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Abstract

Background: Protein-protein interactions (PPIs) are central to a lot of biological processes. Many algorithms and

methods have been developed to predict PPIs and protein interaction networks. However, the application of most

existing methods is limited since they are difficult to compute and rely on a large number of homologous proteins

and interaction marks of protein partners. In this paper, we propose a novel sequence-based approach with

multivariate mutual information (MMI) of protein feature representation, for predicting PPIs via Random Forest (RF).

Methods: Our method constructs a 638-dimentional vector to represent each pair of proteins. First, we cluster

twenty standard amino acids into seven function groups and transform protein sequences into encoding sequences.

Then, we use a novel multivariate mutual information feature representation scheme, combined with normalized

Moreau-Broto Autocorrelation, to extract features from protein sequence information. Finally, we feed the feature

vectors into a Random Forest model to distinguish interaction pairs from non-interaction pairs.

Results: To evaluate the performance of our new method, we conduct several comprehensive tests for predicting

PPIs. Experiments show that our method achieves better results than other outstanding methods for sequence-based

PPIs prediction. Our method is applied to the S.cerevisiae PPIs dataset, and achieves 95.01 % accuracy and 92.67 %

sensitivity repectively. For the H.pylori PPIs dataset, our method achieves 87.59 % accuracy and 86.81 % sensitivity

respectively. In addition, we test our method on other three important PPIs networks: the one-core network, the

multiple-core network, and the crossover network.

Conclusions: Compared to the Conjoint Triad method, accuracies of our method are increased by 6.25, 2.06 and

18.75 %, respectively. Our proposed method is a useful tool for future proteomics studies.

Keywords: Protein-protein interactions, Protein sequence, Feature extraction, Conjoint amino acids, Multivariate

mutual information

Background

Identification of protein-protein interactions (PPIs) is

important to elucidate protein functions and identify bio-

logical processes in a cell. The knowledge of PPIs can help

people better understand disease mechanisms and drug

designs. In the past several years, a large number of tech-

nologies have been developed for the large-scale analysis

of PPIs. In general, there are three categories of methods

for detecting PPIs: methods based on the information of
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evolution, methods based on natural language processing,

and methods based on features of amino acid sequence.

A large number of past studies have made clear that the

protein-protein interaction has a co-evolution trend [1].

The evolution information is extracted from multiple

sequence alignment of homologous proteins. Tree sim-

ilarity is used as a simple linear correlation between

distance matrices of two protein families, as a proxy of

their phylogenetic trees [2]. MirrorTree [3–5] evaluates

the relationship between tree similarities and physical or

functional interactions. It is possible to predict PPIs on a

genomic scale with higher correlations indicating a higher

probability of protein-protein interaction. Carlo et al. [6]
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presented a log-likelihood score for protein-protein inter-

action. Direct Coupling Analysis (DCA) has been used

to predict response regulator (RR) interaction partners

for orphan histidine sensor kinase (SK) proteins in bacte-

rial two-component signal transduction systems [7]. They

also presented a protein-protein interaction score, which

is based on improved efficiency of multivariate gaussian

approach [8]. However, since these methods need a large

number of homologous proteins and interaction marks of

protein partners, they are very difficult to compute and

their applications are limited.

Many methods have been developed to find the evi-

dence for PPIs from PubMed abstracts based on Natural

Language Processing (NLP) [9]. According to a certain

semantic model, these methods automatically extract rel-

evant pieces of information from texts, since a large num-

ber of known PPIs are stored in the scientific literature of

biology and medicine. Daraselia et al. [10] used a method,

called MedScan, to extract more than one million pieces

of data from PubMed. They obtained accuracy rates of up

to 91 %, compared with the BIND and DIP databases [11].

The problem of this approach is that some PPIs informa-

tion may be missing from literature, thus the prediction

may not be complete.

It might be possible to predict PPIs accurately by

using only protein sequence information with meth-

ods based on machine learning algorithms and fea-

tures of amino acids. To use machine learning methods

in this task, one of the most important computational

challenges is to extract useful features from protein

sequences. Generally, there are several kinds of fea-

ture representation methods including Auto Covariance

(AC) [12], Auto Cross Covariance (ACC) [12], Conjoint

Triad (CT) [13], Local Protein Sequence Descriptors (LD)

[14, 15], Multi-scale Continuous and Discontinuous fea-

ture set(MCD) [16], Physicochemical Property Response

Matrix combined with Local Phase Quantization descrip-

tor (PR-LPQ) [17], Multi-scale Local Feature Descriptors

(MLD) [18], as well as SubstitutionMatrix Representation

(SMR) [19].

AC and ACC [12] use seven physicochemical prop-

erties of amino acids to reflect their interaction modes

whenever possible. After being represented by these seven

descriptors, a pair of proteins could be converted into a

420-dimensional vector by AC, and 2940-dimension by

ACC. CT [13] considers the properties of each amino

acid and its vicinal neighbors and regards the three

contiguous amino acids as a unit. The PPIs information of

protein sequences can be projected into a homogeneous

vector space by counting the frequency of each type. The

20 amino acids are clustered into seven groups accord-

ing to dipoles and volumes of side chains. The descriptor

of proteins were concatenated into a 686-dimensional

vector by CT.

Similar to CT, LD [14, 15] clusters twenty standard

amino acids into seven functional groups. It splits the

protein sequence into ten local regions of varying length

to describe multiple overlapping continuous and discon-

tinuous interaction patterns within a protein sequence.

For each local region, three local descriptors–composition

(C), transition (T) and distribution (D)–are calculated. A

1260-dimentional vector is constructed to represent each

protein pair by LD.MLD [18] uses a multi-scale decompo-

sition technique to divide protein sequence into multiple

sequence segments of varying length to describe over-

lapping local regions. A binary coding scheme is then

adopted to construct a set of continuous regions on the

basis of the above partition. A 1134-dimentional vector

is constructed to represent each protein pair by MLD.

