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Abstract

The study of protein-protein interactions (PPIs) can be very important for the understanding

of biological cellular functions. However, detecting PPIs in the laboratories are both time-

consuming and expensive. For this reason, there has been much recent effort to develop

techniques for computational prediction of PPIs as this can complement laboratory proce-

dures and provide an inexpensive way of predicting the most likely set of interactions at the

entire proteome scale. Although much progress has already been achieved in this direction,

the problem is still far from being solved. More effective approaches are still required to

overcome the limitations of the current ones. In this study, a novel Multi-scale Local Descrip-

tor (MLD) feature representation scheme is proposed to extract features from a protein se-

quence. This scheme can capture multi-scale local information by varying the length of

protein-sequence segments. Based on the MLD, an ensemble learning method, the Ran-

dom Forest (RF) method, is used as classifier. The MLD feature representation scheme fa-

cilitates the mining of interaction information from multi-scale continuous amino acid

segments, making it easier to capture multiple overlapping continuous binding patterns

within a protein sequence. When the proposed method is tested with the PPI data of Sac-

charomyces cerevisiae, it achieves a prediction accuracy of 94.72% with 94.34% sensitivity

at the precision of 98.91%. Extensive experiments are performed to compare our method

with existing sequence-based method. Experimental results show that the performance of

our predictor is better than several other state-of-the-art predictors also with the H. pylori

dataset. The reason why such good results are achieved can largely be credited to the

learning capabilities of the RF model and the novel MLD feature representation scheme.

The experiment results show that the proposed approach can be very promising for predict-

ing PPIs and can be a useful tool for future proteomic studies.
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Introduction

Protein-protein interactions (PPIs) play a key role in various biological processes and functions

in living cells, including metabolic cycles, DNA transcription and replication, and signalling

cascades [1–3]. Thus, correctly identifying and characterizing protein interactions are critical

for understanding the molecular mechanisms inside the cell [3]. In the past decades, many in-

novative experimental techniques for detecting PPI have been developed [3–5]. Due to the

progress in large-scale experimental technologies such as yeast two-hybrid (Y2H) screens [4,6],

tandem affinity purification (TAP) [3], mass spectrometric protein complex identification

(MS-PCI) [5] and other high-throughput biological techniques for PPI detection, an immense

amount of PPI data for different species has been accumulated [3–7].

However, the experimental methods are costly and time consuming, therefore current PPI

pairs obtained with experimental methods covers only a small fraction of the complete PPI net-

works [8,9]. In addition, large-scale experimental methods usually suffer from high rates of

both false positive and false negative predictions [10]. Hence, it is of great practical significance

to develop the reliable computational methods to facilitate identification of PPI [11,12].

A number of computational techniques have been proposed to provide either complemen-

tary information or supporting evidence to experimental methods [13–16]. Existing ap-

proaches typically use binary classification frameworks that differ in the features used to

represent protein pairs. Different protein attributes or feature sources, such as protein structure

information[17,18], protein domains, gene neighbourhood, phylogenetic profiles, gene expres-

sion, and literature mining knowledge are employed to infer protein interactions[8,19–22].

There are also methods that combine interaction information from several different data

sources[23]. However, these methods cannot be implemented if such pre-knowledge about the

proteins is not available[24,25].

Recently, a couple of methods which derive information directly from amino acid sequence

are of particular interest [12,20,26–30]. Many researchers have engaged in the development of

sequences-based method for discovering new PPI[31–33], and the experimental results showed

that the information of amino acid sequences alone is sufficient to predict PPI[12,20,34].

Among them, one of the excellent works is a SVM-based method developed by Shen et al [12].

In the study, the 20 amino acids are clustered into seven classes according to their dipoles and

volumes of the side chains, and then the conjoint triad method abstracts the features of protein

pairs based on the classification of amino acids. When applied to predict human PPI, this

method yields a high prediction accuracy of 83.9%. Because the conjoint triad method cannot

takes neighbouring effect into account and the interactions usually occur in the discontinuous

amino acids segments in the sequence, on the other work Guo et al. developed a method based

on SVM and auto covariance to extract the interactions information in the discontinuous

amino acids segments in the sequence [35]. Their method yielded a prediction accuracy of

86.55%, when applied to predicting saccharomyces cerevisiae PPI. In our previous works, we

also obtained good prediction performance by using autocorrelation descriptors and correla-

tion coefficient, respectively [26,36].

