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ABSTRACT
Motivation: Many protein–protein interactions are mediated
by peptide recognition modules (PRMs), compact domains
that bind to short peptides, and play a critical role in a wide
array of biological processes. Recent experimental protein
interaction data provide us with an opportunity to examine
whether we may explain, or even predict their interactions
by computational sequence analysis. Such a question was
recently posed by the use of random peptide screens to
characterize the ligands of one such PRM, the SH3 domain.
Results: We describe a general computational procedure for
identifying the ligand peptides of PRMs by combining protein
sequence information and observed physical interactions into
a simple probabilistic model and from it derive an interaction-
mediated de novo motif-finding framework. Using a recent all-
versus-all yeast two-hybrid SH3 domain interaction network,
we demonstrate that our technique can be used to derive inde-
pendent predictions of interactions mediated by SH3 domains.
We show that only when sequence information is combined
with such all versus all protein interaction datasets, are we
capable of identifying motifs with sufficient sensitivity and spe-
cificity for predicting interactions. The algorithm is general so
that it may be applied to other PRM domains (e.g. SH2, WW,
PDZ).
Availability: The Netmotsa software and source code, as
part of a general Gibbs motif sampling library, are available
at http://sf.net/projects/netmotsa
Contact: dreiss@systemsbiology.org

1 INTRODUCTION
Peptide recognition modules (PRMs) are typically found in
the context of larger multidomain signaling proteins or com-
plexes. Their specific yet frequent binding events often direct
the assembly and targeting of protein complexes involved in a
wide range of key cellular processes (Zarrinpar et al., 2003).
They have therefore been implicated in a large number of
human diseases, from cancer and Alzheimer’s to Huntington’s
disease (Sudol and Hunter, 2000). The SH3 domain is among
the most numerous, and most actively studied and widely-
understood PRMs to date (Mayer, 2001). Many investigations,
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using high-resolution structure determination, phage display,
and combinatorial chemistry, have revealed the preferred lig-
ands of various specific SH3 domains (Brannetti et al., 2000;
Kay et al., 2000, and references therein).

It has been found that the peptide ligands of many PRM
domains, including SH3, consist of a proline-rich core. SH3
ligands in particular contain a characteristic PxxP consensus
(x signifies an arbitrary amino acid). Upon further scrutiny, it
is observed that the ligands may be classified into two primary
consensi, depending upon the orientation of the peptide’s
binding to the surface of the domain: class-I (+x�Px�P)
and class-II (�Px�Px+), where � is a hydrophobic residue,
often leucine or isoleucine; + denotes a basic residue, most
often arginine or asparagine (Mayer, 2001). Still more detailed
studies reveal that the specific affinity for most individual SH3
modules may be ascribed to deviations in their individual lig-
and peptides from the standard core consensus, or to variations
in additional important flanking residues. It has also been
found that a few others do not conform to the consensus at all,
probably relying upon higher-order structure, or other factors
such as cell localization or mediation by other protein inter-
actions or contacts to modulate their affinity (Mayer, 2001).

Tong et al. (2002) devised a strategy for examining inter-
actions with SH3 domains on a large scale by combining
genome-wide two-hybrid physical interaction tests with the
computational prediction of interactions using motifs derived
from phage display peptide screens. These two independently
derived interaction networks could be compared to each other
to derive an ‘overlap network’, containing only the most sig-
nificant interactions. Moreover, by identifying the consensus
target motifs for each SH3 module, the technique provided a
means of identifying the most likely target regions (binding
sites) on each SH3 interaction partner.