MCD [16] is similar to MLD, except that it constructs a

1764-dimentional vector for each protein pair. Indeed, LD,

MCD and MLD can be categorized as the same type of

methods.

PR-LPQ [17] adopts the physicochemical property

response matrix method to transform the amino acids

sequence into a matrix and then employs the local phase

quantization-based texture descriptor to extract local

phrase information in the matrix. SMR is based on BLO-

SUM62, which is considered to be powerful for detecting

weak protein similarities. Huang et al. [19] used BLO-

SUM62 to construct a new matrix representation from a

protein sequence. Then, the matrix is lossy compressed by

Discrete Cosine Transform(DCT) and a 400-dimensional

feature vector is extracted from the compressed matrix.

Each pair of protein sequences forms an 800-dimensional

feature vector, which is fed into the Weighted Sparse

Representation based Classifier(WSRC) for predicting

PPIs.

In this paper, we propose a novel sequence-based

approach with a k-gram feature representation calcu-

lated as Multivariate Mutual Information (MMI). Com-

bined with normalized Moreau-Broto Autocorrelation

(NMBAC), we predict PPIs via RandomForest (RF), which

is an ensemble learning method for classification, regres-

sion and other tasks. For the performance evaluation, our

method is applied to the S.cerevisiae PPIs dataset. Our

method achieves 95.01 % accuracy and 92.67 % sensitiv-

ity. Compared with the existing best method, the accuracy

is increased by 0.29 %. To further demonstrate the effec-

tiveness of our method, we also test it on the H .pylori

PPIs dataset. Our method achieves 87.59 % accuracy and

86.81 % sensitivity. On the human8161 PPIs dataset, our

method achieves 97.56 % accuracy and 96.57 % sensitivity.

In addition, we use S.cerevisiae PPIs dataset to construct

a model to predict five other independent species PPIs

datasets. Compared with the state-of-the-art methods,

the accuracy is increased 2.42 % on average. We also test

ourmethod on two special PPIs datasets [20]. On the yeast
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dataset, our method achieves 82, 82, 62 and 61 % AUROC

on four different test classes (typical Cross-Validated (CV)

and distinct test classes C1, C2 and C3). On the human

dataset, our method achieves 82, 82, 60 and 57 % AUROC

on four different test classes. Finally, we test our method

on three important PPIs networks: the one-core network

(CD9) [21], the multiple-core network (Ras-Raf-Mek-Erk-

Elk-Srf pathway) [22], and the crossover network (Wnt-

related Network) [23]. Compared to the Conjoint Triad

(CT) method [13], accuracies of our method are increased

by 6.25, 2.06 and 18.75 %, respectively.

Methods

In our method for predicting protein-protein inter-

action based on protein sequence information, first

we extract features from protein sequence informa-

tion. The feature vector represents the characteristic

on one pair of proteins. We use k-gram feature repre-

sentation calculated as Multivariate Mutual Information

(MMI) and extract additional feature by normalized

Moreau-Broto Autocorrelation (NMBAC) from protein

sequences. These two approaches are employed to trans-

form the protein sequence into feature vectors. Then,

we feed the feature vectors into a specific classifier

for identifying interaction pairs and non-interaction

pairs.

Multivariate mutual information

Inspired by previous work [13, 24, 25] for extracting

features from protein sequences, we propose a novel

method to fully describe key information of protein-

protein interaction. There exist many technologies using

the k-gram feature representation, which is commonly

used for protein sequence classification [26, 27]. Here

k represents the number of conjoint amino acids. For

example, CT [13] used the 3-gram feature representation.

Shen et al. [13] indicated that methods without con-

sidering local environment are usually not reliable and

robust, so they produced a conjoint triad method to con-

sider properties of amino acids and their proximate amino

acids.

To continue the usage of k-gram feature representa-

tion and to enhance classification accuracy, we utilize

MMI [28] for deeply extracting conjoint information of

amino acids in protein sequences.

Classifying amino acids

The protein-protein interaction can be dominated by

dipoles and volumes of diverse amino acids, which reflect

electrostatic and hydrophobic properties. All 20 stan-

dard amino acid types are assigned to seven functional

groups [13], as shown in Table 1. For each pair of proteins,

we extract conjoint information based on these amino

acid categories.

Table 1 Division of 20 amino acid types, based on dipoles and

volumes of side chains

No. Group Dipolescale Volumescale

C0 A,G, V Dipole < 1.0 Volume< 50

C1 C 1.0 < Dipole < 2.0 (form disulphide bonds) Volume> 50

C2 D, E Dipole > 3.0 (opposite orientation) Volume> 50

C3 F, I, L, P Dipole < 1.0 Volume> 50

C4 H,N,Q,W 2.0 < dipole < 3.0 Volume> 50

C5 K , R Dipole> 3.0 Volume> 50

C6 M, S, T , Y 1.0 < dipole < 2.0 Volume> 50

Calculatingmultivariatemutual information

Considering the neighbours of each amino acid, we regard

any three contiguous amino acids as a unit. We use a

sliding window of a length of 3 amino acids to parse the

protein sequence. For each window, categories of three

amino acids are used to label the type of this unit. Instead

of considering the order of the three amino acids, we

only consider the basic ingredient of the unit. We define

different types of 3-gram feature representation, such as
′C0,C0,C

′
0,

′ C0,C0,C
′
1, . . . ,

′ C6,C6,C
′
6. Similarly, we also

define different types of 2-gram feature representation,

such as ′C0,C
′
0,

′ C0,C
′
1, . . . ,

′ C6,C
′
6. We count each type

of 3-gram feature and 2-gram feature on one protein

sequence by a sliding window, as shown in Fig. 1.