In this study, a novel feature representation method for prediction of PPI is proposed. We

hypothesize that the continuous amino acids segments with different segment lengths play an

important role in determining the interactions between proteins. In other words, the proposed

protein representation method gives adequate consideration to mine the interaction informa-

tion from multi-scale continuous amino acid segments at the same time, thus it can sufficiently

capture multiple overlapping continuous binding patterns within a protein sequence.

To sum up, in this paper we propose a sequence-based approach for the prediction of pro-

tein-protein interactions using random forest (RF) model combined with a novel multi-scale
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local descriptor (MLD) protein feature representation. To evaluate the performance, the pro-

posed method is applied to Saccharomyces cerevisiae PPI dataset. The experiment results show

that our method achieved 94.72% prediction accuracy with 94.34% sensitivity at the precision

of 98.91%. The prediction model is also assessed using the independent dataset of the Helico-

bacter pylori PPI and yielded 88.30% prediction accuracy, which further demonstrates the ef-

fectiveness of our method.

Results

In this section, we first discuss the biological datasets and evaluation strategies used in perfor-

mance comparisons. Next we present results for comparing the proposed method to state-of-

the-art sequence-based method for predicting protein interaction pairs in yeast.

Protein sequence and protein interaction dataset

To evaluate the performance of the proposed approach, there are a total of 8 different PPI data-

sets are used in our experiments, two of which are S.cerevisiae, two are H. pylori, one is C.ele-

gans, one is E.coli, one isH.sapiens, and one isM.musculus.

The PPI dataset which were derived by Guo et al.[35], are used to build the first prediction

model. The dataset was downloaded from S.cerevisiae core subset of database of interacting

proteins (DIP) [37]. After the protein pairs that contain a protein with fewer than 50 residues

or have more than 40 percent sequence identity were removed, the remaining 5594 protein

pairs formed the golden standard positive dataset (GSP). The construction of a negative PPI

dataset is very important for training and evaluating prediction model. However, it is difficult

to generate such a dataset because we have limited information about proteins that are really

non-interactive. Here, the negative dataset is generated by firstly selecting non-interacting

pairs uniformly at random from the set of all proteins pairs that are not known to interact.

Then the protein pairs with same subcellular localization information are excluded. Finally, the

golden standard negative dataset (GSN) consisted of 5594 protein pairs whose subcellular lo-

calization is different. By combining the above GSP and GSN datasets, the complete dataset

contains of 11188 protein pairs, where half are from the positive dataset and half from the neg-

ative dataset. Note that here we have used exactly the same PPI dataset as used in Guo et al

[35]. The names of protein pairs and their sequences of the dataset are given in online supple-

mentary material at https://sites.google.com/site/zhuhongyou/data-sharing.

However, some researchers argue that restricting negative examples to protein pairs local-

ized in different cellular compartments is not appropriate for evaluating classifier accuracy

[38,39]. The use of such negative dataset for building a model can result primarily in predic-

tions of protein co-localization [40]. The fact that interacting protein pairs have to be in the

same place does not mean that all proteins in the same compartment will be interacting with

each other. Therefore, we constructed the second PPI dataset by using positive samples from

first PPI dataset, and following simpler selection scheme—choosing negative examples uni-

formly at random—to construct the negative dataset. The second PPI dataset also consists of

11188 protein pairs, where half are from the positive dataset and half from the negative dataset.