The work of Tong et al. (2002) lends itself naturally to the
question of whether the SH3 ligand peptides may also be found
using one of the de novo motif finding algorithms that have
been developed over the past few years, most often for identi-
fying putative transcription factor binding sites in regulatory
regions of co-expressed genes (e.g. Bailey and Elkan, 1994;
Lawrence et al., 1993). This would provide the clear advant-
age of allowing us to either specifically target, or perhaps
even bypass altogether, some of the difficult and expensive
experimental techniques.
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The difficulty that arises in any such attempt is that one
will not, in general, have more than a few interactions per
domain. Restricting the analysis only to the very promiscuous
domains would ignore a large fraction of the data. The prob-
lem is exacerbated because, as is known in the case of SH3
and several other domains, the consensus motif patterns are
rather poorly conserved and would require many examples in
order to be detected with any significance. Additionally, the
two-hybrid network is known to contain a large number of
false positives (Uetz and Hughes, 2000) that will add noise to
the training data. The problem is complicated further because
many other PRMs (e.g. WW, SH2, WH1) compete with SH3
to bind to proline-rich peptides; proline-rich motifs are there-
fore the most common sequence motifs in many genomes
(Zarrinpar et al., 2003). This is a classic example of trying to
find relevant motifs in the ‘twilight zone’ where the targets are
likely to be too subtle, disparate or poorly represented in small
numbers to be identified using standard strategies. We argue
below and demonstrate later that two such potential strategies,
based on current motif-finding technologies, are poorly suited
to handle this problem.

Strategy (A) would involve a search for a single motif in all
identified SH3 binding partners in the two-hybrid interaction
network. Such a method quickly converges to a short (∼11
residue) polyproline pattern with small hints of higher order
structure. Clearly, this result lacks the specificity to identify
anything but a broad consensus pattern which might represent
the ligand consensus. If we were to extend the search to more
than one motif across the dataset, we would find it difficult
to resolve even the two primary consensus classes for SH3,
because they are so similar; individual instances of the motifs
deviate more from the consensus models than the two class
consensi differ from each other.

An alternate strategy (B) would be to search for a ligand
motif pattern for each SH3 domain, in the sequences of the
proteins that bind only to it. This will be even more difficult
in general because the signal in the small number of binding
partners of each domain (∼9 on average, with as few as 1),
can be expected to be obscured by a typically large number
of false positives in the interaction data (Uetz and Hughes,
2000).

The clear path is to choose a middle ground between
strategies (A) and (B). Whereas each SH3 module might not
bind to a large enough number of proteins to enable its con-
sensus motif to be detected, the network of overlapping sets of
interaction partners suggests that there should be a complex
pattern of differing levels of similarity between motif models
of the different SH3 ligands. This pattern can serve as an addi-
tional constraint on the motif detection. In other words, we
can choose a compromise strategy between the two methods
described above, thereby enabling us to do better than either
of the methods alone. We do this by using the network inform-
ation as a prior on the structure of individual motifs, which
we search for using a modified version of the Gibbs sampling

algorithm described by Lawrence et al. (1993) and Liu et al.
(1995).

2 THE TRAINING DATA
We use the Tong et al. (2002) SH3 yeast two-hybrid interac-
tion network for our training set, although the techniques we
develop are designed from the offset to be easily generalizable
to networks modulated by any type or number of PRMs and
identified by any experimental technique. This network con-
tains 285 interactions between 28 SH3 proteins and 143 SH3
binding partners. Just as important, it is based on all versus all
screen in which each SH3 protein was tested against all other
proteins in yeast. Each SH3 module interacts with between 1
and 20 partners (average ∼ 9) with a roughly flat degree distri-
bution, and each interactor binds to an average of ∼2 different
SH3 proteins (with a steeply declining power-law degree
distribution typical of other observed biological networks).

3 METHODS
3.1 The model
We approach this problem by constructing a probabilistic
model describing the likelihood of generating the amino acid
sequences of the binding partners of each PRM domain in
an interaction network, and then using a Gibbs sampling
algorithm to solve for the parameters of the model. We begin
with some definitions. Formally, we model the network as
a sparse matrix of edges, between a set of PRM domains,
D = (d1, d2, . . .), and a set of proteins with amino acid
sequence S = (s1, s2, . . .). sj is a vector of residues of length
Lj where the k-th residue in sj is sj ,k . The edges define the
non-zero entries in the matrix, E = (εi,j ); i = 1, . . . , |D|;
j = 1, . . . , |S|, where each edge εi,j corresponds to a real
probability quantifying our belief in the interaction: εi,j =
P(interactioni,j = true). Because here we only consider an
interaction network derived from a single set of experiments,
we use εi,j = 1 if there is an observed interaction between di ,
and dj ; εi,j = 0 otherwise.