At some point in the ensuing discussion of mutual infor-

mation, we state the logarithmic base as e. In contrast to

the standard mutual information approach, our mutual

information and entropy method refer to single event on

one protein sequence, whereas standard mutual informa-

tion refers to overall possible events. We calculate the

multivariate mutual information for each type of 3-gram

feature, defined as follows:

I(a, b, c) = I(a, b) − I(a, b|c) (1)

where a, b and c are categories of three conjoint amino

acids in one unit.

Fig. 1 3-gram or 2-gram feature representation
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We then define the mutual information for one type of

2-gram feature as I(a, b), which can be counted by a 2-

length sliding window:

I(a, b) = f (a, b)ln

(

f (a, b)

f (a)f (b)

)

(2)

where f (a, b) is the frequency of categories a and b appear-

ing in 2-gram feature on a protein, and f (a) is the fre-

quency of category a appearing on a protein, respectively.

In addition, we define the conditional mutual informa-

tion as I(a, b|c).

I(a, b|c) = H(a|c) − H(a|b, c) (3)

where H(a|c) and H(a|b, c) are the conditional entropy as
follows.

H(a|c) = −f (a|c)ln(f (a|c)) (4)

and

H(a|b, c) = −f (a|b, c)ln(f (a|b, c)) (5)

where f (a|c) is the frequency of category a appearing

while category c exists in 2-gram feature on a protein, and

f (a|b, c) is the frequency of category a appearing while

categories b and c exist in 3-gram feature on a protein.

H(a|c) and H(a|b, c) can be approximately calculated as

follows:

H(a|c) = −
f (a, c)

f (c)
ln

(

f (a, c)

f (c)

)

(6)

and

H(a|b, c) = −
f (a, b, c)

f (b, c)
ln

(

f (a, b, c)

f (b, c)

)

(7)

where f (a, b, c) is the frequency of categories a, b and c

appearing in 3-gram feature on a protein.

To avoid the values of I(a, b, c) and I(a, b) being infinity,

we calculate the frequency as follows:

f (a) =
na + 1

L + 1
(8)

where na is the occurrence number of category a appear-

ing on a protein and L is the length of this protein

sequence. We also use similar formulas to calculate f (a, b)

and f (a, b, c).

We can get 84 multivariate mutual information val-

ues of I(a, b, c) (3-tuples MI) and 28 mutual information

values of I(a, b) (2-tuples MI) from one protein. We also

compute the frequency of the seven amino acid categories

appearing on this protein. A protein sequence is repre-

sented as 84+ 28+ 7 = 119 features. Finally, we combine

the descriptors of two proteins to build a 238-dimensional

vector for representing each pair of proteins.

Normalized moreau-broto autocorrelation

It is well known that PPIs include four interaction modes,

usually expressed as electrostatic interaction, hydropho-

bic interaction, steric interaction and hydrogen bond.

Feng et al. [29] introduced an autocorrelation function

combining physicochemical properties of amino acids to

propose a feature representation method, which is used

to predict the types of membrane proteins. Inspired by

this method, we use the NMBAC to extract features from

protein sequences.

Six physicochemical properties of amino acid

The physicochemical properties we consider are

hydrophobicity (H), volumes of side chains of amino acids

(VSC), polarity (P1), polarizability (P2), solvent-accessible

surface area (SASA) and net charge index of side chains

(NCISC) of amino acid.

Values of these six physicochemical properties for each

amino acid are listed in Table 2 [30]. They are first nor-

malized to zero mean and unit standard deviation (SD) as

follows:

P
′
i,j =

Pi,j − Pj

Sj
(i = 1, 2, . . . , 20; j = 1, 2, . . . , 6.) (9)

where Pi,j is the value of descriptor j for amino acid type

i,Pj is the mean over 20 amino acids of descriptor value j,

and Sj is the corresponding SD.

Each protein can be translated into six vectors with

each amino acid represented by normalized values of six

descriptors. So, NMBAC [29] can be computed as follows:

AClag,j =
1

(n − lag)

n−lag
∑

i=1

(Xi,j × Xi+lag,j)(i = 1, 2, . . . ,

n − lag; j = 1, 2, . . . , 6.)

(10)

where j represents one descriptor of six descriptor, i is the

position in protein sequence X, n is the length of the pro-

tein sequence and lag is the sequential distance between

one residue and another, a certain number of residues

away (lag = 1, 2, . . . , lg), and lg is a parameter determined

by an optimization procedure to be described.

Inspired by AC [12], we select the optimal value of lag

from 1 to 30. We can get 30×6 = 180 dimensional vector.

We also compute the frequency of 20 amino acids appear-

ing on this sequence. As a result, a protein sequence is

represented as 30 × 6 + 20 = 200 features. Finally, we
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Table 2 Original values of six physicochemical properties of 20

amino acid types

Amino acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187

C 0.29 44.6 5.5 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382

E -0.74 62 12.3 0.151 1.862 0.006802

F 1.19 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 9 0 0.881 0.179052

H -0.4 79 10.4 0.23 2.025 -0.01069

I 1.38 93.5 5.2 0.186 1.81 0.021631

K -1.5 100 11.3 0.219 2.258 0.017708

L 1.06 93.5 4.9 0.186 1.931 0.051672

M 0.64 94.1 5.7 0.221 2.034 0.002683

N -0.78 58.7 11.6 0.134 1.655 0.005392

P 0.12 41.9 8 0.131 1.468 0.239531

Q -0.85 80.7 10.5 0.18 1.932 0.049211

R -2.53 105 10.5 0.291 2.56 0.043587

S -0.18 29.3 9.2 0.062 1.298 0.004627

T -0.05 51.3 8.6 0.108 1.525 0.003352

V 1.08 71.5 5.9 0.14 1.645 0.057004

W 0.81 145.5 5.4 0.409 2.663 0.037977

Y 0.26 117.3 6.2 0.298 2.368 0.023599

combine descriptors of two proteins, and build a 400-

dimensional vector to represent each pair of proteins by

NMBAC.

