Fig. 2). In particular,
among patients with pathologist GG 3–5, a sizable subgroup (181
of 436, 42%) were assigned A.I. risk groups of 1–2, and these
patients did not experience any disease-specific mortality events
(Supplementary Table S9 and Fig. 2).

Exploratory analysis: combining A.I. and pathologists grades.
We further explored the potential benefit of combining the A.I.
system and pathologist grading by evaluating a simple “ensembling”
approach. The arithmetic mean of the A.I. risk group and
pathologist-provided GG resulted in a C-index of 0.86 (95% CI
0.80–91) compared to 0.85 for the A.I. risk groups alone (Table 2).
This small improvement was not statistically significant. Further-
more, qualitative analysis of algorithm and pathologist discordances
suggests several ways, in which the algorithmic grading and
pathologist grading may be complementary, including consistent
grading of regions by the A.I. which may be variably overgraded by

Table 2 C-index for pathologist and A.I. grading.

C-index [95% CI]

Validation set 1 (n= 2807 cases) Validation set (n= 1517 cases)

(A) Pathologist Grade Groups N/Aa 0.79 [0.71, 0.86]
(B) A.I. risk score (continuous) 0.84 [0.80–0.87] 0.87 [0.81, 0.91]
(C) A.I. risk groups (discretized) 0.82 [0.78–0.85] 0.85 [0.79, 0.90]
(D) Average of (A) and (C) N/Aa 0.86 [0.80–0.91]

The A.I. risk score (B) is a continuous risk score from a Cox regression fit on Gleason pattern percentages from the A.I. The A.I. risk group (C) is a discretized version of the A.I. risk score. The
discretization was done to match the number and frequency of pathologist Grade Groups in validation set 2. (D) Represents the average of the Pathologist Grade Group and A.I. risk groups. In validation
set 2, the C-index for the A.I. risk score was statistically significantly higher than that for the pathologists’ Grade Group (p < 0.05, prespecified analysis). Bold indicates the highest value in each column
(dataset).
aNot available because pathologist Grade Groups were not available for all cases in validation set 1 due to the earlier time period.
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Fig. 1 Kaplan–Meier curves for A.I. and pathologist. Kaplan–Meier (KM) curves for a A.I. risk groups on validation set 1, b A.I. risk groups on validation set
2, and c pathologist Grade Groups on validation set 2. The colored lines represent the risk groups categorized by the A.I. or pathologist: 1 in blue; 2 in
orange; 3 in green; 4 in red; and 5 in purple. P values were calculated using the log-rank test.

Fig. 2 Substratification of patients by A.I. as risk groups 1–2 vs. 3–5 within each pathologist-determined GG. A.I. risk groups 1 and 2 are represented in
blue, whereas A.I. risk groups 3–5 are represented in orange. Substratification of pathologist-determined a GG1, b GG2, c GG3, d GG4, and e GG5. Shaded
areas represent 95% confidence intervals.
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pathologists, or identification of small, high grade regions that may
otherwise be missed by pathologists.

Exploratory analysis: intra- and inter-scanner variability.
Finally, we conducted intra-scanner and inter-scanner variability
analysis across four scanner types, finding that intra-scanner R2

consistently exceeded 0.99, whereas inter-scanner R2 varied more,
but was still >0.94 (Supplementary Table S10).

Discussion
In this study, we have validated the ability of a Gleason grading
A.I. system to risk-stratify patients using an independent dataset
of over 2800 prostatectomy cases, with a median of 13 years of
follow-up. The A.I. system demonstrated highly effective risk
stratification and, in prespecified primary analysis, provided sig-
nificantly better risk stratification than GGs obtained from the
original pathology reports.

After prostatectomy, adjuvant radiotherapy for patients with
high-risk pathological features has been shown to reduce rates of
disease recurrence in multiple clinical trials6–8, and to improve
overall survival in some cohorts31. Given their prognostic value,
Gleason grades represent a key factor in adjuvant therapy deci-
sions, with NCCN practice guidelines suggesting higher-risk
patients be considered for adjuvant therapy3. However, use of
adjuvant radiotherapy can cause adverse effects, contributing to
low utilization of this treatment option32 despite there being a
subset of patients who would likely benefit. While risk stratifi-
cation tools, such as nomograms (in which the Gleason score is
among the most prognostic factors)9 and molecular tests33, have
been developed, selection of patients for adjuvant therapy post-
prostatectomy remains a difficult task3. Given the ability of the
A.I. to provide significant risk stratification among patients most
likely to consider adjuvant therapy (GG 3–5 and pT3 and above,
Supplementary Fig. S4B), our results suggest that the A.I. risk
score could be particularly useful for informing adjuvant therapy
decisions. Evaluation of whether additional prognostic value can
be obtained by combining the A.I. risk score with existing
prognostic tools, such as nomograms and molecular approaches,
is also warranted.