Defining for any vector �v, |�v| ≡ ∑
i vi , each domain di is

connected via |Ei | edges to |Ei | target protein sequences (Ei =
|εi,1, . . . , εi,|Ei ||T ), and likewise each interactor sequence sj
is connected by |E·j | edges to |E·j | SH3 domains (E·j =
|ε1,j , . . . , ε|E·j |,j |). Where there is an interaction εi,j , a binding
site A = (ai,j ) marks the start of a peptide of length w in sj
(residues sj ,ai,j +1, . . . , sj ,ai,j +w) that binds to domain di . Two
sites ai,j and ak,j in sj that interact with domains di and dk are
considered independent. Therefore, sj may have as many as
|E·j | distinct binding sites, or as few as one. We may, however,
add priors into our model if we believe that the two sites should
have a higher probability (than random) of being the same.

The consensus binding pattern, or motif, for each domain
di is modeled as a position-specific scoring matrix (PSSM).
The PSSM �i ∈ � is comprised of a w-length vector of inde-
pendent multinomial distributions, θi,j , giving the probability
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of observing each of the J = 20 residues at position j in the
motif. �i is therefore a w × J matrix where

∑
k θi,j ,k = 1

for all j .
The residues in sj that do not participate in any inter-

actions (background residues) are drawn from a common
multinomial distribution, θ0. We generated θ0, for this data-
set, from the entire translated set of open reading frames
(ORFs) in the Saccharomyces cerevisiae genome (NCBI,
2002, ftp://ftp.ncbi.nih.gov/refseq). Alternatively, if the data-
set were larger and it was expected that the individual motifs
were distinct, θ0 could have been generated from only the
SH3 ligand sequences, or even separately for each domain.
A higher order Markov process might also be considered to
generate the background distribution.

Residues in sj where there is a binding event with domain
di at site ai,j , i.e. residues sj ,ai,j +1, . . . , sj ,ai,j +w, are modeled
by PSSM �i :

P(sj ,ai,j +1, . . . , sj ,ai,j +w|�i) =
w∏

k=1

θi,k,sj ,k+ai,j
. (1)

The likelihood of sequence sj with binding events E·j to
domains D·j (with PSSMs �·j ) at the corresponding binding
sites A·j may then be written as:

P(sj , E·j , A·j |�·j , θ0)

∝
Lj −w∏
l=1

θ0,sj ,l

|E·j |∏
i=1

(
w∏

k=1

θi,k,sj ,k+ai,j

θ0,sj ,k+ai,j

)εi,j

. (2)

We do not exclude the possibility of overlapping binding sites
for different domains (in fact, they may be common), and
for the case of M such overlapping binding sites, we utilize a
mixture of PSSMs, replacing the single motif model θi,k,sj ,k+ai,j

with a mixture of the overlapping motif models, offset by their
corresponding binding locations:

∑M
m=1 qmθm,k,sj ,k+am,j

. The
mixture weights qm, with

∑
m qm = 1, are determined by the

structure of the network, as described in Section 3.2.
The likelihood of the complete data, given the parameters, is

P(S, A, E|�, θ0) =
|S|∏

j=1

P(sj , E·j , A·j |�·j , θ0). (3)

The main distinctions between our model [Equation (3)] and
that for the common site sampler (Lawrence et al., 1993),
which assumes one motif instance per sequence [e.g.
Equation (1) in Liu et al. (1995)] are that here we are counting
over interactions (through their likelihood) rather than over
sequences, and utilizing mixtures of motif models for cases
of multiple overlapping motifs. Other than these details, the
resulting conditional distributions which we use during the
Gibbs sampling are identical [see Liu et al. (1995) for their
derivation].