Random forest classifier

RF is an algorithm for classification developed by Leo

Breiman [31], which uses an ensemble of classification

trees. Each classification tree is built by using a bootstrap

sample of training data, and each split candidate set is a

random subset of variables. RF uses both bagging (boot-

strap aggregation) and random variable selection for tree

building. Each classification tree is unpruned to obtain

low-bias trees. The bagging and random variable selection

can cause low correlation of individual trees. Therefore,

RF has excellent performance in classification tasks.

In this paper, the feature space of each pair of proteins is

composed of MMI and NMBAC. Totally, there are 238 +
400 = 638 features to be encoded to represent each pair

of proteins. We define a 638-dimentional feature vector

F = (x1, x2, . . . , x638) as the input data of RF model. The

class label t of interacting pair or non-interacting pair is

set as 1 or −1, respectively. If the number of cases in the

training set is N, the sample is built by randomly choosing

N cases from the original data, but with replacement. This

sample will be the training set for growing the tree. There

areM input variables, a numberm ≪ M is specified such

that at each node, m variables are selected at random out

ofM and the best split on thesem is used to split the node.

The value ofm is held constant during the forest growing.

Each tree is grown to the largest extent possible without

pruning. For the new test sample, the classification result

can be obtained by a voting method on these trees.

Results

We test our method on several different PPIs

datasets to evaluate the performance of our proposed

approach, including S.cerevisiae,H .pylori, human8161,

C.elegans,E.coli, human1412 and M.musculus dataset.

First, we independently analyze the performance of two

protein representations, such as MMI and NMBAC.

Second, we compare our method with some outstanding

methods on the S.cerevisiae,H .pylori and human8161
datasets. Then, we use the S.cerevisiae PPIs dataset to

construct a model to predict other five independent

species PPIs datasets. Our proposed method achieves

a high performance on the S.cerevisiae,H .pylori and

human8161 datasets, so we evaluate the prediction perfor-

mance of our model on five independent testing datasets.

Our experiments suggest that experimentally identified

interactions in one organism are able to predict interac-

tions in other organisms. We also test our method on

two special yeast and human PPIs datasets. In addition,

we test our method on three important PPIs networks,

and compare it with the state-of-the-art methods. We

use our primary experimental information to predict

real PPIs network, which is assembled by pairwise PPIs

data.

PPIs datasets

The first PPIs dataset, described by You et al. [16], is

downloaded from yeast S.cerevisiae core subset in the

Database of Interacting Proteins (DIP) [11]. A protein

with fewer than 50 residues or having more than 40 per-

cent sequence identity are removed, and the remaining

5594 pairs of proteins formed the golden standard positive

dataset (GSP). Non-interacting pairs are selected uni-

formly at random from the set of all interacting pairs that

are not known to interact. Interacting pairs with the same

subcellular localization information are then excluded.

Finally, the golden standard negative dataset (GSN) is

consisted of 5594 protein pairs, and their subcellular local-

ization are different. The GSP and GSN datasets contain a

total of 11188 protein pairs (half from the positive dataset

and half from the negative dataset).

The second PPIs dataset, described byMartin et al. [32],

is composed of 2916H .pylori protein pairs (1458 interact-

ing pairs and 1458 non-interacting pairs). The third PPIs

dataset is collected from the Human Protein References

Database (HPRD) as described byHuang et al. [19]. Huang
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Table 3 Analyze the performance of 2-tuples and 3-tuples MI on S.cerevisiae dataset

Feature Classifier ACC(%) SN(%) Spec(%) PPV(%) NPV(%) F1(%) MCC(%)

2-tuples MI RF 93.56±0.23 89.98±0.51 97.41±0.64 97.38±0.58 90.06±0.45 93.54±0.41 87.42±0.83

3-tuples MI RF 93.88±0.25 90.25±0.42 97.30±0.50 96.94±0.44 91.35±0.55 93.47±0.39 87.92±0.77

MMI RF 94.23±0.36 91.01±0.45 97.44±0.40 97.27±0.38 91.55±0.48 94.03±0.35 88.63±0.71

et al. constructed the human8161 dataset by 8161 pro-

tein pairs (3899 interacting pairs and 4262 non-interacting

pairs).

The C.elegans(4013 interacting pairs), E.coli(6954

interacting pairs), human1412(1412 interacting pairs),

M.musculus(313 interacting pairs), and H .pylori(1420

interacting pairs) datasets are mentioned by Zhou

et al. [14]. These species-specific PPIs datasets are

employed in our experiment to verify the effectiveness of

our proposed method.

Evaluation measurements

To test the robustness of our method, we repeat the

process of random selection of the training and test

sets, model-building and model-evaluating. This process

is five-fold cross validation. There are seven parame-

ters: overall prediction accuracy (ACC), sensitivity (SN),

specificity (Spec), positive predictive value (PPV), nega-

tive predictive value (NPV), weighted average of the PPV

and sensitivity (F score), Matthew’s correlation coefficient

(MCC). These parameters are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(11a)

SN =
TP

TP + FN
(11b)

Spec =
TN

TN + FP
(11c)

PPV =
TP

TP + FP
(11d)

NPV =
TN

TN + FN
(11e)

Fscore = 2 ×
SN × PPV

SN + PPV
(11f)

MCC =
TP × TN − FP × FN

√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

(11g)

where true positive (TP) is the number of true PPIs that

are predicted correctly; false negative (FN) is the number

of true PPIs that are predicted to be non-interacting pairs;

false positive(FP) is the number of true non-interacting

pairs that are predicted to be PPIs, and true negative(TN)

is the number of true non-interacting pairs that are pre-

dicted correctly.

Experimental environment

In this paper, our proposed sequence-based PPIs pre-

dictor is implemented using C++ and MATLAB. All

experiements are carried out on a computer with 2.5 GHz

6-core CPU, 32 GB memory and Windows operating sys-

tem. Two RF parameters, the number of decision trees and

split are 500 and 25.