The A.I. system may also contribute to clinical decision making
by directly assisting pathologist grading as a computer-aided
diagnostic (CADx) tool. Prior work has shown that a CADx tool
for Gleason grading can improve grading consistency and accu-
racy by pathologists, with pathologists benefiting from the con-
sistent grading provided by the A.I., while also correcting and
overriding unexpected A.I. errors as needed34,35. Given the
prognostic importance of expertise in pathology review19, and the
scarcity of specialty pathologists in low-income and middle-
income countries36, utilization of the A.I. system as an assistive
tool during prostatectomy review has the potential to improve
access to consistent, accurate grading, and may ultimately result
in grading that more accurately predicts patient outcome.

While not directly comparable due to differences in cohorts
and study design, the prognostic performance observed for the
pathologist Gleason grading in this cohort is largely consistent
with prior work evaluating associations of pathologist grading
and clinical outcomes (C-indices of 0.70–0.83 for GG and bio-
chemical recurrence2,37,38, and 0.80 for the recent STAR-CAP
clinical prognostic grouping and DSS39). Interestingly, the uni-
variate hazard ratios for %GP4 and %GP5 were comparable (1.48
and 1.51 for each 10% increase in the respective pattern). These
findings are consistent with Sauter et al., who found the presence
of any %GP5 had strong adverse prognostic implications on
Gleason score 7 patients, but additional increases of the %GP5
had reduced further impact on prognosis40.

Several other works have developed Gleason grading algorithms,
though without validating them on clinical outcomes20,21,23. In
addition, Yamamoto et al. recently demonstrated the ability to
directly learn prognostic histologic features in prostate cancer spe-
cimens that correlate with patient outcomes41. The present study
complements prior work by building upon an extensively validated
Gleason system to provide A.I. risk assessments that are directly
interpretable by pathologists, and utilizing a large independent
dataset with long-term clinical follow-up for direct validation of
these assessments on patient outcomes.

This study has some limitations. First, the Gleason grading
system has evolved over the time period, in which data was col-
lected for this study, including changes to the reporting of minor
Gleason patterns, potentially contributing to inconsistencies in
grading between pathologists and underestimating the prognostic
performance of the GG in the original report. Relatedly, we did
not have access to the raw GP percentages used by pathologists to
determine the GG, which limited comparison with continuous
pathologist risk scores. Similarly, the A.I. and pathologist grading
differ in that A.I. grading does not grade tumor within seminal
vesicle regions, nor does it take into account concepts, such as
dominant or codominant nodules, but instead evaluates the entire
case holistically. Next, this study focuses on prostatectomy spe-
cimens. The benefit of prostatectomy-based analysis is that the
interpretation of prognostication performance in resections is
more straightforward than for biopsies due to less divergent
postoperative treatment pathways42. Additional research to com-
pare the prognostic value of A.I.-based Gleason scoring to that of
subspecialist pathologists or consensus panels can help further
contextualize the A.I.’s performance. Future work to validate an
accurate A.I. system’s prognostic utility on biopsies may provide
additional opportunities to inform and improve post-biopsy
clinical decisions. In addition to Gleason grading, pathologists
review cases for additional criteria, including TNM staging, cancer
variants43, and other pathologic findings not evaluated by our
system. Therefore, the potential benefits of integrating our A.I.
system into a routine pathology workflow will ultimately need to
be evaluated in prospective studies. Finally, although this work
was done on a dataset from a different institution than the datasets
used to develop the A.I., additional validation on diverse cohorts
will be required to further validate these findings.

To conclude, we have validated the ability of an A.I. Gleason
grading system to effectively risk-stratify patients on a large ret-
rospective cohort, outperforming the Gleason GG in the original
report. We look forward to future research involving the clinical
integration and evaluation of the impact of A.I. for improving
patient care.

Data availability
This study analyzed datasets containing archived anonymized pathology slides,
clinicopathologic variables, and outcomes information from the Institute of Pathology
and the Biobank at the Medical University of Graz. The datasets are not publicly available
to respect patient privacy, and interested researchers should contact K.Z. (kurt.
zatloukal@medunigraz.at) to inquire about access; requests for noncommercial academic
use will be considered and require ethics review.

Code availability
The deep learning framework (TensorFlow) used in this study is available at https://www.
tensorflow.org. The deep learning architecture for the Gleason grading model is detailed
in prior work22. All survival analyses were standard and conducted using Lifelines30, an
open-source Python library. The trained model has not yet undergone regulatory review
and cannot be made available at this time. Interested researchers can contact C.M.
(cmermel@google.com) for questions on its status and access.
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