3.2 The motif prior
The Gibbs sampling algorithm enables us to sample over indi-
vidual conditional probabilities, updating prior expectations
to posterior distributions and thereby sampling the joint like-
lihood. These conditional probability distributions are derived
by Liu et al. (1995):

P(ai,j |A ˆi,j , S, E) ∝
W∏

k=1

θ̄i,k,sj ,k+ai,j

θ̄0,sj ,k+ai,j

, (4)

where the θ̄ are the posterior means of θ , i.e. θ̄ ∝ ∫
θP (θ)dθ .

P(ai,j |A ˆi,j , S, E) are the predictive update distributions and
A ˆi,j denotes the set of all sites in all sequences other than ai,j

(Liu et al., 1995).
We define a w × J counting matrix Ci,j for a chosen loca-

tion ai,j in sequence sj , as Ci,j ,k,l = δ(sj ,ai,j +k = l), and
an alignment matrix over all sites that bind to di as Ci =∑

j εi,jCi,j , then we may use a mixture of Dirichlet distri-
butions

[∑
k qkD(�i |Ci , �αk)

]
as a conjugate prior on the �i .

Then, we find that �̄i ∝ ∑
k q ′

kD(�i |Ci + �αk), where the
�αk are ‘pseudocounts’, which may be thought of as additional
observations, added to the observed counts (Durbin et al.,
1998). Now, in addition to the Dirichlet mixture components
of Sjolander et al. (1996) that capture chemical similarities
between the residues, we can include further prior information
by adding additional pseudocounts to the observed alignment
counts.

Previous work on SH3 (Section 1) and other PRMs sug-
gests that the binding peptides for most SH3 domains are
similar. We capture this prior information by adding a global
pseudocount component, Cg = ∑

i,j εi,jCi,j .
We may specify a further prior that captures the local pattern

of binding that we see in the observed interaction network E.
By adding the prior assumption that binding sites on ‘promis-
cuous’ proteins are likely to bind to many different domains
[which is hinted at by the enzyme-linked immunosorbent
assay (ELISA) experiments on Las17 by Tong et al. (2002)],
we would expect that models �i for domains (Di ∈ D·j ) that
bind to protein sj should be similar. This means that the �i of
those domains with a high degree of overlap in their bind-
ing partner sets would be more similar than those of two
domains with distinct sets of partners. We incorporate this
prior information into P(�i) as an appropriately weighted
set of pseudocounts that describes all alignment counts in C·j :
C·j = ∑

i εi,jCi,j .

3.3 The discriminative prior
This model does not take full advantage of the fact that our
rather unique training data, having been generated from an
all-versus-all two-hybrid screen, contains explicit informa-
tion on a large number of interactions that do not occur.
This negative interaction information tells us that a putative
binding site ai,j in sequence sj , that binds to SH3 domain

i276

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/suppl_1/i274/217388 by guest on 16 August 2022

ftp://ftp.ncbi.nih.gov/refseq


Networked motif sampler

di , must not only be (1) similar to the motifs �·j , but it
should also be (2) distinct from all �·ĵ , where D·ĵ are sj ’s
non-binding domains. Point (1) above is already included
in the model as described in Section 3.2. Point (2) may
be incorporated into the model through judicious use of a
non-uniform site-based prior P(ai,j ). This type of prior dis-
tribution may, in general, be incorporated into our model
[Equation (2)], in the exponent, with Equation (4) then
becoming

P(ai,j |A ˆi,j , S, E) ∝ P ′(ai,j )

W∏
k=1

θ̄i,k,sj ,k+ai,j

θ̄0,sj ,k+ai,j

, (5)

where P ′(ai,j ) is the posterior mean distribution of P(ai,j ).
Typical Gibbs samplers utilize a uniform prior, and thus
P ′(ai,j ) = 1/(Li − w). We instead use a non-uniform prior
Pd(ai,j ), described below.

Such a prior should give higher probability to these sites that
are distinct from the non-binding motifs �·ĵ . This is a par-
ticularly difficult requirement, especially in the case of SH3
where all motifs (the �·ĵ as well as the �·j ) are known to
be similar in most cases. The ideal preference may be stated
like this: if two sites equally match the �·j , then the one
that is most dissimilar to the �·ĵ should preferentially be
chosen.