The third PPI dataset is composed of 2916 Helicobacter pylori protein pairs (1458 interact-

ing pair and 1458 non-interacting pairs) as described by Martin et al [41]. Other five species-

specific PPI dataset including C.elegans, E.coli,H.sapiens,M.musculus, and H.pylori are em-

ployed in our experiment to verify the effectiveness of the proposed method.
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Evaluation measures

To measure the performance of the proposed method, we adopt five-fold cross validation and a

couple of validation measures in this study. These criteria are as follows: (1) the overall predic-

tion accuracy (ACC) is the percentage of correctly identified interacting and non-interacting

protein pairs and given by:

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
ð1Þ

(2) the sensitivity (SN) is the percentage of correctly identified interacting protein pairs and

given by:

SN ¼
TP

TP þ FN
ð2Þ

(3) the specificity (Spec) is the percentage of correctly identified non-interacting protein pairs

and given by:

Spec ¼
TN

TN þ FP
ð3Þ

(4) the positive predictive value (PPV) is the positive prediction value and given by:

PPV ¼
TP

TP þ FP
ð4Þ

(5) the negative predictive value (NPV) is the negative prediction value and given by:

NPV ¼
TN

TN þ FN
ð5Þ

(6) the Fscore is a weighted average of the PPV and sensitivity, where an Fscore reaches its best

value at 1 and worst score at 0; The definitions is given as follows:

Fscore ¼ 2�
SN � PPV

SN þ PPV
ð6Þ

(7) the Matthew’s correlation coefficient (MCC) is more stringent measure of prediction accu-

racy accounts for both under and over-predictions. Its definitions is given by:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞ
p ð7Þ

where true positive (TP) is the number of true PPIs that are predicted correctly; false negative

(FN) is the number of true PPIs that are predicted to be non-interacting pairs; false positive

(FP) is the number of true non-interacting pairs that are predicted to be PPIs, and true negative

(TN) is the number of true non-interacting pairs that are predicted correctly.

Experimental setting

In this paper, the proposed sequence-based PPI predictor is implemented using MATLAB plat-

form. All the simulations are carried out on a computer with 3.1 GHz 2-core CPU, 6 GB mem-

ory and Windows operating system. In order to achieve good experimental results, the

corresponding parameters for random forest are firstly optimized. For RF model the parame-

ters to be ascertained are the number of feature subsetM, and the ensemble size N. The average

prediction results for six testing datasets are listed in Table 1 by settingM to 5, 10, 15, 20, 25
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and 30, respectively. It can be found that the performance under different conditions varies

slightly, and none of the parameters take obvious advantage over the other ones. So there is no

consistent relationship between the classification accuracy and feature subsetM. In this study,

the value ofM is set to 10 in all experiments, which requires the relatively less computational

cost.

The average results with different ensemble sizes are shown in Fig 1. It can be found from

Fig 1 that RF predictor performs well when only a few of base classifiers are employed. All the

evaluation measures including average prediction accuracy, sensitivity, specificity, PPV, NPV

Table 1. The prediction performance for six testing datasets with various number of feature subsetsM, where the tree sizeN is set to 60.

M ACC(%) SN(%) Spec PPV(%) NPV(%) F1(%) MCC(%)

5 94.72±0.35 94.45±0.55 95.72±1.51 98.80±0.43 82.17±1.27 96.58±0.25 85.89±0.70

10 94.63±0.37 94.42±0.54 95.40±1.29 98.71±0.38 82.04±1.32 96.52±0.26 85.65±0.76

15 94.62±0.21 94.44±0.53 95.28±1.58 98.69±0.45 82.06±1.19 96.51±0.15 85.60±0.41

20 94.60±0.36 94.35±0.54 95.56±1.68 98.76±0.48 81.88±1.23 96.50±0.25 85.61±0.76

25 94.69±0.25 94.44±0.44 95.66±1.34 98.79±0.39 82.11±0.99 96.56±0.18 85.82±0.47

30 94.63±0.37 94.42±0.54 95.39±1.43 98.71±0.41 82.04±1.25 96.52±0.26 85.65±0.78

doi:10.1371/journal.pone.0125811.t001

Fig 1. The prediction performance for classification accuracy, sensitivity, precision andMCC of different tree size, where the number of feature
subsets M is set to 10 and the unpruned decision tree is employed as the base classifier.

doi:10.1371/journal.pone.0125811.g001
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and MCC keep improving with ensemble size increase. However, the improvement becomes

negligible when the ensemble size is larger than 10. From the above analyses, we can conclude

that RF model is not sensitive to the choice of parameters. So for the H.pylori dataset, the pa-

rameters of RF model do not need to be optimized again, assuming that they are set the same

values as those adopted on the S.cerevisiae dataset.

