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Abstract

Identifying a protein’s functional sites is an important step towards characterizing its molecular function. Numerous
structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small
molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-
based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain
protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand
binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct
comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely
complementary information, which can be combined to improve upon either approach alone. We also demonstrate that
ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms
and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our
understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of
proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.
princeton.edu/concavity/).
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Introduction

Proteins’ functions are determined to a large degree by their

interactions with other molecules. Identifying which residues

participate in these interactions is an important component

of functionally characterizing a protein. Many computational

approaches based on analysis of protein sequences or structures

have been developed to predict a variety of protein functional sites,

including ligand binding sites [1–3], DNA-binding sites [4], catalytic

sites [2,5], protein-protein interaction interfaces (PPIs) [6,7] and

specificity determining positions [8–12]. In this paper, we focus on

the task of predicting small molecule binding sites from protein

sequences and structures. In addition to aiding in the functional

characterization of proteins, knowledge of these binding sites can

guide the design of inhibitors and antagonists and provide a scaffold

for targeted mutations. Over the past 15 years, a large number of

methods for predicting small molecule binding sites have been

developed. Structural approaches have used geometric and

energetic criteria to find concave regions on the protein surface

that likely bind ligands [1,13–21]. Sequence-based approaches, on

the other hand, have largely exploited sequence conservation, or the

tendency of functionally or structurally important sites to accept

fewer mutations relative to the rest of the protein [22].

We introduce ConCavity, a new approach for predicting 3D

ligand binding pockets and individual ligand binding residues. The

ConCavity algorithm directly integrates evolutionary sequence

conservation estimates with structure-based surface pocket pre-

diction in a modular three step pipeline. In the first step, we score

a grid of points surrounding the protein surface by combining

the output of a structure-based pocket finding algorithm (e.g.,

Ligsite [16], Surfnet [14], or PocketFinder [23]) with the sequence

conservation values of nearby residues. In the second step, we

extract coherent pockets from the grid using 3D shape analysis

algorithms to ensure that the predicted pockets have biologically

reasonable shapes and volumes. In the final step, we map from the

predicted pockets to nearby residues by assigning high scores to

residues near high scoring pocket grid points. Using this pipeline,

ConCavity is able to make predictions of both regions in space that

are likely to contain ligand atoms as well as protein residues likely

to contact bound ligands.

We demonstrate ConCavity’s excellent performance via extensive

testing and analysis. First, we show that ConCavity, by integrating

conservation and structure, provides significant improvement in

identifying ligand binding pockets and residues over approaches

that use either conservation alone or structure alone; this testing is

performed on the diverse, non-redundant LigASite database of

biologically relevant binding sites [24]. We find that ConCavity’s top

predicted residue is in contact with a ligand nearly 80% of the

time, while the top prediction of the tested structure-alone and

conservation-alone methods is correct in 67% and 57% of proteins
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respectively. The notable improvement of ConCavity over the

conservation-alone approach demonstrates that there is significant

added benefit to considering structural information when it is

available. Second, we demonstrate that ConCavity significantly

outperforms current publicly available methods [1,19,25] that

identify ligand binding sites based on pocket finding. Third, we

show that ConCavity performs similarly when using a variety of

pocket detection algorithms [14,16,23] or sequence conservation

measures [2,26]. Fourth, we characterize ConCavity in a range of

situations, and compare its performance in identifying ligand

binding sites from apo vs. holo structures as well as in enzymes vs.

non-enzymes. Fifth, we test how well ConCavity can identify

catalytic sites and drug binding sites. Sixth, we examine

problematic cases for our approaches, and highlight the difficulty

that multi-chain proteins pose for structure-based methods for

identifying ligand binding sites. Finally, we demonstrate that our

methodological improvements in pocket extraction and residue

mapping give our implementations of existing methods a

significant gain in performance over the previous versions. In

fact, without these improvements, the previous structural ap-

proaches do not outperform a simple sequence conservation

approach when identifying ligand binding residues. Overall,

ConCavity significantly advances the state-of-the-art in uncovering

ligand binding sites. Our detailed analysis reveals much about the

relationship between sequence conservation, structure, and

function, and shows that sequence conservation and structure-

based attributes provide complementary information about

functional importance.

Further related work
Sequence-based functional site prediction has been dominated

by the search for residue positions that show evidence of

evolutionary constraint. Amino acid conservation in the columns

of a multiple sequence alignment of homologs is the most common

source of such estimates (see [22] for a review). Recent approaches

that compare alignment column amino acid distributions to a

background amino acid distribution outperform many existing

conservation measures [2,27]. However, the success of conserva-

tion-based prediction varies based on the type of functional residue

sought; sequence conservation has been shown to be strongly

correlated with ligand binding and catalytic sites, but less so with

residues in protein-protein interfaces (PPIs) [2]. A variety of

techniques have been used to incorporate phylogenetic informa-

tion into sequence-based functional site prediction, e.g., traversing

phylogenetic trees [28,29], statistical rate inference [26], analysis

of functional subfamilies [9,12], and phylogenetic motifs [30].

Recently, evolutionary conservation has been combined with

other properties predicted from sequence, e.g., secondary structure

and relative solvent accessibility, to identify functional sites [31].

Structure-based methods for functional site prediction seek to

identify protein surface regions favorable for interactions. Ligand

binding pockets and residues have been a major focus of these

methods [1,13–21]. Ligsite [16] and Surfnet [14] identify pockets by

seeking points near the protein surface that are surrounded in most

directions by the protein. CASTp [17,19] applies alpha shape

theory from computational geometry to detect and measure

cavities. In contrast to these geometric approaches, other methods

use models of energetics to identify potential binding sites

[23,25,32–34]. Recent algorithms have focused on van der Waals

energetics to create grid potential maps around the surface of the

protein. PocketFinder [23] uses an aliphatic carbon as the probe, and

Q-SiteFinder [25] uses a methyl group. Our work builds upon

geometry and energetics based approaches to ligand binding

pocket prediction, but it should be noted that there are other

structure-based approaches that do no fit in these categories (e.g.,

Theoretical Microscopic Titration Curves (THEMATICS) [35],

binding site similarity [36], phage display libraries [37], and

residue interaction graphs [38]). In contrast to sequence-based

predictions, structure-based methods often can make predictions

both at the level of residues and regions in space that are likely to

contain ligands.

Several previous binding site prediction algorithms have

considered both sequence and structure. ConSurf [39] provides

a visualization of sequence conservation values on the surface of a

protein structure, and the recent PatchFinder [40] method

automates the prediction of functional surface patches from

ConSurf. Spatially clustered residues with high Evolutionary

Trace values were found to overlap with functional sites [41], and

Panchenko et al. [42] found that averaging sequence conservation

across spatially clustered positions provides improvement in

functional site identification in certain settings. Several groups

have attempted to identify and separate structural and functional

constraints on residues [43,44]. Wang et al. [45] perform logistic

regression on three sequence-based properties and predict

functional sites by estimating the effect on structural stability of

mutations at each position. Though these approaches make use of

protein structures, they do not explicitly consider the surface

geometry of the protein in prediction. Geometric, chemical, and

evolutionary criteria have been used together to define motifs that

represent known binding sites for use in protein function

prediction [46]. Machine learning algorithms have been applied

to features based on sequence and structure [47,48] to predict

catalytic sites [5,49–51] and recently to predict drug targets [52]

and a limited set of ligand and ion binding sites [53–55]. Sequence

conservation has been found to be a dominant predictor in these

contexts.

Most similar to ConCavity are two recent approaches to ligand

binding site identification that have used evolutionary conserva-

tion in a post-processing step to rerank [1] or refine [56] geometry

based pocket predictions. In contrast, ConCavity integrates

conservation directly into the search for pockets. This allows it

to identify pockets that are not found when considering structure

alone, and enables straightforward analysis of the relationship

Author Summary

Protein molecules are ubiquitous in the cell; they perform
thousands of functions crucial for life. Proteins accomplish
nearly all of these functions by interacting with other
molecules. These interactions are mediated by specific
amino acid positions in the proteins. Knowledge of these
‘‘functional sites’’ is crucial for understanding the molec-
ular mechanisms by which proteins carry out their
functions; however, functional sites have not been
identified in the vast majority of proteins. Here, we present
ConCavity, a computational method that predicts small
molecule binding sites in proteins by combining analysis
of evolutionary sequence conservation and protein 3D
structure. ConCavity provides significant improvement
over previous approaches, especially on large, multi-chain
proteins. In contrast to earlier methods which only predict
entire binding sites, ConCavity makes specific predictions
of positions in space that are likely to overlap ligand atoms
and of residues that are likely to contact bound ligands.
These predictions can be used to aid computational
function prediction, to guide experimental protein analy-
sis, and to focus computationally intensive techniques
used in drug discovery.

Ligand Binding Site Prediction with ConCavity
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between sequence conservation, structural patterns, and functional

importance.

Results

Preliminaries
For simplicity of exposition, we begin by comparing ConCavity’s

performance to a representative structural method and a

representative conservation method. We use Ligsite+ as the

representative structure-based method, and refer to it as

‘‘Structure’’. Ligsite+ is our implementation (as indicated by

superscript ‘‘+’’) of a popular geometry based surface pocket

identification algorithm. We demonstrate in the Methods section

that Ligsite+ provides a fair representation of these methods. We

choose Jensen-Shannon divergence (JSD) to represent conservation

methods and refer to it as ‘‘Conservation.’’ JSD has been previously

shown to provide state-of-the-art performance in identifying

catalytic sites and ligand binding sites [2]. We have developed

three versions of ConCavity that integrate evolutionary conservation

into different surface pocket prediction algorithms (Ligsite [16],

Surfnet [14], or PocketFinder [23]). When the underlying algorithm is

relevant, we refer to these versions as ConCavityL, ConCavityS, and

ConCavityP. However, for simplicity, we will use ConCavityL as

representative of these approaches and call it ‘‘ConCavity.’’