We implement this simple expectation as follows: when
a new site ai,j is to be sampled from P(ai,j |A ˆi,j , S, E)

[Equation (4)], we compute for that site pk = P(ai,j |�k) via
Equation (1) for each �k ∈ �·j , and also for each �k′ ∈ �·ĵ .
A comparison of these two sets of scores (pk and pk′ ) against
each other in which most of the pk are greater than the pk′

should produce a favorable probability Pd(ai,j ). The signi-
ficance of a Student’s t-test or Wilcoxon rank test may be
used to do this comparison (Siegel, 2003). We find that the
rank test works best in our case where the number of ele-
ments in pk is often small. In either case, the significance of
the difference in distributions Pd(ai,j ) equals 0 for no dis-
tinction (when p̄k ≤ p̄k′ ) or 1 when p̄k is significantly greater
than p̄k′ .

The strength of our discriminative prior (i.e. the amount
by which this discrimination influences the choices of bind-
ing sites) may be adjusted by adding a pseudocount qd to
the posterior distribution in Equation (5), i.e. P ′

d(ai,j ) =
qd + Pd(ai,j ), and then renormalizing. A choice of 0 for
qd means that the discrimination (i.e. the result of the rank
or t-test) will strongly influence our choice of a given site.
Otherwise, a choice of, e.g. 10 for qd means that this prior
should account for ∼10% of the overall decision to choose
the site.

3.4 The algorithm
The Gibbs sampling approach allows us to sample the joint
distribution of our interaction model [Equation (3)] by iter-
ating over each interaction (all εi,j 	= 0) to choose the most

probable value for ai,j by sampling from its conditional prob-
ability distribution when all remaining binding sites are left
fixed [Equation (5)]. We start by choosing an initial (random)
site in sequence sj for each of the binding events (edges in
the two-hybrid network; εi,j 	= 0), and proceed to iterate over
the edges, choosing a new binding site ai,j in sj by sampling
from Equation (5), after removing the previous ai,j from Ci,j .
The PSSM, θ̄i,j , used to compute this distribution is calcu-
lated, temporarily for each edge, from the alignment counts C,
using various pseudocounts derived in Section 3.2. In particu-
lar, θ̄i,j is computed from a dirichlet mixture of the individual
pseudocount components described above (Ci,j ), added and
appropriately weighted:

Ci,j =
∑

k

εk,j Ck,j + p0

∑
k

∑
l

εk,lCk, l

+ p1

∑
k

εi,kCi,k , (6)

Once a new ai,j is chosen, the corresponding counting mat-
rix Ci,j is updated and the procedure repeated on a new
interaction.

The influence of the network-based components of the
model, Cg and C·j , on the overall procedure are adjusted
simply by scaling their mixture coefficients, which we call
qg and q1, respectively. These tunable parameters represent
the user’s degree of belief in the expectations, respectively,
that all motif models should be similar on a global scale
(global similarity of binding sites), and that the motif mod-
els for all SH3 domains that bind to a particular sequence
should be similar (local network-informed similarity of bind-
ing sites). They may be seen as parameters which influence
the degree of over- or under-fitting of the model to the data.
In practice on the SH3 network, with a sufficiently high
choice for p1 (e.g. 10%), pg is not required, and we choose
pg = 0. Once a newai,j is chosen, the corresponding counting
matrix Ci,j is updated and the procedure repeated on a new
interaction.

Following Lawrence et al. (1993), we compute the max-
imum a posteriori probability (MAP) estimate of the model
given each sampled set of variables (including the priors), and
use the highest scoring set that is obtained during a repeated
number of iterations of the sampling procedure. A simplified
summary of the algorithm is described in Figure 1.