Prediction performance of proposed model

We evaluated the performance of the proposed model using the first PPIs dataset as investigated

in Guo et al. [35]. To guarantee that the experimental results are valid and can be generalized for

making predictions regarding new data, the dataset is randomly partitioned into training and in-

dependent testing sets via a five-fold cross validation. Each of the five subsets acts as an indepen-

dent holdout testing dataset for the model trained with the rest of four subsets. Thus five models

are generated for the five sets of data. The advantages of cross validation are that the impact of

data dependency is minimized and the reliability of the results can be improved.

The prediction performance of RF predictor with MLD representation of protein sequence

across five runs is shown in Table 2. It can be observed from Table 2 that high prediction accu-

racy of 94.72% is obtained for the proposed model. To better investigate the prediction ability

of our model, we also calculated the values of Sensitivity, Positive Predictive Value, and MCC.

From Table 2, we can see that our model gives good prediction performance with an average

sensitivity value of 94.34%, PPV value of 98.91%, accuracy value of 94.72%, and MCC value of

85.99%. Further, it can also be seen in the Table 2 that the standard deviation of sensitivity,

PPV, accuracy, and MCC are as low as 0.0049, 0.0033, 0.0043, and 0.0089, respectively.

For the first PPI dataset, we define negative examples exploiting the fact that proteins from

different cellular locations are unlikely to interact [42]. However, it was shown that this ap-

proach, when used to train PPI prediction methods, leads to a bias in the estimation of predic-

tion accuracy, since the additional constraints related to localization make the prediction task

easier [38]. Another typical choice is to select non-interacting pairs uniformly at random from

the set of all proteins pairs that are not known to interact. Therefore, in our experiments we

also use the second PPI dataset to verify the effectiveness of the proposed method. Table 2 illus-

trates the comparison of the prediction performance using two kinds of negative sample selec-

tion methods on the yeast dataset. As shown in the table, the performance of first PPI dataset

(selecting negative examples using cellular localization information) is slightly better than that

of the second PPI dataset (randomly selected negative examples without cellular localization

information). We can explain the higher accuracy for the first PPI dataset by the fact that the

Table 2. Comparison of the prediction performance by the proposedmethod and some state-of-the-art works on the yeast dataset.

Model Features Classifier SN(%) PPV(%) ACC(%) MCC(%)

Our method (1st dataset) MLD RF 94.34±0.49 98.91±0.33 94.72±0.43 85.99±0.89

Our method (2nd dataset) MLD RF 92.67±0.79 99.51±0.23 93.83±0.61 84.05±1.47

Guo’s work (1st dataset) ACC SVM 89.93±3.68 88.87±6.16 89.33±2.67 N/A

AC SVM 87.30±4.68 87.82±4.33 87.36±1.38 N/A

Zhou’s work (1st dataset) LD SVM 87.37±0.22 89.50±0.60 88.56±0.33 77.15±0.68

Yang’s work (1st dataset) LD (Cod1) KNN 75.81±1.20 74.75±1.23 75.08±1.13 N/A

LD (Cod2) KNN 76.77±0.69 82.17±1.35 80.04±1.06 N/A

LD (Cod3) KNN 78.14±0.90 81.86±0.99 80.41±0.47 N/A

LD (Cod4) KNN 81.03±1.74 90.24±1.34 86.15±1.17 N/A

Here, N/A means not available.

doi:10.1371/journal.pone.0125811.t002
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constraint on localization restricts the negative examples to a sub-space of feature space, mak-

ing the learning problem easier than when there is no constraint.

We further compared our method with Guo et al.[35], Zhou et al.[43] and Yang et al.[44],

where the SVM, SVM and KNN is performed with the Auto Covariance (or Auto Cross Covari-

ance), Local Descriptor, and Local Descriptor with four kinds of coding scheme as the input fea-

ture vectors, respectively. From Table 2, we can see that the performance of all of these methods

with different machine learning model and sequence-based feature representation are lower than

ours, which indicates the advantages of our method. To sum up, we can readily conclude that the

proposed approach generally outperforms the previous model with higher discrimination power

for predicting PPIs based the information of protein sequences. Therefore, we can see clearly that

our model is a muchmore appropriate method for predicting new protein interactions compared

with the other methods. Consequently, it makes us be more convinced that the proposed method

can be very helpful in assisting the biologist to assist in the design and validation of experimental

studies and for the prediction of interaction partners.