Performance of PPIs prediction

We use eight different datasets to evaluate the per-

formance of our proposed method. The proposed

approach is compared with other methods on the

S.cerevisiae,H .pylori and human8161 datasets. Then, we

test our method on the human1412,M.musculus,H .pylori,

C.elegans, and E.coli datasets for PPIs prediction.

S.cerevisiae dataset

We use the first PPIs dataset used in You et al. [16] to

evaluate the performance of our model.

Analyzing 2-tuples and 3-tuplesMI To analyze the per-

formance of the 2-tuples and 3-tuples MI features by

testing the S.cerevisiae dataset. The results of prediction

for the 2-tuples and 3-tuples MI are shown in Table 3.

The accuracies for 2-tuples MI, 3-tuples MI and MMI are

93.56, 93.88 and 94.23 %, respectively. Obviously, the com-

binatorial approach of MMI achieves better performance

than either 2-tuples MI or 3-tuples MI.

Fig. 2 Accuracy of our method with NMBAC on different values of lag
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Table 4 Analyze the performance of MMI and NMBAC on S.cerevisiae dataset by RF Classifier

Feature ACC(%) SN(%) Spec(%) PPV(%) NPV(%) F1(%) MCC(%)

MMI 94.23±0.36 91.01±0.45 97.44±0.40 97.27±0.38 91.55±0.48 94.03±0.35 88.63±0.71

NMBAC 92.76±0.35 90.99±0.59 94.53±0.50 94.34±0.37 91.30±0.68 92.63±0.26 85.57±0.70

MMI+NMBAC(A-B order) 95.01±0.46 92.67±0.50 97.31±0.61 97.16±0.55 93.06±0.48 94.26±1.18 90.10±0.92

MMI+NMBAC(B-A order) 94.90±0.24 92.60±0.47 97.22±0.58 97.10±0.44 92.89±0.55 94.79±0.78 89.91±1.1

Selecting optimal lag The large value of lag =
1, 2, . . . , lg will result in more variables that account

for residue contacts with large distances apart in the

sequence. The maximal possible lg is the length of the

shortest sequence (50 amino acids) in the dataset. To

obtain the best lg, we test nine different values of lg(lg =
5, 10, 15, 20, 25, 30, 35, 40, 45). The results of these nine

values of lg on S.cerevisiae dataset are shown in Fig. 2.

As seen from the curve, the prediction accuracy increases

when lg increases from 5 to 30. However, it slightly

declines when lg increases from 30 up to 45. The best

prediction accuracy is 92.76 %, when lg is 30 amino

acids. NMBAC with lg less than 30 would lose some use-

ful features of protein sequences and larger values could

introduce noise instead of improving the prediction per-

formance. So, we select the optimal lag as 30 in our

study.

Analyzing MMI and NMBAC In order to understand

the contribution of different feature representations, we

evaluate the performance of MMI and NMBAC for PPIs

prediction. We use the S.cerevisiae dataset, which is ran-

domly partitioned into training and independent testing

sets via a five-fold cross validation. Each of the five sub-

sets acts as an independent holdout testing dataset for

the model trained with rest four subsets. The cross vali-

dation can minimize the impact of data dependency and

the reliability of experimental results can be improved.

The prediction result is showed in Table 4. The accura-

cies for MMI, NMBAC and ensemble representation are

94.23, 92.76 and 95.01 %, respectively. Obviously, MMI

has better performance than NMBAC. Using ensemble

representation, accuracy can be raised 0.78 %.

To consider the asymmetric of proteins, the forward

vector of one PPI is composed of two interacting proteins

(protein A and protein B), and the backward vector is

composed of reverse two interacting proteins (protein B

and protein A). Accuracies on forward and backward vec-

tors for PPIs prediction are 95.01 and 94.90 %, and the

prediction result is less changed.

5-fold cross-validation The prediction result of our

method on S.cerevisiae dataset is shown in Table 5. We

predict PPIs of S.cerevisiae dataset, and obtain accuracy,

precision, sensitivity, and MCC of 95.01, 97.31, 92.67, and

90.1 %, respectively. Standard deviations of these crite-

ria values are 0.46, 0.61, 0.5, and 0.92 %, respectively. High

accuracies and low standard deviations of these criterion

values show that our proposed model is effective and

stable for predicting PPIs.

Comparison with existing methods We compare the

prediction performance of our proposed method with

other existing methods on the S.cerevisiae dataset, as

showed in Table 6. It can be observed that high prediction

accuracy of 95.01 % is obtained from our proposed model.

We use the same S.cerevisiae PPIs dataset, and compare

our experimental result with methods proposed by You

et al. [16, 18, 30], Wong et al. [17], Guo et al. [12], Zhou

et al. [14] and Yang et al. [15], where Random Forest (RF),

Ensemble Extreme Learning Machines (EELM), Support

Vector Machine (SVM), Rotation Forest, Support Vector

Machine (SVM), or k-Nearest Neighbor (KNN) is per-

formed with MLD, AC+CT+ LD+MAC, MCD, PR-LPQ,

AC, ACC, or LD scheme as input feature vectors, respec-

tively. Their prediction accuracies are 94.72±0.43, 87.00±
0.29, 91.36 ± 0.36, 93.92 ± 0.36, 89.33 ± 2.67, 87.36 ±
1.38, 88.56±0.33, and 86.15±1.17 %, respectively, whereas

our prediction accuracy is 95.01±0.46 %. Our method has

Table 5 5-fold cross-validation result obtained by using our proposed method on S.cerevisiae dataset

Testing set ACC(%) SN(%) Spec(%) PPV(%) NPV(%) F1(%) MCC(%)