ConCavity and Structure produce predictions of ligand binding

pockets and residues. The pocket predictions are given as non-zero

values on a regular 3D grid that surrounds the protein; the score

associated with each grid point represents an estimated likelihood

that it overlaps a bound ligand atom. Similarly, each residue in the

protein sequence is assigned a score that represents its likelihood of

contacting a bound ligand. Conservation only makes residue-level

predictions, because it does not consider protein structure. All

methods are evaluated on 332 proteins from the non-redundant

LigASite 7.0 dataset [24]. To evaluate pocket identification

performance, we predict ligand locations on the the holo version

of the dataset, in order to use the bound ligands’ locations as

positives. When evaluating residue predictions, we predict ligand

binding residues on the apo structures, and the residues annotated

as ligand binding (as derived from the holo structures) are used as

positives.

We quantify the overall performance of each method’s

predictions in two ways. First, for both pocket and residue

prediction, we generate precision-recall (PR) curves that reflect

the ability of eachmethod’s grid and residue scores to identify ligand

atoms and ligand binding residues, respectively. (Just as residues are

assigned a range of ligand binding scores, grid points in predicted

pockets get a range of scores, since there may be more evidence that

a ligand is bound in one part of a pocket than another.) Second, for

each set of predicted pockets (corresponding to groups of non-zero

values in the 3D grid), we consider how well they overlap known

ligands via the Jaccard coefficient. The Jaccard coefficient captures

the tradeoff between precision and recall by taking the ratio of the

intersection of the predicted pocket and the actual ligand over their

union. The Jaccard coefficient ranges between zero and one, and a

high value implies that the prediction covers the ligand well and has

a similar volume. We assess the significance of the difference in

performance of methods on the dataset with respect to a given

statistic via the Wilcoxon rank-sum test.

Integrating evolutionary sequence conservation and
structure-based pocket finding to predict ligand-binding
sites improves on either approach alone
Figure 1 compares ConCavity with its constituent structure and

conservation based components. Figure 1A shows that, within

Figure 1. Ligand binding site prediction performance. (A) PR curves for prediction of the spatial location of biologically relevant bound
ligands. (B) PR curves for ligand binding residue prediction. Our ConCavity algorithm, which combines sequence conservation with structure-based
predictors, significantly outperforms either of the constituent methods at both tasks. Prediction based on structural information alone outperforms
considering sequence conservation alone. Comparing (A) and (B), we see that accurately predicting the location of all ligand atoms is harder for the
methods than finding all the contacting residues. Random gives the expected performance of a method that randomly ranks grid points and residues.
Conservation could not be included in (A), because it only predicts at the residue level. The curves are based on binding sites in 332 proteins from the
non-redundant LigASite 7.0 dataset.
doi:10.1371/journal.pcbi.1000585.g001

Ligand Binding Site Prediction with ConCavity
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predicted pockets, grid points with higher scores are more likely to

overlap the ligand, and that the significant improvement of

ConCavity over Structure (p,2.2e216) exists across the range of

score thresholds. Figure 1B demonstrates that the superior

performance of ConCavity holds when predicting ligand binding

residues as well (p = 6.80e213). ConCavity’s ability to identify

ligand binding residues is striking: across this diverse dataset, the

first residue prediction of ConCavity will be in contact with a ligand

in nearly 80% of proteins. ConCavity also maintains high precision

across the full recall range: precision of 65% at 50% recall and

better than 30% when all ligand-binding residues have been

identified. As mentioned above, this large improvement exists

when predicting ligand locations as well; however, the PR curves

illustrate that fully identifying a ligand’s position is more difficult

for each of the methods than finding all contacting residues.

The ligand overlap statistics presented in Table 1 also

demonstrate the superior performance of ConCavity. In nearly

95% of structures, ConCavity’s predictions overlap with a bound

ligand. Structure’s predictions overlap ligands in nearly 92% of the

proteins considered. The differences between the methods become

more stark when we examine the magnitude of these overlaps. Both

ConCavity and Structure predict pockets with total volume (Prediction

Vol.) similar to that of all relevant ligands (Ligand Vol.), but

ConCavity’s pockets overlap a larger fraction of the ligand volume.

Thus ConCavity has a significantly higher Jaccard coefficient

(p,2.2e216). This suggests that the integration of sequence

conservation with structural pocket identification results in more

accurate pockets than when using structural features alone.

Figure 1B also provides a direct comparison of ligand binding site

prediction methods based on sequence conservation with those

based on structural features. Structure outperforms Conservation, a state-

of-the-art method for estimating sequence conservation. Protein

residues can be evolutionarily conserved for a number of reasons, so

it is not surprising that Conservation identifies many non-ligand-

binding residues, and thus, does not perform as well as Structure.

ConCavity’s improvement comes from integrating
complementary information from evolutionary sequence
conservation and structure-based pocket identification
Figures 2 and 3 present pocket and residue predictions of

Conservation, Structure, and ConCavity on three example proteins. In

general, different types of positions are predicted by Conservation

and Structure. If we consider the number of known ligand binding

residues for each protein in the dataset, and take this number of

top predictions for the Structure and Conservation methods, the

overlap is only 26%. The residues predicted by sequence

conservation are spread throughout the protein (Figure 2);

ligand-binding residues are often very conserved, but many other

positions are highly conserved as well due to other functional

constraints. In contrast, the structure-based predictions are

strongly clustered around surface pockets (Figure 3, left column);

many of these residues near pockets are not evolutionarily

conserved. However, these features provide largely complemen-

tary information about importance for ligand binding. Over the

entire dataset, 68% of residues predicted by both Conservation and

Structure are in contact with ligands, while only 16% and 43% of

those predicted by only conservation or structure respectively are

ligand binding. ConCavity takes advantage of this complementarity

to achieve its dramatic improvement; it gives high scores to

positions that show evidence of both being in a well-formed pocket

and being evolutionarily conserved.

The examples of Figures 2 and 3 illustrate this and highlight

several common patterns in ConCavity’s improved predictions. For

3CWK, a cellular retinoic acid-binding protein, Structure and

ConCavity’s residue predictions center on the main ligand binding

pocket (Figure 3A), while Conservation gives high scores to some

positions in the binding site, but also to some unrelated residues

(Figure 2A). Looking at the ligand location predictions (green

meshes in Figure 3A), Structure and ConCavity both find the pocket,

but the signal from conservation enables ConCavity to more

accurately trace the ligand’s location. This illustrates how the

pattern of functional conservation observed at the protein surface

influences the shape of the predicted pocket. Ligands often do not

completely fill surface pockets; if the contacting residues are

conserved, our approach can suggest a more accurate shape.

The results for 2CWH (Figure 3B) and 1G6C (Figure 3C)

demonstrate that ConCavity can predict dramatically different sets

of pockets than are obtained when considering structure alone. In

2CWH, both methods identify the ligands, but Structure over-

predicts the bottom left binding pocket and predicts an additional

pocket that does not have a ligand bound. ConCavity traces the

ligands more closely and does not predict any additional pockets.

Structure performs quite poorly on the tetramer 1G6C: it predicts

several pockets that do not bind ligands; it fails to completely

identify several ligands; and it misses one ligand entirely. In stark

contrast, ConCavity’s four predicted pockets each accurately trace a

ligand. The incorporation of conservation resulted in the accurate

prediction of a pocket in a region where no pocket was predicted

using structure alone. Images of predictions for all methods on all

proteins in the dataset are available in the Text S1 file, and

ConCavity’s predictions for all structures in the Protein Quaternary

Structure (PQS) database are available online.

ConCavity significantly outperforms available prediction
servers
We now compare the performance of ConCavity to several

existing ligand binding site identification methods with publicly

Table 1. The overlap between predicted pockets and bound ligands in holo protein structures from the LigASite database.

Method

Fraction with

Ligand Overlap

Prediction Vol.

(Å3)

Ligand Vol.

(Å3)

Prediction \\ Ligand

(Å3)

Prediction || Ligand

(Å3)

Jaccard

coefficient

Structure 0.92 1806.8 1977.2 426.9 3357.1 0.197

ConCavity 0.95 1806.9 1977.2 647.6 3136.5 0.257

The first column gives the fraction of proteins for which a method’s predictions overlap a ligand. The second column (Prediction Vol.) lists the average volume of the
predicted pockets for each protein, while the third column (Ligand Vol.) lists the average volume of ligands observed in the structure. The next columns give the
average volumes of the Intersection and Union of the predictions and ligands and the Jaccard coefficient (Intersection/Union). ConCavity and Structure predict pockets
of similar sizes---both use a similar pocket volume threshold---but ConCavity’s predictions overlap more of the bound ligands. ConCavity’s higher Jaccard coefficient
demonstrates that it better manages the tradeoff between precision and recall.
doi:10.1371/journal.pcbi.1000585.t001

Ligand Binding Site Prediction with ConCavity
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available web servers. LigsiteCS [1] is an updated version of

geometry-based Ligsite, and LigsiteCSC [1] is a similar structural

method that considers evolutionary conservation information.

Q-SiteFinder [25] estimates van der Waals interactions between the

protein and a probe in a fashion similar to PocketFinder. CASTp [19]

is a geometry-based algorithm for finding pockets based on

analysis of the protein’s alpha shape. Each of the servers produces

a list of predicted pockets represented by sets of residues; however,

none of them provide a full 3D representation of a predicted

pocket. As a result, we assess their ability to predict ligand binding

residues. See the Methods section for more information on the

generation and processing of the servers’ predictions. In brief, the

residues predicted by each server are ranked according to the

highest ranking pocket to which they are assigned, i.e., all residues

from the first predicted pocket are given a higher score than those

from the second and so on. We re-implemented the conservation

component of LigsiteCSC, because the conservation-based

re-ranking option on the web server did not work for many of

the proteins in our dataset. We used JSD as the conservation

scoring method.