4 RESULTS
4.1 Interaction prediction
Following Tong et al. (2002), we may estimate how well our
computationally identified SH3 ligand motifs can be used
to predict, or confirm, physical interactions. We may write
the likelihood of an arbitrary sequence sj conditioned on the
fact that it binds to SH3 domain Di with motif model �i by
integrating Equation (2) over all potential binding sites and
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Fig. 1. The network-based Gibbs sampling procedure.

applying Bayes’ rule:

P(εi,j = 1|sj , θ0, �i)

= logit

[
log

(
P(εi,j = 1)

P (εi,j = 0)

Lj∏
k=1

θ0,sj ,k

×
Lj−W∑
l=1

P(ai,j )

W∏
m=1

θi,m,sj ,l+m

θ0,sj ,l+m

)]
, (7)

where logit(x) ≡ (1 + e−x)−1. P(εi,j = 1)/P (εi,j = 0)

quantifies our prior expectation that there is indeed an edge
between sj and di . We use the observed ratio of edges
to non-edges in the SH3 two-hybrid interaction network for
this prior.

We can apply Equation (7) for an arbitrary protein sequence
sj ′ , using our derived SH3 ligand models �i to compute
εi,j ′ = P(interactioni,j ′ = true) for that sequence. We can
then compute a predicted interaction network as Tong et al.
(2002) did. For each predicted edge in our network, we ensure
that the models were not learned using the sequence(s) and
their corresponding interaction(s) being tested. Prior to com-
puting εi,j ′ , we therefore cull sj ′ and its interactions E·j ′ from
the dataset, and re-learn the model parameters from this subset
of the data. Repeating this procedure for all proteins in the two
hybrid dataset allows us to construct a prediction network that
is independent of the two-hybrid network. To directly com-
pare our results to those of Tong et al. (2002), we choose a
P -value cut-off for selecting interactions so that our network
has the same number (394) of edges as their predicted network
(Fig. 2).

The predicted network reveals a highly connected core com-
plex centered on Las17, similar to the complex identified in

Tong et al. (2002). The predictions of Tong et al. (2002), com-
puted with ligand motifs obtained via phage display screens,
resulted in a network of 394 interactions among 206 proteins,
of which 59 also existed in the two-hybrid network (expec-
ted overlap of <1). We find consistently that our algorithm,
with a P -value cut-off chosen to result in ∼400 interactions,
identifies ∼50 interactions that overlap the two-hybrid net-
work, for a range of the various user-tunable parameters (e.g.
qg , q1 and qd ). This number is only slightly smaller than the
overlap of Tong et al. (2002), a fact, which might be surpris-
ing considering that our training (and comparison) interaction
dataset is based solely upon considerably noisy two-hybrid
measurements (Uetz and Hughes, 2000). An example of such
an ‘overlap network’ (between our computationally predicted
network and the two-hybrid network) is shown in Figure 2b.
It is apparent that the overlap network is also dominated by
the core complex of SH3 domain proteins.

Interestingly, our predicted network does not overlap the
(Tong et al., 2002) predicted network by significantly more
than it does with the observed (two-hybrid) network. The typ-
ical amount of intersection among the three networks is shown
in Figure 3; whereas only ∼17% of each of the three networks
intersect each other independently, about two-thirds of each
overlap network agrees. This network of ∼35 interactions may
perhaps be considered a truly high-confidence ‘core network’,
which agrees among the three independent techniques.

To assess how well our algorithm performs relative to the
two simpler algorithms (A) and (B) described near the end of
Section 2, we ran the same procedure described above, using
technique (A), with (1) a standard Gibbs site sampler and
(2) MEME (Bailey and Elkan, 1994), and strategy (B) also
with (1) the Gibbs sampler and (2) MEME. We found that the
size of the ‘overlap network’ was consistently larger using our
algorithm than it was for any of these four experiments (p �
10−10). These results are summarized in column 2 of Table 1.
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Fig. 2. Predicted (a) and overlap (b) SH3 interaction networks. Proteins containing SH3 domains are drawn as dark ovals; other interactors
are light rectangles.

Fig. 3. Size of intersection between our computationally predicted
network and the two networks (two-hybrid and predicted based upon
phage display) of Tong et al. (2002).

Furthermore, we computed the rate of true positives against
the rate of false positives (as measured against the two-hybrid
network) over a wide range of predicted network sizes, to
derive an receiver operating characteristic (ROC) curve. The
area under the curve, for which a value of 0.5 represents no
correlation at all, and 1.0 implies full correlation, was pref-
erentially higher using our algorithm than it was for the four
test cases described above (p � 10−4; Table 1, column 3).