Comparing the prediction performance of ensemble classifier with single
classifier methods

We here investigated whether or not the ensemble of classifiers can significantly improve the

performance of PPI prediction compared against the individual classifier in the ensemble. Figs

2–8 plots the sensitivity, accuracy, specificity, PPV, NPV, F-Score, and MCC values for the

component classifiers decision tree and the ensemble classifier random forest. The results in

Fig 2. Comparison for the Sensitivity value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.pylori.

doi:10.1371/journal.pone.0125811.g002
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Figs 2–8 clearly demonstrate that the ensemble classifier dominates the component classifiers.

The PPV value obtained by the ensemble classifier is nearly 4.3% higher than the component

classifier on the S.cerevisiae dataset. In addition, the sensitivity is improved from 92.66% to

95.15% while the accuracy is improved from 90.52% to 95.80%. Further, on theH.pylori data-

set, it can also be seen from the Figs 2–8 that the ensemble classifier dominates the single classi-

fier. We concluded that the ensemble classifier is much more accurate than the single classifier

that makes them up.

Comparing the prediction performance between our method and other
existing methods

In order to highlight the advantage of our model, it is also tested byHelicobacter pylori dataset.

TheH. pylori dataset is composed of 2,916 protein pairs (1,458 interacting pair and 1,458 non-

interacting pairs) as described by Martin et al [45]. This dataset gives a comparison of proposed

method with other previous works including phylogenetic bootstrap[46], signature products

[45], HKNN[47], ensemble of HKNN[48] and boosting. The methods of phylogenetic boot-

strap, signature products and HKNN are based on individual classifier system to infer PPI,

while the methods of HKNN and boosting belong to ensemble-based classifiers. The average

prediction performances of ten-fold cross-validation over six different methods are shown in

Table 3. From Table 3, we can see that the average prediction performance, i.e. sensitivity,

PPV, accuracy and MCC achieved by proposed predictor, are 92.47%, 85.99%, 88.30% and

79.19%, respectively. It demonstrates that our method outperforms all other individual

Fig 3. Comparison for the Accuracy value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.pylori.

doi:10.1371/journal.pone.0125811.g003
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classifier-based methods and the ensemble classifier systems (i.e. ensemble of HKNN and

Boosting). All these results show that the proposed method not only achieves accurate perfor-

mance, but also substantially improves positive predictive value in the prediction of PPI.

Prediction performance on the independent Yeast datasets

Since the proposed method achieved a high performance on S.cerevisiae andH.pylori datasets,

we switch to evaluate the prediction performance of our approach on five independent testing

datasets, which means using of experimentally identified interactions in one organism to pre-

dict the interactions in other organisms assuming that homolog proteins preserve their ability

to interact (5,6). The basis of this hypothesis is to assume that homologs have similar functional

behaviour; therefore, they preserve the same PPI [36]. Five independent datasets are employed

to validate the quality of predicting PPIs which share low identity with the training dataset.

Specifically, we first trained the prediction model on the entire yeast dataset. Then we per-

formed blind test on five PPI datasets which are independent of the training dataset. The per-

formance of our method for predicting five independent datasets is summarized in Table 4. As

shown in the table, the proposed method gives good prediction performance with accuracy of

87.71%, 89.30%, 94.19%, 91.69%, and 90.99% on C.elegans, E.coli, H.sapiens,M.musculus, and

H. pylori, respectively. Further, it can also be seen in the Table 4 that the sensitivity in C.elegans,

E.coli,H.sapiens,M.musculus, and H. pylori are 87.71%, 89.30%, 94.19%, 91.69%, 90.99%, re-

spectively. The F-Scores for these organisms are 93.46%, 94.35%, 97.01%, 95.67%, 95.28%,

Fig 4. Comparison for the Specificity value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.pylori.

doi:10.1371/journal.pone.0125811.g004
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respectively. It demonstrates that the RF prediction model with MLD representation can

achieve high prediction performance towards cross-species datasets. It should be noticed that

the PPI dataset of S.cerevisiae is employed to construct the prediction model, so the trained

model represented the characteristics of S.cerevisiae PPI. Meanwhile, our model can also repre-

sent the features of C.elegans, E.coli,H.sapiens,M.musculus, and H. pylori, which illustrated the

good generalization ability of the proposed model on these organisms.