Figure 4 presents the ligand binding residue PR-curves for each

of these methods. ConCavity significantly outperforms LigsiteCS,

LigsiteCSC+, Q-SiteFinder, and CASTp (p,2.2e216 for each).

Surprisingly, Conservation is competitive with these structure-based

approaches. Several of the servers did not produce predictions for

a small subset of the proteins in the database, e.g., the Q-SiteFinder

server does not accept proteins with more than 10,000 atoms.

Figure 4 is based on 234 proteins from the LigASite dataset for

which were able to obtain and evaluate predictions for all

methods. Thus the curve for ConCavity is slightly different than

those found in the other figures, but its performance does not

change significantly.

LigsiteCSC+ is the previous method most similar to ConCavity; it

uses sequence conservation to rerank the pockets predicted by

LigsiteCS. LigsiteCSC+ provides slight improvement over LigsiteCS,

but the improvement is dwarfed by that of ConCavity over Structure

(Figure 1). This illustrates the benefit of incorporating conservation

information directly into the search for pockets in contrast to using

conservation information to post-process predicted pockets.

The poor performance of these previous methods at

identifying ligand binding residues is due in part to the fact

that they do not distinguish among the residues near a predicted

binding pocket. The entire pocket is a useful starting place for

analysis, but many residues in a binding pocket will not actually

contact the ligand. Knowledge of the specific ligand binding

residues is of most interest to researchers. The predictions of our

methods reflect this---residues within the same pocket can

receive different ligand binding scores. The inability of previous

methods to differentiate residues in a pocket from one another is

one reason why we elect to use our own implementations of

previous structure-based methods as representatives of these

approaches in all other comparisons. See the Methods section for

more details.

We tested an additional approach for combining sequence

conservation with structural information that was suggested by the

observation that clusters of conserved residues in 3D often overlap

with binding sites [41,42]. Briefly, the method performs a 3D

Gaussian blur of the conservation scores of each residue, and

assigns each residue the maximum overlapping value. Thus

residues nearby in space to other conserved residues get high

scores. This approach improved on considering conservation

alone, but was not competitive with ConCavity (Text S1). We also

considered the clusters of conserved residues generated by the

Evolutionary Trace (ET) Viewer [57]. The clusters defined at 25%

protein coverage were ranked by size, and residues within the

clusters were ranked by their raw ET score. This approach did not

perform as well as the above clustering algorithm (data not shown),

and was limited to single chain proteins, because ET returns

predictions for only one chain of multi-chain proteins.

Figure 2. Evolutionary sequence conservation mapped to the
surface of three example proteins. (A) Cellular retinoic acid-binding
protein II (PDB: 3CWK). (B) Delta1-piperideine-2-carboxylate reductase
(PDB: 2CWH). (C) Thiamin phosphate synthase (PDB: 1G6C). Warmer
colors indicate greater evolutionary conservation; the most conserved
residues are colored dark red, and the least conserved are colored dark
blue. Ligands are rendered with yellow sticks, and protein backbone
atoms are shown as spheres. In general, Conservation gives the highest
scores to residues near ligands, but high scoring residues are found
throughout each structure. The predictions of Structure and ConCavity
for these proteins are given in Figure 3.
doi:10.1371/journal.pcbi.1000585.g002

Ligand Binding Site Prediction with ConCavity
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ConCavity performs similarly for geometry and energetics
based grid creation methods

In the previous sections, we used ConCavityL, which integrates

evolutionary sequence conservation estimates from the Jensen-

Shannon divergence (JSD) into Ligsite+, to represent the perfor-

mance of the ConCavity approach. However, our strategy for

combining sequence conservation with structural predictions is

general; it can be used with a variety of grid-based surface pocket

identification algorithms and conservation estimation methods.

Figure 3. Comparison of the binding site predictions of Structure and ConCavity on three example proteins. The three proteins presented here
correspond to those shown in Figure 2. In each pane, ligand binding residue scores have been mapped to the protein surface. Warmer colors indicate a
higher binding score. Pocket predictions are shown as green meshes. (A) PDB: 3CWK. Both methods identify the binding site, but by considering
conservation information (Figure 2A), ConCavitymore accurately traces the ligand. (B) PDB: 2CWH. Structure significantly overpredicts the extent of the ligand
in the bottom left corner as well as predicting an additional pocket on the reverse of the protein. ConCavity predicts only the two ligand binding pockets. (C)
PDB: 1G6C. In order to visualize the predictions more clearly, only the secondary structure diagram of the protein is shown. This example illustrates the
difficulty presented bymultichain proteins; there are many cavities in the structure, but not all bind ligands. Structure identifies some of the relevant pockets,
but focuses on the large, non-binding central cavity formed between the chains. Referring to this protein’s conservation profile (Figure 2C), we see that the
ligand binding pockets exhibit high conservation while the non-binding pockets do not. As a result, ConCavity selects only the relevant binding pockets. In
each example, ConCavity selects the binding pocket(s) out of all potential pockets and more accurately traces the ligands’ locations in these pockets.
doi:10.1371/journal.pcbi.1000585.g003

Ligand Binding Site Prediction with ConCavity
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Figure 5 gives PR-curves that demonstrate that ConCavity
provides excellent performance whether the structural approaches

are based on geometric properties (Ligsite+, Surfnet+) or energetics
(PocketFinder+). The significant improvement holds for predicting

both ligand locations in space (p,2.2e216 for each pair)

(Figure 5A) and ligand binding residues (p = 6.802e213 for

Ligsite+, p,2.2e216 for PocketFinder+, p,2.2e216 for Surfnet+)

(Figure 5B). The three ConCavity versions perform similarly despite

the variation in performance between Ligiste+, Surfnet+, and

Pocketfinder+. In the following sections we will include performance

statistics for all three methods when space and clarity allow. When

not presented here, results for all methods are available in the

supplementary file Text S1.

We have also found that ConCavity achieves similar performance

when a different state-of-the-art method [26] is used to score

evolutionary sequence conservation (Text S1).

Structure-based methods have difficulty with multi-chain
proteins
Proteins consisting of multiple subunits generally have more

pockets than single-chain proteins due to the gaps that often form

between chains. To investigate the effect of structural complexity

on performance, we partitioned the dataset according to the

number of chains present in the structure predicted by the Protein

Quaternary Structure (PQS) server [58] and performed our

previous evaluations on the partitioned sets. Figure 6 gives these

statistics for ConCavity, Structure, and Conservation. To enable side-by-

side comparison, we report the area under the PR curves (PR-

AUC) rather than giving the full curves.

As the number of chains in the structure increases, there is a

substantial decrease in the performance of Structure. The pattern is

seen both when predicting ligand binding residues (Figure 6A) and

pockets (Figure 6B, C). This effect is so large that, for proteins with

five or more chains, Conservation outperforms Structure. The number

of chains in the protein has little effect on Conservation’s

performance. The performance of Random on proteins with a

small number of chains is slightly worse than on proteins with

many chains (e.g., Residue PR-AUC for 1 chain: 0.097, 2 chains:

0.110, 3 chains: 0.127, 4 chains: 0.119, 5+ chains: 0.142), so the

drop in Structure’s performance is not the result of the proportion of

positives in each set. These observations emphasize the impor-

tance of including multi-chain proteins in the evaluation.

The homo-tetramer 1G6C in Figure 3C provides an illustrative

example of the failure of Structure on multi-chain proteins. There is

a large gap between the chains in the center of the structure, and

several additional pockets are formed at the interface of pairs of

contacting chains. As seen in the figure, the large central cavity

does not bind a ligand; however, it is the largest pocket predicted

by Structure. This is frequently observed among the predictions.

While some pockets between protein chains are involved in ligand

binding, many of them are not. As the number of chains increases,

so does the number of such potentially misleading pockets.

By incorporating sequence conservation information, ConCavity

accurately identifies ligand binding pockets in multi-chain

proteins. The conservation profile on the surface of 1G6C

provides a clear example of this; the pockets that exhibit sequence

conservation are those that bind ligands (Figure 2C). 1G6C is

not an exception. ConCavity provides significant performance

improvement for each partition of the dataset in all three

evaluations, and greatly reduces the effect of the large number of

non-ligand-binding pockets in multi-chain proteins on perfor-

mance. ConCavity also provides improvement over Structure on the

set of one chain proteins. This is notable because these proteins

do not have between-chain gaps, so the improvement comes from

tracing ligands and selecting among intra-chain pockets more

accurately than using structural information alone (as in

Figure 3A).

ConCavity performs well on both apo and holo structures
The binding of a ligand induces conformational changes to a

protein [59]. As a result, the 3D structure of the binding site can

differ between structures of the same protein with a ligand bound

(holo) and not bound (apo). In the holo structures, the relevant

side-chains are in conformations that contact the ligand, and this

often defines the binding pocket more clearly than in apo

structures. To investigate the effect of the additional information

provided in holo structures on performance, we evaluated the

methods on both sets (Table 2).

As expected, all methods performed better on the holo (bound)

structures than the corresponding apo (unbound) structures.

However, all previous conclusions hold whether considering apo

structures or holo structures; the ranking of the methods is

consistent, and the improvement provided by considering

conservation is similarly large. PR curves for this comparison are

given in the supplementary file Text S1. We will continue to report

residue prediction results computed using the apo structures when

possible in order to accurately assess the performance of the

algorithms in the situation faced by ligand binding site prediction

methods in the real world.