1 95.41 93.15 97.60 97.46 93.54 92.26 90.88

2 94.99 92.03 97.82 97.57 92.80 94.72 90.11

3 94.28 92.31 96.29 96.23 92.44 94.23 88.64

4 94.95 92.69 97.22 97.10 92.97 94.84 89.99

5 95.40 93.15 97.60 97.46 93.54 95.26 90.88

Average 95.01±0.46 92.67±0.5 97.31±0.61 97.16±0.55 93.06±0.48 94.26±1.18 90.1±0.92
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Table 6 Comparison of the prediction performance between our proposed method and other state-of-the-art works on S.cerevisiae

dataset

Method Feature Classifier ACC(%) SN(%) PPV(%) MCC(%)

Our method MMI+NMBAC RF 95.01±0.46 92.67±0.50 97.16±0.55 90.10±0.92

You’s work [18] MLD RF 94.72±0.43 94.34±0.49 98.91±0.33 85.99±0.89

You’s work [30] AC+CT+LD+MAC E-ELM 87.00±0.29 86.15±0.43 87.59±0.32 77.36±0.44

You’s work [16] MCD SVM 91.36±0.36 90.67±0.69 91.94±0.62 84.21±0.59

Wong’s work [17] PR-LPQ Rotation Forest 93.92±0.36 91.10±0.31 96.45±0.45 88.56±0.63

Guo’s work [12] ACC SVM 89.33±2.67 89.93±3.68 88.87±6.16 N/Aa

Guo’s work [12] AC SVM 87.36±1.38 87.30±4.68 87.82±4.33 N/Aa

Zhou’s work [14] LD SVM 88.56±0.33 87.37±0.22 89.50±0.60 77.15±0.68

Yang’s work [15] LD KNN 86.15±1.17 81.03±1.74 90.24±1.34 N/Aa

aN/A means not available

the highest prediction accuracy on the S.cerevisiae PPIs

dataset, compared to all above methods. Our method has

the best performance in other criteria as well. The sen-

sitivity is 92.67 ± 0.5 %, and the Matthew’s correlation

coefficient is 90.1±0.92 % in our result. On the S.cerevisiae

dataset, the MCC of our method is better than other

existing methods.

H.pylori dataset

In order to highlight the advantage of our method, we

also test it on the H .pylori dataset, which is described

by Martin et al. [32]. We compare the prediction per-

formance of our proposed method with other previ-

ous works including AC+CT+LD+MAC [30], MCD [16]

DCT+SMR [19], phylogenetic bootstrap [33], signature

products [32], HKNN [24], ensemble of HKNN [25] and

boosting. In Table 7, we can see that the average predic-

tion performance of our method, such as sensitivity, PPV,

Table 7 Comparison of the prediction performance between

our proposed method and other different methods on H.pylori

dataset

Methods ACC(%) SN(%) PPV(%) MCC(%)

Our method(MMI+NMBAC) 87.59 86.81 88.23 75.24

Our method(MMI) 85.42 85.22 87.70 70.71

Our method(NMBAC) 85.59 83.33 89.53 71.35

You’s work(AC+CT+LD+MAC) [30] 87.50 88.95 86.15 78.13

You’s work(MCD)[16] 84.91 83.24 86.12 74.40

Huang’s work(DCT+SMR) [19] 86.74 86.43 87.01 76.99

Phylogenetic bootstrap [33] 75.80 69.80 80.20 N/Aa

HKNN [24] 84.00 86.00 84.00 N/Aa

Signature products [32] 83.40 79.90 85.70 N/Aa

Ensemble of HKNN [25] 86.60 86.70 85.00 N/Aa

Boosting 79.52 80.37 81.69 70.64

aN/A means not available

accuracy and MCC are 87.59, 86.81, 88.23 and 75.24 %,

respectively. On the H .pylori dataset, the accuracy of our

method is better than all other methods tested. It is shown

that our method deeply extracts the contiguous amino

acid information from protein sequence. Furthermore,

our method combining MMI and NMBAC can increase

the prediction performance. The accuracies for MMI,

NMBAC and ensemble representation are 85.42, 85.59

and 87.59 %, respectively. The accuracy can be increased

by at least 2.00 % on the H .pylori dataset.

human8161 dataset

We also test our method on a human8161 dataset,

which is used by Huang et al. [19]. We compare the

prediction performance between our proposed method

and Huang’s work [19] on this dataset, as showed in

Table 8. Our method achieves 97.56 % accuracy, 96.57 %

sensitivity and 95.13 % MCC. However, Huang’s work

achieved 96.30 % accuracy, 92.63 % sensitivity and 92.82 %

MCC. Our method obtains better prediction result than

Huang’s work on human8161 dataset. Particularly, accura-

cies for MMI, NMBAC and ensemble representation are

97.56, 96.08 and 95.59 %, respectively. The accuracy can

be raised 1.48 % on human8161 dataset.

PPIs identification on independent across species dataset

If large number of physically interacting proteins in

one organism exist “co-evolved” relationship, their

Table 8 Comparison of the prediction performance between

our proposed method and other different methods on

human8161 dataset

Methods ACC(%) SN(%) PPV(%) MCC(%)

Our method(MMI+NMBAC) 97.56 96.57 98.30 95.13

Our method(MMI) 96.08 95.05 96.97 92.17

Our method(NMBAC) 95.59 94.06 96.94 91.21

Huang’s work(DCT+SMR) [19] 96.30 92.63 99.59 92.82
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Table 9 Prediction results on five independent species by our proposed method, based on S.cerevisiae dataset as the training set

Species Testing pairs
ACC(%)

MMI+NMBAC MMI NMBAC You’s work [18] Huang’s work [19] Zhou’s work [14]

E.coli 6954 92.80 89.01 90.13 89.30 66.08 71.24

C.elegans 4013 92.16 88.54 86.72 87.71 81.19 75.73

human1412 1412 94.33 91.31 90.23 94.19 82.22 76.27

H.pylori 1420 91.13 90.28 90.34 90.99 82.18 N/Aa

M.musculus 313 95.85 92.01 91.37 91.96 79.87 76.68

aN/A means not available

respective orthologs in other organisms interact as

well. In this section, we use all 11,188 samples of the

S.cerevisiae dataset as the training set and other species

datasets (E.coli,C.elegans, human1412,H .pylori and

M.musculus) as the test sets. The performance of these

five experiments is summarized in Table 9. The accu-

racies are 92.80, 92.16, 94.33, 91.13, and 95.85 % on the

E.coli,C.elegans, human1412,H .pylori and M.musculus

datasets, respectively. The result of our method is better

than other methods [14, 18, 19]. Overall, the accuracy

of ensemble representation is raised by 2.79 % than

single representation (MMI and NMBAC) on these five

independent species.