This finding indicates that the proposed model can be successfully applied to other species

for which experimental PPI data is not available. It should be noticed that it is reasonable that

PPIs generated in one species can be used to predict interactions in other species. The large

numbers of PPIs in one organism might have “coevolved” with other organisms so that their

corresponding orthologues interact as well [39]. We emphasized that this notion of conserved

interactions, or “interologs”, is also supported by the observation that many interactions in sig-

nal transduction pathways or molecular machines are conserved between different species

[49].

Conclusions

In this paper, we develop an efficient technique for predicting protein interactions from protein

sequences by combining a novel Multi-scale Local Descriptor (MLD) feature representation

with RF model. The MLD representation takes into account the factors that PPI usually occurs

in continuous segments with varying lengths in the protein sequence. In our study, protein

Fig 5. Comparison for the Predictive PositiveV value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.
pylori.

doi:10.1371/journal.pone.0125811.g005

Prediction of PPI Using Random Forest Model with a Novel Representation

PLOS ONE | DOI:10.1371/journal.pone.0125811 May 6, 2015 10 / 19



sequences are characterized by a number of regions using MLD representation, which is capa-

ble of capturing multiple overlapping continuous binding patterns within a protein sequence.

Experimental results demonstrated that the proposed method performed significantly well in

distinguishing interacting and non-interacting protein pairs. Achieved results demonstrate

that the proposed approach outperforms all other previous methods on a couple of PPI datasets

and can be a useful supplementary tool to traditional experimental method.

Methods

In this section, we describe the proposed MLD-RF approach for predicting protein interactions

from protein sequences. Our method to predict the PPI depends on two steps: (1) Represent

protein sequences as a vector by using the proposed MLD feature representation; (2) RF pre-

dictor is used to perform protein interactions prediction tasks.

Feature Vector Extraction

In algorithm development, feature extraction is one of the most important components that

significantly affect the performance of computational model. To successfully use the machine

learning methods to predict PPI from protein sequences, one of the most important computa-

tional challenges is how to effectively represent a protein sequence by a fixed length feature vec-

tor in which the important information content of proteins is fully encoded. Although

Fig 6. Comparison for the Negative Positive Value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.pylori.

doi:10.1371/journal.pone.0125811.g006
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researchers have proposed various sequence-based methods to predict new PPI, one flaw of

them is that the interactions information cannot be drawn from multi-scale continuous amino

acids segments with different segment lengths at the same time. To overcome this shortcoming,

in this study we propose a novel MLD sequence representation approach to transform the pro-

tein sequences into feature vectors by using a binary coding scheme. A multi-scale decomposi-

tion technique is used to divide protein sequence into multiple sequence segments of varying

length to describe overlapping local regions. Here, the continuous sequence segments are com-

posed of residues which are local in the polypeptide sequence.

In order to extract the interaction information, we first divide the entire protein sequence

into a number of equal length segments. Then a novel binary coding scheme is adopted to con-

struct a set of continuous regions on the basis of above partition. For example, consider a pro-

tein sequence “GGYCCCYYGYYYGCCGGYYGCG” containing 22 residues. To represent the

sequence by a feature vector, let us first divide each protein sequence into multiple regions.

Refer to Fig 9, the protein sequence is divided into four equal length segments (denoted by S1,

S2, S3 and S4). Then it is encoded as a sequence of 1's and 0's of 4-bit binary form. In binary,

these combinations are written as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1110, 1111. The number of states of a group of bits can be found by the

expression 2n, where n is the number of bits. It should be noticed that here 0 or 1 denote one of

the four equal length region S1—S4 is excluded or included in constructing the continuous re-

gions respectively. For example, 0011 denotes a continuous region constructed by S3 and S4

Fig 7. Comparison for the F-Score value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae andH.pylori.

doi:10.1371/journal.pone.0125811.g007
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(the final 50% of the sequence). Similarly, 0111 represents a continuous region constructed by

S2, S3 and S4 (the final 75% of the sequence). These regions are illustrated in Fig 9.