Figure 4. Comparison of ConCavity with publicly available
ligand binding site prediction servers. ConCavity significantly
outperforms each previous method at the prediction of ligand binding
residues. The existing servers focus on the task of pocket prediction,
and return sets of residues that represent binding pocket predictions.
They do not give different scores to these individual residues. In
contrast, ConCavity assigns each residue a likelihood of binding, and
thus residues in the same predicted pocket can have different scores.
This ability and the direct integration of sequence conservation are the
major sources of ConCavity’s improvement. Conservation, the method
based solely on sequence conservation, is competitive with these
previous structural approaches. This figure is based on 234 proteins
from the LigASite apo dataset for which we were able to obtain
predictions from all methods.
doi:10.1371/journal.pcbi.1000585.g004
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The methods better identify ligand binding sites in
enzymes than non-enzymes
The LigASite apo dataset contains protein molecules that carry

out a range of different functions. Enzymes are by far the most

common; they make up 254 of the 332 proteins in the dataset. The

remaining 78 non-enzyme ligand binding proteins are involved in

a wide variety of functions, e.g., transport, signaling, nucleic acid

binding, and immune system response.

Table 3 compares the performance of the ligand binding site

prediction methods on enzymes and non-enzymes. There is more

variation within each method’s performance on non-enzyme

proteins, and all methods perform significantly better on the

enzymes (e.g., p = 3.336e24 for ConCavityL ). Active sites in

enzymes are usually found in large clefts on the protein surface

and consistently exhibit evolutionary sequence conservation

[60,61], so even though enzymes bind a wide array of substrates,

these common features may simplify prediction when compared to

the variety of binding mechanisms found in other proteins.

Despite the drop in performance on non-enzyme proteins, the

main conclusions from the earlier sections still hold. However, the

improvement provided by ConCavity is not as great on the non-

enzymes. This could be the result of the more complex patterns of

conservation found in non-enzyme proteins, and the compara-

tively poor performance of Conservation in this setting. It is also

possible that Ligsite+’s approach is particularly well suited to

identifying binding sites in non-enzymes. Overall, these results

highlight the importance of using a diverse dataset to evaluate

functional site predictions.

ConCavity improves identification of drug binding sites
Knowledge of small molecule binding sites is of considerable use

in drug discovery and design. Many of the techniques used to

screen potential targets, e.g., docking and virtual screening, are

computationally intensive and feasible only when focused on a

specific region of the protein surface. Structure based surface

cavity identification algorithms can guide analysis in such

situations [52].

To test ConCavity’s ability to identify drug binding sites, we

evaluated it on a set of 98 protein-drug complexes [62]. The

superior performance provided by ConCavity over Structure on the

diverse set of proteins considered above suggests that ConCavity

would likely be useful in the drug screening pipeline. Table 4

compares the ligand overlap PR-AUC and Jaccard coefficient for

the three versions of ConCavity and their structure-based analogs.

Each ConCavity method significantly improves on the methods that

only consider structural features (e.g., p = 1.25e26 on overlap PR-

AUC and p= 2.06e26 on Jaccard for ConCavityL). While the

improvement is not quite as large on this dataset as that seen on

the more diverse LigASite dataset, it is still significant. It is possible

that this is due to the fact that drug compounds are not the

proteins’ natural ligands; the evolutionary conservation of the

residues in binding pockets may reflect the pressures related to

binding the actual ligands rather than the drugs.

Examples of difficult structures
While ConCavity signficantly outperforms previous approaches,

its performance is not flawless. In Figure 7, we give three example

structures that illustrate patterns observed when ConCavity

performs poorly. Handling these cases is likely to be important

for further improvements in ligand binding site prediction.

The first pattern common among these difficult cases is

evolutionary sequence conservation information leading predic-

tions away from actual ligand binding sites. Figure 7A provides an

example in which the ligand binding site is less conserved than

other parts of the protein. The ActR protein from Streptomyces

coelicolor (PDB: 3B6A) contains both a small molecule ligand-

binding and a DNA-binding domain [63]. The ligand-binding

domain is in the bottom, less-conserved half of the structure. The

Figure 5. Comparison of different versions of ConCavity. ConCavity provides a general framework for binding site prediction. We use Ligsite+ -
based ConCavity as representative, but it is possible to use other algorithms in ConCavity. This figure compares the PR curves for three versions
(ConCavityL, ConCavityP, ConCavityS )---each based on integrating sequence conservation with a different grid creation strategy (Ligsite+, PocketFinder+,
or Surfnet+). All three versions perform similarly, and all significantly outperform the methods based on structure analysis alone (dashed lines). These
conclusions hold for both ligand binding pocket (A) and ligand binding residue (B) prediction.
doi:10.1371/journal.pcbi.1000585.g005
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DNA-binding domain is found in the more conserved top half of

the given structure. The greater conservation of this domain

causes ConCavity to focus on the DNA-binding site over the ligand

binding site. In other cases, conservation information is uninfor-

mative due to a lack of homologous sequences. Conservation

estimates based on low quality sequence alignments may harm

performance for some structures, but we have found that they still

provide a net performance gain overall (Text S1).

Figure 7 also provides two examples of another difficult case:

ligands bound outside of clearly defined, concave surface pockets.

In Figure 7B, ConCavity identifies the center of the ring-shaped

structure of the pentameric B-subunit of a shiga-like toxin (PDB:

1CQF) as the binding site. This protein binds to glycolipids, like

the globotriaosylceramide (Gb3) shown, via a relatively flat

interface that surrounds the center of the ring [64]. The center

cavity (ConCavity’s prediction) is filled by a portion of the A-subunit

of the toxin (not included in the structure) which after binding

breaks off and enters the host cell. Figure 7C shows the structure of

a dimeric noncatalytic carbohydrate binding module (CBM29)

from Piromyces equi complexed with mannohexaose (PDB: 1GWL).

The carbohydrate ligands bind in long flat clefts on the protein

Figure 6. Ligand-binding site identification performance by
number of chains in structure. (A) The average area under the
precision-recall curve (PR-AUC) for predicting ligand binding residues
on each set of structures. (B) The average PR-AUC for ligand binding
pocket identification. (C) The average Jaccard coefficient of the overlap
of the predicted pockets with bound ligands. Methods based on
structure alone have an increasingly difficult time distinguishing among
ligand-binding pockets and non-ligand-binding gaps between chains as
the number of chains in the protein increases. This trend is clear in each
evaluation. Conservation’s performance does not exhibit this effect (A).
In fact, Conservation outperforms Structure on proteins with five or
more chains. The integration of sequence conservation and pocket
prediction in ConCavity improves performance in each chain based
partition in each evaluation, and ConCavity sees only a modest decrease
in performance on proteins with multiple chains. Conservation alone
could not be included in (B) and (C), because it does not make pocket
predictions. Note that the y-axes in the figures do not all have the same
scale. The number of structures per chain group: 1 chain: 143, 2 chains:
112, 3 chains: 18, 4 chains: 35, 5 or more chains: 24.
doi:10.1371/journal.pcbi.1000585.g006

Table 2. Area under the Precision-Recall curve (PR-AUC) for
ligand-binding residue prediction methods on apo (unbound)
and holo (bound) versions of LigASite.

Residue PR-AUC

Method apo holo

ConCavityL 0.608 0.657

ConCavityP 0.601 0.646

ConCavityS 0.586 0.648

Ligsite+ 0.519 0.552

PocketFinder+ 0.472 0.514

Surfnet+ 0.416 0.481

Random 0.109 0.095

All methods perform better on holo structures than apo structures, but the
drop in performance is not dramatic, and the relative ranking of the methods is
the same across both datasets.
doi:10.1371/journal.pcbi.1000585.t002

Table 3. Ligand binding residue identification in enzymes
and non-enzymes (LigASite apo).

Residue PR-AUC

Method Enzyme Non-enzyme

ConCavityL 0.647 0.480

ConCavityP 0.642 0.466

ConCavityS 0.624 0.461

Ligsite+ 0.541 0.451

PocketFinder+ 0.494 0.399

Surfnet+ 0.430 0.370

Conservation 0.318 0.216

Random 0.104 0.123

All methods are better at identifying binding residues in enzymes than in non-
enzymes. The ConCavity methods achieve the best performance on both
datasets, but incorporating conservation information provides less
improvement in non-enzymes.
doi:10.1371/journal.pcbi.1000585.t003
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surface [65]. Even though these sites exhibit significant evolution-

ary conservation, their geometry prevents them from being

predicted. Instead, a less conserved pocket formed between the

chains is highlighted by ConCavity.

Overall, cases such as these are rare; ConCavity’s predictions fail

to overlap a ligand in only 5% of structures. In addition, some of

these ‘‘incorrect’’ predictions are actually functionally relevant

binding sites for other types of interactions as illustrated in

Figure 7.

Integrating conservation and structure improves
prediction of catalytic sites
Ligand-binding sites are not the only type of functional site of

interest to biologists. A large amount of attention has been given to

the problem of identifying catalytic sites. As noted above, the

majority of enzyme active sites are found in large clefts on the

protein surface, so even though the structural methods considered

in this paper were not intended to identify catalytic sites, they

could perform well at this task.

Table 5 gives the results of an evaluation of the methods’ ability

to predict catalytic sites (defined by the Catalytic Site Atlas [66]) in

the LigASite apo dataset. Compared to ligand binding site

prediction, the relative performance of the methods is different

in this context. The ConCavity approach still significantly

outperforms the others (p,2.2e216 for Structure, p = 8.223e24

for Conservation). Most surprisingly, Conservation significantly outper-

forms methods based on structure alone (p = 9.863e23 Ligsite+,

p = 4.694e26 Pocketfinder+, p = 1.171e26 Surfnet+). All the methods

have lower PR-AUC when predicting catalytic sites than

predicting ligand-binding residues (e.g., ConCavityL has PR-AUC

of 0.315 versus 0.608); this is due in large part to the considerably

smaller number of catalytic residues than ligand-binding residues

per protein sequences.