Two special PPIs datasets

Yungki Park and Edward M. Marcotte [20] proposed two

PPIs datasets to evaluate pair-input computational predic-

tions, including yeast and human data sets. We compare

the performance of our method with seven methods (M1-

M7) of pair-input computational predictions on the two

PPIs datasets: M1, a signature products-based method

proposed by Martin et al. [32] and classified by SVM;

M2, a protein sequence is described as in M1, and the

feature vector for a protein pair is formed by apply-

ing the metric learning pairwise kernel and classified by

SVM; M3, the SVM-based method of CT feature devel-

oped by Shen et al. [13]; M4, the SVM-based method of

AC feature developed by Guo et al. [12]; M5, the PPIs

feature is same asM4, and the classifier is the random for-

est; M6, a method developed by Pitre et al. [34]; M7, a

method originally developed for protein-RNA interaction

prediction [35]. We use the typical cross-validated (CV)

predictive performances for three distinct test classes

(C1,C2,C3). The performance of each method is sum-

marized as the average area under the receiver operating

characteristic curve (AUROC) ± its standard deviation

and the corresponding average area under the precision-

recall curve (AUPRC) ± its standard deviation.

Prediction results are shown in Tables 10 and 11. On the

yeast PPIs dataset, our method achieves 0.82, 0.82, 0.62

and 0.61 AUROC values on CV ,C1,C2, and C3, respec-

tively. Moreover, AUROC values on CV ,C1,C2, and C3

are 0.82, 0.82, 0.60 and 0.57 on the human dataset, respec-

tively. Our method obtains better prediction result than

M1-M7 on yeast and human datasets.

Yungki Park and Edward M. Marcotte [20] also con-

structed new yeast and human PPIs datasets by suppress-

ing the representational bias-driven learning. Prediction

results are shown in Table 12 and Table 13. On new

yeast PPIs dataset, our method achieves 0.65, 0.66, 0.60

Table 10 Comparison of prediction performance between our proposed method and other seven methods on the yeast dataset

Method
AUROC AUPRC

CV C1 C2 C3 CV C1 C2 C3

MMI+NMBAC 0.82±0.02 0.82±0.01 0.62±0.02 0.61±0.02 0.84±0.01 0.84±0.01 0.64±0.02 0.62±0.02

MMI 0.82±0.01 0.82±0.01 0.62±0.02 0.60±0.02 0.84±0.02 0.84±0.01 0.64±0.02 0.61±0.02

NMBAC 0.82±0.01 0.82±0.01 0.61±0.02 0.60±0.03 0.83±0.01 0.83±0.01 0.63±0.03 0.60±0.03

M1 0.82±0.01 0.82±0.01 0.61±0.02 0.58±0.03 0.83±0.02 0.83±0.01 0.62±0.02 0.57±0.03

M2 0.83±0.01 0.84±0.01 0.60±0.02 0.59±0.03 0.84±0.02 0.84±0.01 0.61±0.02 0.58±0.03

M3 0.61±0.01 0.61±0.01 0.53±0.01 0.50±0.01 0.65±0.02 0.65±0.02 0.56±0.03 0.53±0.07

M4 0.76±0.02 0.76±0.02 0.57±0.02 0.54±0.03 0.76±0.02 0.76±0.02 0.58±0.02 0.54±0.03

M5 0.80±0.02 0.80±0.01 0.58±0.01 0.55±0.02 0.78±0.02 0.78±0.01 0.57±0.02 0.54±0.02

M6 0.75±0.02 0.75±0.02 0.59±0.04 0.52±0.04 0.75±0.02 0.76±0.02 0.60±0.05 0.47±0.07

M7 0.58±0.02 0.58±0.01 0.54±0.02 0.52±0.03 0.60±0.02 0.60±0.02 0.55±0.02 0.53±0.02
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Table 11 Comparison of prediction performance between our proposed method and other seven methods on the human dataset