It should be noticed that the proposed feature representation method can be simply and

conveniently edited at multiple scales, which offers a promising new way for addressing afore-

mentioned difficulties in a simple, unified, and theoretically sound way to represent protein se-

quence. For a given number of bits, each protein sequence may take on only a finite number of

continuous regions. This limits the resolution of the sequence. If more bits are used for each

protein sequence, then a higher degree of resolution is obtained. For example, if the protein

Fig 8. Comparison for the Matthews Correlation Coefficient value of the ensemble classifier versus single classifiers on the dataset of S.cerevisiae
andH.pylori.

doi:10.1371/journal.pone.0125811.g008

Table 3. Performance comparison of different methods on theH.pylori dataset.

Methods Sensitivity PPV Accuracy MCC

Phylogenetic bootstrap 69.80% 80.20% 75.80% N/A

HKNN 86.00% 84.00% 84.00% N/A

Signature products 79.90% 85.70% 83.40% N/A

Ensemble of HKNN 86.70% 85.00% 86.60% N/A

Boosting 80.37% 81.69% 79.52% 70.64%

Proposed method 92.47% 85.99% 88.30% 79.19%

Here, N/A means not available.

doi:10.1371/journal.pone.0125811.t003
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sequence is encoded by 5-bit binary form, each protein sequence may take on 30 (25–2) differ-

ent regions. Higher bit encoding requires more storage for data and requires more computing

resource to process. In this study, only the continuous regions are used and the discontinuous

regions are discarded.

For each continuous region, three types of descriptors, composition (C), transition (T) and

distribution (D), are used to represent its characteristics. C is the number of amino acids of a

particular property (e.g., hydrophobicity) divided by the total number of amino acids in a local

region. T characterizes the percentage frequency with which amino acids of a particular prop-

erty is followed by amino acids of another property. Dmeasures the chain length within which

the first, 25%, 50%, 75%, and 100% of the amino acids of a particular property are located, re-

spectively [50].

Table 4. Prediction performance on five species based on our model.

Species # Test pairs ACC (%) SN (%) PPV (%) NPV (%) F1

C.elegans 4013 87.71% 87.71% 100% 0 93.46%

E.coli 6954 89.30% 89.30% 100% 0 94.35%

H.sapiens 1412 94.19% 94.19% 100% 0 97.01%

M.musculus 313 91.69% 91.69% 100% 0 95.67%

H. pylori 1420 90.99% 90.99% 100% 0 95.28%

doi:10.1371/journal.pone.0125811.t004

Fig 9. The Schematic diagram for constructing multi-scale local descriptor regions for a hypothetical protein sequence using 3–6 bit binary form.
Each protein sequence is divided into multiple sub-sequences (segments) of varying length to represent multiple overlapping continuous segments.

doi:10.1371/journal.pone.0125811.g009
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The three descriptors can be calculated in the following ways. Firstly, in order to reduce the

complexity inherent in the representation of the 20 standard amino acids, we firstly clustered

them into seven groups based on the dipoles and volumes of the side chains. Amino acids with-

in the same groups likely involve synonymous mutations because of their similar characteris-

tics [12].The amino acids belonging to each group are shown in Table 5.

Then, every amino acid in each protein sequence is replaced by the index depending on its

grouping. For example, protein sequence “GGYCCCYYGYYYGCCGGYYGCG” is replaced by

1132223313331221133121 based on this classification of amino acids. There are eight ‘1’, six ‘2’

and eight ‘3’ in this protein sequence. The composition for these three symbols is 8/(8+6+8) ×

100% = 36.36%, 6/(8+6+8) ×100% = 27.27% and 8/(8+6+8) ×100% = 36.36%, respectively.

There are 4 transitions from ‘1’ to ‘2’ or from ‘2’ to ‘1’ in this sequence, and the percentage fre-

quency of these transitions is (4/21) ×100% = 19%. The transitions from ‘1’ to ‘3’ or from ‘3’ to

‘1’ in this sequence can similarly be calculated as (6/21) ×100% = 28.57%. The transitions from

‘2’ to ‘3’ or from ‘3’ to ‘2’ in this sequence can also similarly be calculated as (2/21) ×100% =

9.52%.