These results imply that being very evolutionarily conserved is

more indicative of a role in catalysis than being found in a surface

pocket. Though catalytic sites are usually found in pockets near

bound ligands, there are many fewer catalytic sites per protein

than ligand-binding residues. As a result simply searching for

residues in pockets identifies many non-catalytic residues. This is

consistent with earlier machine learning studies that found

conservation to be a dominant predictive feature [5,49,50], and

it suggests that new structural patterns should be sought to

improve the identification of catalytic sites.

Table 4. Drug binding site identification.

Method Grid Value PR-AUC Jaccard coefficient

ConCavityL 0.271 0.240

ConCavityP 0.263 0.222

ConCavityS 0.278 0.236

Ligsite+ 0.217 0.207

PocketFinder+ 0.195 0.191

Surfnet+ 0.170 0.183

Random 0.006 N/A

This table compares the average grid value precision-recall AUC and the
average Jaccard coefficient of prediction-ligand overlap for ConCavity and
methods based on structural analysis alone on a set of 98 protein-drug
complexes. Integrating sequence conservation and structure-based pocket
finding improves the identification of drug binding sites. Conservation is not
included in this evaluation, because it does not make pocket-level predictions.
doi:10.1371/journal.pcbi.1000585.t004

Figure 7. Examples of difficult structures. For each structure,
evolutionary sequence conservation has been mapped to the surface of
the protein backbone (all atoms in pane (C)) with warmer colors
indicating greater conservation. Bound ligands are shown in yellow, and
the pocket predictions of ConCavity are represented by green meshes.
(A) The ActR protein (PDB: 3B6A) contains both a ligand-binding
(bottom half) and a more conserved DNA-binding domain (top half). (B)
The ring-shaped pentameric B-subunit of a shiga-like toxin (PDB: 1CQF)
binds globotriaosylceramide (Gb3) via a relatively flat interface that
surrounds the center of the ring. (C) The carbohydrate binding sites of
the CBM29 protein (PDB: 1GWL) are too long and flat to be detected by
ConCavity in the presence of a concave pocket between the chains. As
illustrated here, ConCavity’s inaccurate predictions are often the result
of misleading evolutionary sequence conservation information (A) or
ligands that bind partially or entirely outside of well-defined concave
surface pockets (B, C). In (A) and (B), ConCavity misses the ligands, but
identifies functionally relevant binding sites for other types of
interactions (DNA and protein).
doi:10.1371/journal.pcbi.1000585.g007
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Several previous methods have combined sequence conserva-

tion and structural properties in machine learning frameworks to

predict catalytic sites [5,50,51]. Direct comparison with these

methods is difficult because most datasets and algorithms are not

readily available. Tong et al. [51] compared the precision and

recall of several machine learning methods on different datasets in

an attempt to develop a qualitative understanding of their relative

performance. While it is not prudent to draw conclusions based on

cross-dataset comparisons, we note for completeness that Con-

Cavity’s catalytic site predictions the diverse LigASite dataset

achieve higher precision (23.8%) at full recall than the maximum

precision (over all recall levels) reported for methods in their

comparisons.

Discussion

Evolutionary sequence conservation and protein 3D structures

have commonly been used to identify functionally important sites;

here, we integrate these two approaches in ConCavity, a new

algorithm for ligand binding site prediction. By evaluating a range

of conservation and structure-based prediction strategies on a

large, diverse dataset of ligand binding sites, we establish that

structural approaches generally outperform sequence conserva-

tion, and that by combining the two, ConCavity outperforms

conservation-alone and structure-alone on about 95% and 70% of

structures respectively. Overall, ConCavity’s first predicted residue

contacts a ligand in nearly 80% of the apo structures examined,

and it maintains high precision across all recall levels. These results

hold for the three variants of ConCavity we considered, each of

which uses a different underlying structure-based component. In

addition, ConCavity’s integrated approach provides significant

improvement over conservation and structure-based approaches

on the common task of identifying drug binding sites.

Combining sequence conservation-based methods with struc-

ture information is especially powerful in the case of multi-meric

proteins. Our analysis has shown that the performance of

structural approaches for identifying ligand binding sites dramat-

ically decreases as the number of chains in the structure increases;

conservation alone outperforms structure-based approaches on

proteins with five or more chains. It is difficult to determine from

structural attributes alone if a pocket formed at a chain interface

binds a ligand or not. However, ligand binding pockets usually

exhibit high evolutionary sequence conservation. ConCavity, which

takes advantage of this complementary information, performs very

well on multi-chain proteins; the presence of many non-ligand

binding pockets between chains has little effect on its performance.

While ConCavity outperforms previous approaches, we have

found two main causes of poor results: misleading evolutionary

sequence conservation information and ligands that bind partially

or entirely outside of well-defined concave surface pockets. Ligand

binding sites may lack strong conservation for a number of

reasons: the underlying sequence alignment may be of low quality,

there may be other more conserved functional regions in the

protein, and some sites are hypervariable for functional reasons

[67]. The alignment quality issue will become less relevant as

sequence data coverage and conservation estimation methods

improve. The second two cases may require the integration of

additional features to better distinguish different types of functional

sites. Similarly, finding biologically relevant ligands that bind

outside of concave surface pockets will likely require the

development of additional structural descriptors. Missing or

incomplete ligands also affect the apparent performance of the

methods, but such issues are unavoidable due to the nature of the

structural data.

In implementing and evaluating previous 3D grid-based ligand

binding site prediction approaches, we have found that the

methods used both to aggregate grid values into coherent pockets

as well as to map these pockets onto surface residues can have a

large effect on performance. In order to focus on the improvement

provided by considering evolutionary sequence conservation, the

results for previous structure-based methods presented above use

our new algorithms for these steps. We describe the details of our

approaches in the Methods section. On a high level, the new

methodologies we propose provide significant improvement by

predicting a flexible number of well-formed pockets for each

structure and by assigning each residue a likelihood of binding a

ligand based on its local environment rather than on the rank of

the entire pocket. We have used morphological properties of

ligands to guide pocket creation, but the most appropriate

algorithms for these steps depend strongly on the nature of the

prediction task. These steps have received considerably less

attention than computing grid values; our results suggest that

they should be given careful consideration in the future.

We have focused on the prediction of ligand binding sites, but

the direct synthesis of conservation and structure information is

likely to be beneficial for predicting other types of functionally

important sites. Our application of ConCavity to catalytic site

prediction illustrates the promise and challenges of such an

approach. Catalytic sites are usually found in surface pockets, but

considering structural evidence alone performs quite poorly---

worse than sequence conservation. Combining structure with

evolutionary conservation provides a modest gain in performance

over conservation alone. Protein-protein interface residues are

another appealing target for prediction; much can be learned

about a protein by characterizing its interactions with other

proteins. However, protein-protein interaction sites provide

additional challenges; they are usually large, flat, and often poorly

conserved [68]. ConCavity is not appropriate for this task. Other

types of functional sites also lack simple attributes that correlate

strongly with functional importance. Analysis of these sites’

geometries, physical properties, and functional roles will produce

more accurate predictors, and may also lead to new insights about

the general mechanisms by which proteins accomplish their

molecular functions.

In summary, this article significantly advances the state-of-the-

art in ligand binding site identification by improving the

philosophy, methodology, and evaluation of prediction methods.

It also increases our understanding of the relationship between

Table 5. Catalytic residue identification (LigASite apo).

Method PR-AUC

ConCavityL 0.315

ConCavityP 0.301

ConCavityS 0.288

Conservation 0.249

Ligsite+ 0.190

PocketFinder+ 0.149

Surfnet+ 0.142

Random 0.012

ConCavity identifies more catalytic sites than other methods. However, in
contrast to ligand binding residue prediction, Conservation outperforms the
structure-based approaches at detecting catalytic sites.
doi:10.1371/journal.pcbi.1000585.t005
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evolutionary sequence conservation, structural attributes of

proteins, and functional importance. By making our source code

and predictions available online, we hope to establish a platform

from which the prediction of functional sites and the integration of

sequence and structure data can be investigated further.

Methods

ConCavity
This section describes the components of the ConCavity

algorithm for predicting ligand binding residues from protein 3D

structures and evolutionary sequence conservation.

ConCavity proceeds in three conceptual steps: grid creation,

pocket extraction, and residue mapping (Figure 8). First, the

structural and evolutionary properties of a given protein are used

to create a regular 3D grid surrounding the protein in which the

score associated with each grid point represents an estimated

likelihood that it overlaps a bound ligand atom (Figure 8A).

Second, groups of contiguous, high-scoring grid points are

clustered to extract pockets that adhere to given shape and size

constraints (Figure 8B). Finally, every protein residue is scored

with an estimate of how likely it is to bind to a ligand based on its

proximity to extracted pockets (Figure 8C).

Grid-based strategies have been employed by several previous

systems for ligand binding site prediction (e.g., [14,16,23]).

However, our adaptations to the three steps significantly affect

the quality of predictions. First, we demonstrate how to integrate

evolutionary information directly into the grid creation step for

three different grid-based pocket prediction algorithms. Second,

we introduce a method that employs mathematical morphology

operators to extract well-shaped pockets from a grid. Third, we

provide a robust method for mapping grid-based ligand binding

predictions to protein residues based on Gaussian blurring. The

details of these three methods and an evaluation of their impacts

on ligand-binding predictions are described in the following

subsections.