Table 1. Comparison of the results of our algorithm (row 5) against the two
algorithms (A) and (B) described in Section 1 using a Gibbs sampler (1) and
MEME (2).

Algorithm Overlap interactions ROC integral Motif match scores

A, 1 40 ± 3.1 0.76 ± 0.010 0.47 ± 0.06
A, 2 27 ± 2.7 0.66 ± 0.011 0.41 ± 0.04
B, 1 41 ± 2.9 0.77 ± 0.008 0.41 ± 0.05
B, 2 35 ± 1.6 0.72 ± 0.013 0.42 ± 0.03
Our algorithm 49 ± 2.7 0.79 ± 0.008 0.55 ± 0.08

See text (Sections 4.1 and 4.2) for an explanation of the three columns.

4.2 Binding peptide consensus identification
We display a sample of the ligand motifs for each SH3 domain,
identified by this algorithm, as motif logos (Schneider and
Stephens, 1990, http://www.lecb.ncifcrf.gov/~toms/paper/
logopaper/), in Figure 4. Clearly, the algorithm converges on
proline-rich peptides (many even seemingly PxxP-like), even
for domains in which there are very few interactions. We also
see common SH3-binding residues, such as leucine, arginine
and others (Section 1), often in their expected flanking posi-
tions surrounding or within the proline-rich core. However,
polyproline strings clearly dominate the signal, and reveal
a clear detriment of our technique. The same feature of the
algorithm that directs the sampler to converge on proline-
rich peptides also serves to weakens the effect of any higher
order signal in the individual motifs. This is a classic example
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Fig. 4. Sample logos of the individual SH3 ligand motifs for each SH3 domain in the Tong et al. (2002) two-hybrid SH3 network, resulting
from a single run of our algorithm.

of trying to find the best compromise between over- and
under-fitting the model to the available (noisy) data.

We computed how similar our computationally derived con-
sensus binding motifs (such as those displayed in Fig. 4) are to
those computed from the phage display experiments of Tong
et al. (2002) (their table 2). This was done by generating a
set of PSSMs from their consensi, and computing the Pearson
correlation coefficients of those PSSMs with our computation-
ally derived motifs (Pietrokovski, 1996). This measurement,
which lies in the range [−1, 1], was often higher for the
consensi derived from our algorithm than it was using any
of the four methods identified above (p � 10−3; Table 1,
column 3).

4.3 Binding site prediction
The likelihood of an interaction with an arbitrary bind-
ing site ai,j , in sequence sj (i.e. the binding occurs with
residues sj ,ai,j +1, . . . , sj ,ai,j +w) can be derived analogously to
Equation (7), and results in

P(εi,j = 1 | ai,j , sj ,ai,j +1, . . . , sj ,ai,j +w, θ0, �i)

= logit

[
log

(
P(εi,j = 1)

P (εi,j = 0)

w∏
k=1

θi,k,sj ,k+ai,j

θ0,k,sj ,k+ai,j

)]
. (8)

The ratio psite ≡ P(εi,j = 1)/P (εi,j = 0) is a site-based
prior, describing our expectation that any site in sj is indeed a
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binding site, given that an interaction does occur somewhere
in the sequence. Where we have a prior expectation of nsite

binding sites per interaction, we use a uniform prior distribu-
tion psite = nsite/(Lj − w), with nsite ≡ 1. This allows us,
for a given domain Di and interactor sequence sj in which
we predict P(εi,j ) = 1 via Equation (7), to identify putat-
ive binding sites up to a certain probability cut-off. We have
chosen to perform this computational analysis on the protein
Las17, whose binding sites with various SH3 domains were
also determined experimentally (via ELISA experiments) by
Tong et al. (2002).