For distribution D, there are 8 residues encoded as “1” in the example of Fig 10, the posi-

tions for the first residue ‘1’, the 2nd residue ‘1’ (25% × 8 = 2), the 4th ‘1’ residue (50% × 8 = 4),

the 6th ‘1’ (75% × 8 = 6) and the 8th residue ‘1’ (100% × 8) in the encoded sequence are 1, 2, 13,

17, 22 respectively, so the D descriptors for ‘1’ are: (1/22) ×100% = 4.55%, (2/22) ×100% =

9.09%, (13/22) ×100% = 59.09%, (17/22) ×100% = 77.27%, (22/22)×100% = 100%, respectively.

Similarly, the D descriptor for ‘2’ and ‘3’ is (18.18%, 18.18%, 27.27%, 63.64%, 95.45%) and

(13.64%, 31.82%, 45.45%, 54.55%, 86.36%), respectively.

For each continuous local region, the three descriptors (C, T and D) are calculated and

concatenated, and a total of 63 descriptors are generated: 7 for C, 21 ((7×6)/2) for T and 35

(7×5) for D. Then, all descriptors from 9 regions (4 bit) are concatenated and a total 567

Table 5. Division of amino acids into seven groups based on the dipoles and volumes of the side chains.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

A,G,V C M,S,T,Y F,I,L,P H,N,Q,W K,R D,E

doi:10.1371/journal.pone.0125811.t005

Fig 10. Sequence of a hypothetic protein indicating the construction of composition, transition and distribution descriptors of a protein region.

doi:10.1371/journal.pone.0125811.g010
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dimensional vector has been built to represent each protein sequence. Finally, the PPI pair is

characterized by concatenating the two vector spaces of two individual proteins. Thus, an

1134-dimentional vector has been constructed to represent each protein pair and used as a fea-

ture vector for input into RF classifier.

Random Forest Classifier

Random Forest (RF) model is an ensemble classification algorithm that employs a collection of

decision trees to reduce the output variance of individual trees and thus improves the stability

and accuracy of classification. RF model is currently one of the most frequently employed ma-

chine learning techniques. RF takes advantage of two powerful machine-learning techniques:

(1) the selection of training examples for each tree; (2) the random feature selection to split the

data set. The first is performed by employing a bootstrap sample from original data (often re-

ferred to as bagging). Bagging works by sampling n samples with replacement from the original

n samples, duplicating some examples and excluding some. The process results in two disjoint

bags, one containing about 63.2% examples of the training data and one bag containing the

rest which are usually denoted as out-of-bag (OOB) examples. In general, a random forest is

constructed using the in bag examples and the OOB examples is used to estimate its prediction

performance. The second feature selection procedure works by sampling a small subset of fea-

tures at each node in each classification tree. More specifically, at each node of a tree, RF ran-

domly selected a constant number of features and the one with the maximum decrease in Gini

index is chosen for the split when growing the tree.

The RF model construction is composed of two parts, the ensemble creation and the tree

generation. Specifically, the model construction requires a set of examples S = (((x1,x2,. . .,xn),

y),. . .), where each example is described by a set of features X and a class label y; the number of

trees to be constructed Tn; and the number of features to examine at each split Fn. In the en-

semble creation step, t = 1,2,. . .,Tn trees are constructed from the in bag samples drawn with

replacement from S. The tree construction algorithm starts by selecting Fn random features

which can reduce the Gini index most if split upon. If no feature is found that reduce the error,

a leaf is created predicting the most probable class from those examples reaching the node.

Otherwise, the data is partitioned into two subsets: those for which the feature is positive and

those for which it is negative. The partitions are subsequently used to recursively build new

trees, with edges from the previous node. The recursion continues until there is no more infor-

mative feature, the node is pure or the total number of examples at the current node is minor 2.

In the experiment we used the open source machine learning toolkit Weka to conduct

this study.
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S1 Dataset. The names of protein pairs and their sequences of the PPIs dataset. In this data-
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pairs uniformly at random from the set of all proteins pairs that are not known to interact.
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