Grid creation. The first step of our process is to construct a

3D regular grid covering the free-space surrounding a protein.

The goal is to produce grid values that correlate with the

likelihoods of finding a bound ligand at each grid point.

Several methods have been proposed to produce grids of this

type. For example, Ligsite [16] produces a grid with values between

0 and 7 by scanning for the protein surface along the three axes

and the four cubic diagonals. For each grid point outside of the

protein, the number of scans that hit the protein surface in both

directions---so-called protein-solvent-protein (PSP) events---is the

value given to that point. A large number of PSP events indicate

that the grid point is surrounded by protein in many directions and

thus likely to be in a pocket.

Surfnet [14] assigns values to the grid by constructing spheres

that fill the space between pairs of protein atoms without

overlapping any other atoms. These sets of spheres are constructed

for all pairs of protein surface atoms within 10 Å of each other.

Spheres with a radius smaller than 1.5 Å are ignored, and spheres

are allowed to have a maximum radius of 4 Å. This procedure

results in a set of overlapping spheres that fill cavities and clefts in

the protein. Extending the original algorithm slightly, we assign

the value for each grid point to be the number of spheres that

overlap it (rather than simply one for overlap and zero for no

overlap as in the original algorithm). Thus, higher values are

generally associated with the positions in the ‘‘center’’ of a pocket.

PocketFinder [23] assigns values to grid points by calculating the

van der Waals interaction potential of an atomic probe with the

protein. The Lennard-Jones function is used to estimate the

interaction potential between the protein and a carbon atom

placed at each grid point. The potential at a grid point p is:

V pð Þ~
X

a[protein
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r12
{
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where Ca

12
and Ca

6
are constants (taken from AutoDock [69]) that

shape the Lennard-Jones function according to the interaction

energy between the carbon probe atom and protein atom a, and r

is the distance between the grid point p and a (interactions over

distances greater than 10 Å are ignored).

Figure 8. ConCavity prediction pipeline. The large gray shape represents a protein 3D structure; the triangles represent surface residues; and the
gray gradient symbolizes the varying sequence conservation values in the protein. Darker shades of each color indicate higher values. (A) The initial
grid values come from the combination of evolutionary sequence conservation information and a structural predictor, in this example Ligsite. The
algorithm proceeds similarly for PocketFinder and Surfnet. (B) The grid generated in (A) is thresholded based on morphological criteria so that only
well-formed pockets have non-zero values. For simplicity, only grid values near the pockets are shown. (C) Finally, the grid representing the pocket
predictions is mapped to the surface of the protein. We perform a 3D Gaussian blur (s~4A

0

) of the pockets, and assign each residue the highest
overlapping grid value. Residues near regions of space with very high grid values receive the highest scores.
doi:10.1371/journal.pcbi.1000585.g008
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Other grid creation methods have been proposed as well, but

these three (Ligsite, Surfnet, and PocketFinder) provide a representative

set for our study.

We augment these algorithms by integrating evolutionary

information into the grid creation process. Our methodology is

based on the observation that these (and other) grid creation

algorithms operate by accumulating evidence (‘‘votes’’) for ligand

binding at grid points according to spatial relationships to nearby

protein atoms. For PocketFinder, each protein atom casts a ‘‘vote’’

for nearby grid points with magnitude equal to the (opposite of the)

van der Waals potential. In Ligsite, every pair of protein atoms

‘‘votes’’ for solvent-accessible grid points on line segments between

them. In our implementation of Surfnet, pairs of atoms ‘‘vote’’ for

all the grid points overlapping a sphere covering the solvent

accessible region between them.

Based on this observation, we weight the ‘‘votes’’ as the grid is

created by an estimate of sequence conservation of the residue(s)

associated with the atom(s) that generate the votes. We tested

several schemes for scaling votes. If c1 and c2 are estimated

conservation scores associated with the relevant atoms (e.g.,

derived from their residues’ conservation in multiple sequence

alignments), we scaled the structure-based component by the

product (c1c2), the arithmetic mean (
c1zc2

2
), the geometric mean

(
ffiffiffiffiffiffiffiffiffi

c1c2
p

), the product of exponentials (2c12c2 ), and the product of

exponentials of transformed conservation values (22c1{122c2{1).

Each of these schemes provides improvement for all methods, but

due to method specific differences, no single weighting scheme is

best for all methods. Specifically, for PocketFinder, which has only one

atom associated with each vote, we scale the vote (van der Waal’s

potential) of each atom linearly by c1. For Ligsite we scale the votes

by arithmetic mean of the conservation values and for Surfnet by the

product of the exponentials of the transformed conservation values.

In our study, conservation scores are calculated by the Jensen-

Shannon divergence (JSD) with sequence weighting and a gap

penalty [2]; however, any sequence conservation measure that

produces residue scores (which are then mapped to atoms within

the residues) could be incorporated.

Performance. The superior performance of our ConCavity grid

creation method at predicting ligand binding pockets and residues is

demonstrated in Figure 5 of the Results section. The only difference

between the ConCavity methods (ConCavityL, ConCavityS, ConCavityP)

and their counterparts based on structure alone (Ligsite+, Surfnet+,

PocketFinder+) is the use of sequence conservation in the grid creation

step. For each grid creation strategy, considering evolutionary

conservation yields significant improvement.

Pocket extraction. The second step of our process is to

cluster groups of contiguous, high-scoring grid points into pockets

that most likely contain bound ligands.

Several methods have been previously proposed to address this

problem. The simplest is to apply a fixed threshold to the grid, i.e.,

eliminate all grid points below some given value. Then, the

remaining grid points can be clustered into pockets (e.g.,

connected components), and small pockets can be discarded. This

method, which we call ‘‘Threshold’’, has been used in previous

versions of Ligsite [1,16]. A problem with this approach is that the

threshold is set to the same value for all proteins, which provides

no control over the total number and size of pockets predicted by

the algorithm. In the worst case, when every grid value is below

the threshold, then the algorithm will predict no pockets. On the

other hand, if the threshold is too low, then there will be many

large pockets. Different proteins have different types of pockets, so

no one threshold can extract appropriately sized and shaped

pockets for all of them.

A slightly more adaptive method is used in PocketFinder [23]. In

‘‘StdDev’’ the mean and standard deviation of values in the grid are

used to determine a different threshold for every protein.

Specifically, the grid is blurred with s~2:6A
0

, and then the

threshold is set to be 4.6 standard deviations above the mean of the

grid values. This approach is problematic because the threshold

depends on the parameters of the grid; any change to how the

protein is embedded in the grid (e.g., orienting the protein

differently, changing the distance between the protein and the grid

boundary, etc.) will affect the mean and standard deviation of the

grid values, which in turn will affect the threshold chosen to

extract pockets. For example, simply making the extent of the grid

10% greater will include a large number of near-zero values in the

grid, which will bring the threshold down and make the extracted

pockets larger. Also, no control is provided over the number and

size of pockets; it is possible that for some proteins no grid values

are 4.6 standard deviations above the mean, in which case no

pockets will be predicted.

It is difficult to control the number, sizes, and shapes of

extracted pockets with Threshold and StdDev. In both methods a

threshold is applied to every grid point independently and clusters

are formed only on the basis of geometric proximity between grid

points, so it is possible to extract a set of pockets that have

biologically implausible shapes. For example, there is no way to

guarantee that the algorithm won’t extract one very large pocket

that covers a significant fraction of the protein surface, or many

small pockets distributed across the protein surface, and/or

pockets that contain long, thin regions where the cross-sectional

diameter is too small to fit a bound ligand. Of course, it is possible

to trim/discard such pockets after they have been extracted

according to geometric criteria using post-processing algorithms

[1,23,56]. However, unless there is feedback between the method

used to select a grid threshold and the method used to cull pockets,

then there is no way to guarantee that a biologicaly plausible set of

pockets is output, i.e., it is possible that none of the pockets

extracted with the chosen grid threshold meet the culling criteria.

In ConCavity, we integrate extraction and culling of pockets into

a single framework. We perform a binary search for the grid

threshold that produces a culled set of pockets that have specified

properties (maximum number of pockets, total volume of all

pockets, minimum volume for any pocket, minimum cross-

sectional radius for any pocket, and maximum distance from

protein surface). Specifically, for each step of the binary search, we

select a grid threshold, extract a set of pockets (connected

components of grid points having values above the threshold),

and then apply a sequence of culling algorithms to trim/discard

pockets based their sizes and shapes. The algorithm iterates,

adjusting the threshold up or down, if the set of pockets resulting

from the culling operations does not meet the specified global

properties. The binary search terminates when it has found a set of

pockets meeting all of the specified properties or determines that

none is possible. We call this method ‘‘Search’’.

Specifically, the culling steps are implemented with a series of

grid-based filters, each of which runs in compute time that grows

linearly with the size of the grid. Given a current guess for the grid

threshold, the first filter simply zeroes all grid points whose value is

below the threshold value.

The second filter zeroes grid points whose distance from the van

der Waal’s surface of the protein exceeds a given threshold,

max_protein_offset. This filter is computed by first rasterizing a

sphere for all atoms of the protein into a grid, setting every grid

point within the van der Waal’s radius of any protein atom to one

and the others to zero. Then, the square of the distance from each

grid point to the closest point on the van der Waal’s surface is

Ligand Binding Site Prediction with ConCavity
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computed with three linear-time sweeps, and the resulting squared

distances are used to zero grid points of the original grid if the

squared distance is greater than max_protein_offset2.