A comparison of the most likely predicted binding sites
on Las17 with its various predicted interactors based upon
Equation (8) shows that we do not have the sufficient spe-
cificity to accurately predict binding sites using our probab-
ilistic model (p = 0.69). When we performed the identical
analysis using the phage display-derived motifs of Tong et al.
(2002) we see a somewhat more significant ability to pre-
dict binding sites (p = 0.28). Even this result seems to be
at odds with the analysis performed in the paper in which
only one of 15 binding sites were incorrectly predicted. Such
a disparity reveals one of the weaknesses of our model with
regard to SH3: we use only one consensus for each domain
(as opposed to two, which the phage display experiments are
capable of resolving). Further, our combined model results in
the blurring of the individually specific motifs, which seems
to diminish the specific resolving power of the motifs in pre-
dicting individual binding sites. It should also be pointed out,
however, that the particular ELISA experiments performed by
Tong et al. (2002) on Las17 are subjected to some of the same
potential systematic effects the phage display experiments are,
which could be artificially enhancing the agreement between
the two experimental methods in their work.

5 DISCUSSION
There have been several attempts to predict the ligands of SH3
and other PRM domains in the recent past, using methods,
such as profile scanning (Obenauer et al., 2003), neural net-
works (Chang and Page, 2002) and structural models (Bran-
netti et al., 2000), with varying degree of success. All these
techniques are specific to the particular system that is being
investigated. We have described a method for identifying such
ligands using only sequence and high-throughput interaction
data, without requiring any additional prior assumptions on
the system, or any type of structural information. We have
shown that our technique is capable of characterizing the pep-
tides that bind to sets of SH3 domains and thereby predicting
which proteins these domains will interact with, nearly as
accurately as the motifs derived from phage display experi-
ments. However, our technique is not able to correctly identify
the individual binding sites that the domains bind to.

There is clearly information that plays an important role
in this system, that we are not including in our statistical

model. As a simple example, additional prior information on
the selection of interaction sites ai,j , e.g. based on modeled
or observed three-dimensional structures (such as residue
burial predictions), or other sequence-based prior knowledge,
may be incorporated into the model as a non-uniform prior
P(ai,j ) (Section 3.3). More intelligent choices of motif pri-
ors (Section 3.2), such as inclusion of the PxxP signature,
or some sort of discrimination between class-I and class-II
motifs, would also probably help, although it would result in
a loss of generality of the technique to other systems. We have
also ignored the structure or sequence of the SH3 domains
completely, and perhaps this is the ultimate limitation of our
technique. Such information could potentially be included
into the model, in a variety of ways (many of which, again,
could result in loss of generality).

While we have tried to keep the algorithm as general as pos-
sible, there remain three user-tunable parameters (qg , q1, and
qd ) that must be chosen for each training interaction data set.
As with many algorithms, choosing the appropriate combin-
ation of parameters would be more of an art than a science,
and if one were to apply this algorithm to a different data-
set, choosing inappropriate parameters will result only in the
effectiveness of the algorithm falling back to those of the
standard Gibbs sampler or MEME (Table 1). In such a case,
a good place to start would be to compare the target interac-
tion network with that which we have used in this paper. For
example, for a more loosely connected graph or one in which
the motifs are expected to be more similar, one would increase
qg and decrease q1 and qd ; and vice versa for a more tightly
connected graph or one in which the motifs are expected to
be dissimilar.

We have only tested our algorithm on the system of interact-
ing SH3 domains in yeast, but it could potentially be used in
the analysis of other PRM domains, such as WW, SH2, PDZ
and Vasp, or in other species, once the results of any similar
all versus all interaction screens become available. We believe
that a major limitation on the performance of the algorithm
lies in the quality of the interaction data that it is trained on.
Reducing the false positive rate of the training data by incor-
porating positive (and negative, where available) interactions
derived from lower throughput techniques can be expected to
increase the predictive power of our method.

Finally, we believe we have developed a framework that is
general and flexible enough that it could, with few modifica-
tions, be applied to completely new systems of interactions
between various biomolecules. Such potential targets of this
analysis could include other domain–peptide interaction sys-
tems (e.g. immune response interactions) and protein–DNA
interaction sets (Lee et al., 2002).
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Gary Bader. The interaction networks were rendered using
Cytoscape (Shannon et al., 2003).
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