The third filter ensures that no part of a pocket has cross-

sectional radius less than a given threshold, min_pocket_radius. This

filter is implemented with an ‘‘opening’’ operator from mathe-

matical morphology. Intuitively, the boundary of every pocket

(non-zero values of the grid) is ‘‘eroded’’ by min_pocket_radius and

then ‘‘dilated’’ by the same amount, causing regions with cross-

sectional radius less than the threshold to be removed, while the

others are unchanged. This operator is implemented with two

computations of the squared distances from pocket boundaries,

each of which takes linear time in the size of the grid.

The fourth filter constructs connected components of the grid

and then zeros out grid points within components whose volume is

less than a given threshold, min_pocket_volume. Connected compo-

nents are computed with a series of depth-first traversals of

neighboring non-zero grid points, which take linear time all

together, and pockets are sorted by volume using quicksort, which

takes O plogpð Þ time for p pockets.

After these filters are executed for each iteration, the total

volume of all remaining pockets is computed and compared to a

given target volume, total_pocket_volume. If the total volume is

greater (less) than the target, the grid threshold is increased

(decreased) to a value half-way between the current threshold and

the maximum (minimum) possible threshold---initially the largest

(smallest) value in the grid---and the minimum (maximum) is set to

the current threshold. The process is repeated with the new

threshold until the total volume of all pockets is within e of the

given total_pocket_volume. Note that we perform a 1 Å Gaussian blur

on the Ligsite grid before beginning this search to provide finer

control over the predicted pockets than is provided by the Ligsite

integer grid values.

We set the parameters for these filters empirically. In previous

studies, it has been observed that the vast majority of bound ligand

atoms reside within 5 Å of the protein’s van der Waal’s surface,

thus we set max_protein_offset to 5 Å. In order to target binding sites

for biologically relevant ligands, we set min_pocket_radius to 1 Å and

min_pocket_volume to 100 Å3. Based on the observation that the total

volume of all bound ligands is roughly proportional to the total

volume of the protein [17], we set total_pocket_volume to a given

fraction of the total protein volume---2% in our studies (Text S1).

Finally, we set the grid resolution to 1 Å and e to 1 Å3.

Performance. To assess the impact of different pocket extraction

strategies on the precison and accuracy of binding site detection,

we implemented several alternative methods and compared how

well the pockets they predict overlap with ligands in holo

structures from the LigASite dataset. Table 6 shows the results

of several pocket extraction algorithms (second column) on three

different grids types (first column). In addition to Thresh and StdDev,

Largest(N) refers to zeroing all grid entries not in the largest N

pockets (connected components).

The statistics presented in Table 6 reflect various attributes of

the pockets predicted by each extraction technique. The Jaccard

coefficient (Intersection/Union) ranges between zero and one and

takes into account the natural tradeoff between recall and

precision by rewarding predictions that overlap the known ligands

(large Intersection) and penalizing methods that predict very large

pockets (large Union). Thus, it is a suitable measure for comparing

the overall performance of the pocket extraction methods. For

example, though the pockets of PocketFinder+ with the StdDev

(meanzs) extraction method have very high recall (0.900), its

Jaccard coefficient is very low, because the predicted pockets have

a very large average volume (49x more than the ligands). For each

grid type, our Search pocket extraction method predicts pockets

with volumes close to the actual ligand volume and obtains the

best Jaccard coefficient. As a result, we use Search in ConCavity and

our implementations of previous grid based methods.

Residue mapping. The third step of our pipeline uses the

extracted set of pockets to generate ligand-binding predictions for

residues. Our goal is to score every residue based on its

relationship to the extracted pockets such that residues with

Table 6. Comparison of pocket extraction methods.

Grid Generation Pocket Extraction

Prediction

Vol. (Å3)

\\ w/Lig.

(Å3)

|| w/Lig.

(Å3)

Prediction/

Ligand \\/Prediction \\/Ligand
Jaccard

coeff.

Ligsite+ Thresh(6) 9385.9 767.3 10595.8 4.577 0.106 0.360 0.085

Ligsite+ Thresh(6), Largest(3) 5919.7 674.8 7222.1 2.281 0.200 0.322 0.129

Ligsite+ Search 1806.8 426.9 3357.1 1.250 0.332 0.338 0.197

Surfnet+ - 44242.4 1729.3 44490.3 29.003 0.045 0.896 0.044

Surfnet+ Search 1766.3 426.3 3317.2 1.218 0.300 0.287 0.166

Pocketfinder+ StdDev(meanzs) 69477.5 1742.1 69712.6 49.250 0.028 0.900 0.028

Pocketfinder+ StdDev(meanz2s) 18317.1 1218.4 19075.9 12.026 0.094 0.652 0.085

Pocketfinder+ StdDev(meanz2:5s) 8303.7 896.4 9384.4 5.117 0.170 0.489 0.130

Pocketfinder+ StdDev(meanz3s) 3703.0 591.3 5088.8 2.150 0.270 0.326 0.148

Pocketfinder+ Search 1807.0 436.0 3348.2 1.250 0.303 0.292 0.167

For three types of grids (first column), we ran different pocket extraction algorithms (second column) and compared how well the pockets overlap bound ligands in
holo PQS structures. The third column (‘‘Prediction Vol.’’) lists the average volume of all predicted pockets over each protein. For reference, the average volume of all
ligands observed in the PQS files (‘‘Ligand’’) is 1977.2 Å3. The next two columns list the average volumes of the Intersection (Ligand \ Prediction) and Union (Ligand |

Prediction) of the Prediction and Ligand grids. Finally, the rightmost four columns list the average over-prediction factor (Prediction/Ligand), precision (Intersection/
Prediction), recall (Intersection/Ligand), and Jaccard coefficient (Intersection/Union). For the last three columns, values range between zero and one, and higher values
represent better performance. Comparing the average volume of the pockets predicted by each method, we see that Search’s pockets are closest to the actual ligand
volumes. Moreover, Search’s high Jaccard coefficient for each grid type indicates that it provides the best tradeoff between recall and precision among the methods
tested.
doi:10.1371/journal.pcbi.1000585.t006
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higher scores are more likely to bind ligands. This goal is more

ambitious than that of previous residue mapping approaches

which have sought only to identify the residues associated with

predicted pockets.

Perhaps the simplest and most common previous method is to

mark all residues within some distance threshold, d, of any pocket

as binding (e.g., score = 1) and the rest as not binding (e.g., score

= 0) [25]. We call this method ‘‘Dist-01.’’ Both the pocket surface

and geometric center have been taken as the reference point

previously; we use the pocket surface in Dist-01. This approach

ignores all local information about the predicted pockets. Two

related methods have incorporated attributes of predicted pockets

into Dist-01. The first assigns residues near pockets scores that

reflect the size of the closest pocket (‘‘Dist-Size’’) [1]; residues near

the largest pocket receive the highest score and so on. A similar

approach uses the average conservation of all residues near the

pocket (‘‘Dist-Cons’’) [1] to rank the pockets and assign rank-based

scores to residues.

In ConCavity, our goal is to assign scores to residues based on

their likelihood of binding a ligand. We use the original grid values

(which reflect the predicted likelihood of a ligand at every point in

space) to weight the scores assigned to nearby residues. Starting

with the grid values within the set of extracted pockets, we blur this

grid with a Gaussian filter (s~4A
0

), and then assign to every

residue the maximum grid value evaluated at the location of any of

its atoms. This method, which we call ‘‘Blur,’’ assigns residues in

the same pocket different scores, since some residues are in the

middle of a binding site, next to the part of a pocket with highest

grid values, while others are at the fringe of a site, near marginal

grid values. The score assigned by Blur reflects these differences in

the likelihood that an individual residue is ligand binding.

In contrast to Blur, none of the previous residue extraction

methods give different scores to residues in the same pocket. For

comparison, we developed a version of the Dist strategy that (like

Blur) considers the original grid values. Dist-Raw simply assigns to

each residue within d of a pocket, the value of the nearest pocket

grid point.

Performance. We analyze the performance of these residue

mapping approaches by comparing their PR-AUC on the task

of predicting ligand binding residues as defined in the LigASite

apo dataset. In each case we start with the same grid of extracted

pockets and apply a different residue mapping algorithm. We

consider all residue mapping strategies on three different pocket

grids: ConCavityL, ConCavityS, and ConCavityP. For all Dist approach-

es, we set d to 5 Å, and for Dist-Cons we consider the conservation

of all residues within 8 Å of the pocket (as in [1]).

The results presented in Table 7 demonstrate that Blur provides

better performance for each grid type than all versions of previous

residue mapping approaches. Thus, we use Blur in ConCavity and

our implementations of previous ligand binding site prediction

algorithms. The two methods that assign residues scores based on

the values of nearby grid points (Blur and Dist-Raw) provide better

performance in each case than those that assign all residues in a

pocket the same score based on a global property of the pocket

(Dist-Size and Dist-Cons). This suggests that the local environment

around residues should be considered when predicting binding

sites.

Previous methods
We have compared ConCavity to several methods for ligand

binding site prediction. Many of these methods lack publicly

accessible implementations, and those that are available output

different representations of predicted pockets and residues. In this

section, we describe of how we generate predictions for all

previous methods considered in our evaluations. In some cases we

have completely reimplemented strategies and in others we have

post-processed the output of existing implementations. Table 8

provides a summary of these details. As mentioned earlier, a ‘‘+’’

appended to the method name indicates that it is (at least in part)

our implementation, e.g., Ligsite+.

Ligsite+, Surfnet+, and Pocketfinder+. We developed new

implementations of the Ligsite, Surfnet, and Pocketfinder methods for

grid generation. This was necessary to allow us to fully integrate

sequence conservation with these methods. However, it also enabled

us to investigate the the effect of different pocket extraction and

residue mapping algorithms on overall performance.

By default, we use Search to extract pockets and Blur to map to

residues for Ligsite+, Surfnet+, and Pocketfinder+, because as was shown

above, these approaches yield the best performance. Our

implementations output representations of the predicted ligand

binding pockets and ranked lists of contacting residues, so they can

be included in both pocket and residue-based evaluations.

LigsiteCS, Q-SiteFinder, and CASTp. For our experiments,

we generate binding site predictions using three publicly available

web servers: LigsiteCS [1], QSiteFinder [25], and CASTp [19]. Each

of these servers produces a list of predicted pockets represented by

sets of residues. In each case, the residues do not have scores

associated with them. Thus to include these methods in the ligand

binding residue prediction evaluation, we must assign scores to the

residues. We tried two approaches. The first assigns all predicted

residues a score of one and all others a score of zero. The second

ranks the residues by the highest ranking pocket to which they are

assigned, i.e., all residues from the first predicted pocket are given

a higher score than those from the second and so on. These

approaches are similar to the residue mapping algorithms

discussed in the ConCavity section above; however, those exact

algorithms could not be applied here because the web servers do

not provide representations of the full extent of predicted pockets.

We found that residue ranking produces better results (data not

shown), so we use this approach. We consider the default number

of pockets predicted by each method: LigsiteCS returns three

pockets; Q-SiteFinder returns ten pockets; and CASTp returns a

variable number. The Q-SiteFinder web server would not accept

proteins with more than 10,000 atoms.

LigsiteCS, Q-SiteFinder, and CASTp do not provide a representa-

tion of each predicted pocket’s full extent, so they could not be

included in the ligand location prediction evaluation.

LigsiteCSC+. The LigsiteCSC method is an extension of

LigsiteCS that uses the evolutionary sequence conservation of

residues surrounding predicted pockets to reorder the pocket

predictions. This feature on the LigsiteCS prediction server did not

Table 7. Comparison of residue mapping strategies.

Pocket Grid Source

Mapping Method ConCavityL ConCavityP ConCavityS

Blur 0.608 0.602 0.587

Dist-Raw 0.477 0.553 0.509

Dist-Size 0.442 0.486 0.474

Dist-Cons 0.426 0.473 0.437

Dist-01 0.404 0.455 0.414

We applied five residue mapping algorithms to three grids of predicted pockets
(ConCavityL, ConCavityP, ConCavityS ). This table lists the PR-AUC for identifying
ligand binding residues in the LigASite apo dataset for each combination. Our
Blur algorithm achieves the best performance for each grid type.
doi:10.1371/journal.pcbi.1000585.t007
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work for many PQS structures in our dataset, so we implemented

our own version on top of the LigsiteCS results. For each pocket, we

calculate the average conservation of all residues within 8 Å of the

pocket center. The JSD method on the HSSP alignments is used to

produce the conservation scores. The top three pockets in terms of

size are then ranked in terms of average conservation. This

implementation follows the published description of LigsiteCSC,

except for the use of JSD for conservation instead of ConSurf.

Jensen-ShannonDivergence. The Jensen-Shannon divergence

(JSD) is used to represent the performance of evolutionary sequence

conservation; it was recently shown to provide state-of-the-art

performance on a range of functional site prediction tasks [2]. It

compares the amino acid distribution observed in columns of a

multiple sequence alignment of homologs to a background

distribution. JSD scores range between zero and one. The code

provided in Capra and Singh [2] with the default sequence weighting

and gap penalty was used to score all alignments.

Data
The prediction methods described in this paper take protein 3D

structures and/or multiple sequence alignments as input. Protein

structures were downloaded from the Protein Quaternary

Structure (PQS) server [58]. Predicted quaternary structures were

used (rather than the tertiary structures provided in PDB files) so as

to consider pockets and protein-ligand contacts for proteins in

their biologically active states. All alignments come from the

Homology-derived Secondary Structure of Proteins (HSSP)

database [70]. All images of 3D structures were rendered with

PyMol [71].

Ligand binding sites as defined by the non-redundant version of

the LigASite dataset (v7.0) [24] were used to evaluate method

predictions. This set consists of 337 proteins with apo (unbound)

structures, each having less than 25% sequence identity with any

other protein in the set. Five of the 337 structures were left out of

the evaluation: 1P5T, 1YJG, and 3DL3 lacked holo ligand

information in the database, and 2PCY and 3EZM, because their

corresponding holo structures are not in PQS or HSSP. Each apo

structure has at least one associated holo (bound) structure in

which biologically relevant ligands are identified in order to define

ligand binding residues and map them to the apo structure. If

multiple holo structures are available for the protein, the sets of

contacting residues are combined to define the binding residues for

the apo structure. We select the structures for our LigASite holo

evaluation set by taking the holo structure with the most ligand

contacting residues for each apo structure. The average number of

holo structures for each apo structure is 2.58, and the maximum

for any single structure is 32. The average chain length is 276

residues with a minimum of 59 and a maximum of 1023. The

average number of positives---sites contacting a biologically

relevant ligand---per chain is 25 residues (about 11% of the

chain). The apo dataset includes many proteins with multiple

chains; the average number of chains per protein is 2.22. The

chain distribution is: 1 chain: 143, 2 chains: 112, 3 chains: 18, 4

chains: 35, 5 or more chains: 24.

The drug dataset comes from a set of 100 non-redundant 3D

structures selected by [62]. This set contains a diverse set of high-

quality structures (resolution ,3 Å) with drug or drug-like

molecules (molecular weight between 200 and 600, and 1212

rotatable bonds) bound. Structure 1LY7 has been removed from

the PDB, and 1R09 could not be parsed. We consider the 98

remaining structures.

The catalytic site annotations were taken from version 2.2.9 of

the Catalytic Site Atlas [66]. There are 153 proteins in the

LigASite apo dataset with entries in the Catalytic Site Atlas. These

proteins have an average of 3.2 catalytic sites per chain (just over

1% of all residues in the chain).

Evaluation
Predictions of ligand binding pockets are represented by non-

zero values in a regular 3D grid around the protein. These

represent regions in space thought to contain ligands. These

predictions are evaluated in two ways: on the pocket level by

computing their overlap with known ligands, and on the grid level

by analyzing how well the grid scores rank grid points that overlap

ligand atoms. We use a grid with rasterized van der Waals spheres

for ligand atoms from the PQS structure as the ‘‘positive’’ set of

Table 8. Implementation Details of Evaluated Methods.

Prediction Algorithm Steps

Name Grid Creation Pocket Extraction Residue Mapping Post-processing

ConCavityL Ligsite+Cons Search Blur -

ConCavityP PocketFinder+Cons Search Blur -

ConCavityS Surfnet+Cons Search Blur -

Ligsite+ Ligsite Search Blur -

PocketFinder+ PocketFinder Search Blur -

Surfnet+ Surfnet Search Blur -

LigsiteCS http://gopubmed2.biotec.tu-dresden.de/pocket/ Residues Ranked by Pocket Rank

Q-SiteFinder http://www.modelling.leeds.ac.uk/qsitefinder/

CASTp http://sts-fw.bioengr.uic.edu/castp/

LigsiteCSC+ http://gopubmed2.biotec.tu-dresden.de/pocket/ Residues Ranked by Pocket Conservation

This table summarizes the details of each step of the ligand binding site prediction process for the methods we evaluate. The new ConCavitymethods are based entirely
on our code. We also developed new implementations (Ligsite+, PocketFinder+, and Surfnet+) of three previous methods. Predictions for the other previous methods
were obtained from the listed publicly accessible web servers. These servers output sets of residues associated with predicted binding pockets. For inclusion in the
residue prediction evaluation, the output of these servers was post-processed as specified. This step is not necessary for our methods, because Blur outputs ranked
residue predictions. A ‘‘+’’ appended to the method name indicates that it is based (at least in part) on our code. Implementation details of each algorithm are given in
the text, and code for our implementations is available online.
doi:10.1371/journal.pcbi.1000585.t008
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grid points. From this, we calculate the intersection and union of

the actual ligand atoms and the predictions. We compare methods

using the over-prediction factor (Prediction Volume/Ligand

Volume), precision (Intersection Volume/Prediction Volume),

recall (Intersection Volume/Ligand Volume), and Jaccard coeffi-

cient (Intersection Volume/Union Volume).

We also create precision-recall (PR) curves, which compare

precision (TP/(TP + FP)) on the y-axis with recall (TP/(TP + FN))

on the x-axis, to evaluate the ability of each method to predict

whether a ligand atom is present at a grid point. We consider grid

points that overlap a ligand atom as positives. To construct the PR

curve, we calculate the precision and recall at each cutoff of the

grid values in the pocket prediction grid. To summarize the

performance of each method, we construct a composite PR curve

[72] by averaging the precision at each recall level for each

structure in the dataset. As a reference point, we include the

performance of a random classifier averaged over all the structures

as well. The expected performance of a random method is the

number of positives over the number of all grid points. The

method and code of Davis and Goadrich [73] is used to calculate

the area under the PR curve (PR-AUC). The significance of the

difference between methods is assessed using the Wilcoxon signed-

rank test over paired performance statistics for all structures in the

dataset. The significance of the difference in performance of a

single method on different datasets is calculated with the Wilcoxon

rank-sum test.

For the residue-based evaluation, we consider how well each

method’s residue scores identify ligand binding residues. Positives

are those residues in contact with a ligand as defined by LigASite

database. PR curves were made by calculating, for each chain, the

precision and recall at each position on the ranked list of residue

scores. Composite PR curves were computed as described for the

grid point evaluation, but curves were first averaged over the

chains in a structure and then over structures. PR curves were

constructed similarly for the catalytic site analysis, but positives

were defined as those residues listed in the Catalytic Site Atlas.

Supporting Information

Text S1 Supplementary text, results, and analysis.

Found at: doi:10.1371/journal.pcbi.1000585.s001 (0.39 MB PDF)
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