Method
AUROC AUPRC

CV C1 C2 C3 CV C1 C2 C3

MMI+NMBAC 0.82±0.01 0.82±0.01 0.60±0.01 0.57±0.02 0.83±0.01 0.83±0.01 0.60±0.01 0.56±0.02

MMI 0.81±0.01 0.81±0.01 0.59±0.01 0.56±0.02 0.82±0.01 0.83±0.01 0.59±0.01 0.55±0.01

NMBAC 0.81±0.01 0.82±0.01 0.60±0.01 0.57±0.02 0.83±0.01 0.83±0.01 0.60±0.01 0.56±0.02

M1 0.81±0.01 0.81±0.01 0.61±0.01 0.58±0.03 0.82±0.01 0.82±0.01 0.60±0.01 0.57±0.03

M2 0.85±0.01 0.85±0.01 0.60±0.01 0.58±0.02 0.85±0.00 0.85±0.01 0.60±0.01 0.56±0.02

M3 0.63±0.01 0.64±0.01 0.55±0.01 0.50±0.00 0.67±0.01 0.67±0.01 0.57±0.02 0.52±0.05

M4 0.77±0.01 0.77±0.01 0.57±0.02 0.53±0.02 0.77±0.01 0.77±0.01 0.56±0.01 0.53±0.02

M5 0.81±0.01 0.81±0.01 0.59±0.01 0.54±0.02 0.82±0.01 0.82±0.01 0.59±0.01 0.54±0.02

M6 0.76±0.01 0.77±0.01 0.64±0.01 0.59±0.02 0.79±0.01 0.79±0.01 0.67±0.01 0.59±0.02

M7 0.56±0.01 0.56±0.01 0.53±0.01 0.54±0.02 0.56±0.01 0.56±0.01 0.53±0.01 0.54±0.02

and 0.55 AUROC on CV ,C1,C2, and C3, respectively. On

average, our method obtains better prediction result than

M1-M7 on new yeast dataset. On new human dataset,

our proposed method achieves 0.61, 0.62, 0.57 and 0.53

AUROC on CV ,C1,C2, and C3, respectively. On aver-

age, our result is also better than M2-M7, but does not

outperformM1 on the new human dataset.

PPIs networks prediction

The useful application of PPIs prediction method is the

capability of predicting PPIs networks. Our method pre-

dicts three important PPI networks assembled by PPIs

pairwise. The one-core network of CD9 is the simplest

network, which is an important tetraspanin protein [21].

The result reveals that 14 of all 16 PPIs could be identified

by our method, and accuracy is 87.50 %. Comparing to

Shen’s work [13], accuracy of our method is raised 6.25 %.

Results are shown in Fig. 3, and the dark blue lines are true

prediction, and red lines are false prediction.

The Ras-Raf-Mek-Erk-Elk-Srf pathway is a multiple-

core network that has been implicated in a variety of

cellular processes [22]. There are 189 PPIs in this net-

work, 174 PPIs are predicted correctly by our method.

Comparing to Shen’s work, accuracy is raised 2.06 %. The

prediction result and Ras-Raf-Mek-Erk-Elk-Srf pathway

are shown in Fig. 4. The dark blue lines are true prediction,

and red lines are false prediction.

TheWnt-related network is a typical crossover network,

and its related pathway is essential in signal transduction.

Ulrich et al. [23] has demonstrated the protein interaction

topology of Wnt-related network. Shen et al. [13] have

tested their method on the network. The accuracy of their

method is 76.04 % in the network: there are 96 PPIs in

this network, and 73 PPIs are predicted correctly by their

method. We also try to predict PPIs in the Wnt-related

network. The prediction result shows that 91 PPIs among

all 96 PPIs in the network are discovered by our method,

and the accuracy is 94.79 %, which is better than Shen’s

Table 12 Comparison of prediction performance between our proposed method and other seven methods on new yeast dataset,

suppressing representation bias-driven learning

Method
AUROC AUPRC

CV C1 C2 C3 CV C1 C2 C3

MMI+NMBAC 0.65±0.02 0.66±0.02 0.60±0.02 0.55±0.02 0.67±0.02 0.68±0.02 0.60±0.02 0.55±0.02

MMI 0.64±0.02 0.65±0.01 0.60±0.02 0.55±0.02 0.66±0.02 0.68±0.01 0.60±0.02 0.54±0.02

NMBAC 0.63±0.02 0.64±0.02 0.59±0.02 0.54±0.03 0.65±0.02 0.66±0.02 0.59±0.02 0.54±0.02

M1 0.64±0.01 0.64±0.01 0.62±0.02 0.57±0.04 0.65±0.01 0.65±0.01 0.61±0.02 0.56±0.03

M2 0.61±0.01 0.61±0.02 0.62±0.02 0.58±0.03 0.61±0.01 0.61±0.02 0.62±0.02 0.57±0.03

M3 0.54±0.01 0.55±0.01 0.53±0.01 0.50±0.01 0.60±0.02 0.60±0.01 0.56±0.03 0.53±0.07

M4 0.55±0.02 0.55±0.02 0.54±0.02 0.51±0.02 0.53±0.02 0.53±0.01 0.53±0.02 0.51±0.02

M5 0.60±0.02 0.60±0.01 0.55±0.02 0.52±0.02 0.61±0.02 0.61±0.01 0.55±0.02 0.51±0.02

M7 0.55±0.02 0.54±0.01 0.54±0.02 0.53±0.03 0.55±0.02 0.55±0.01 0.54±0.02 0.53±0.02
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Table 13 Comparison of prediction performance between our proposed method and other seven methods on new human dataset,

suppressing representation bias-driven learning

Method
AUROC AUPRC

CV C1 C2 C3 CV C1 C2 C3

MMI+NMBAC 0.61±0.01 0.62±0.01 0.57±0.02 0.53±0.01 0.64±0.01 0.65±0.01 0.58±0.02 0.53±0.01

MMI 0.61±0.01 0.62±0.01 0.57±0.01 0.53±0.01 0.64±0.01 0.65±0.01 0.58±0.01 0.53±0.01

NMBAC 0.59±0.01 0.60±0.01 0.56±0.01 0.52±0.02 0.62±0.01 0.63±0.01 0.56±0.01 0.52±0.01

M1 0.64±0.01 0.65±0.01 0.61±0.01 0.57±0.02 0.66±0.01 0.67±0.01 0.61±0.02 0.56±0.02

M2 0.59±0.01 0.60±0.01 0.60±0.01 0.57±0.02 0.60±0.01 0.61±0.01 0.59±0.01 0.55±0.01

M3 0.54±0.01 0.55±0.01 0.53±0.01 0.50±0.00 0.61±0.01 0.61±0.01 0.56±0.02 0.52±0.05

M4 0.56±0.01 0.56±0.01 0.54±0.01 0.52±0.02 0.54±0.01 0.54±0.01 0.53±0.01 0.52±0.01

M5 0.59±0.01 0.60±0.01 0.56±0.01 0.53±0.01 0.63±0.01 0.64±0.01 0.57±0.01 0.53±0.01

M7 0.55±0.01 0.55±0.01 0.53±0.01 0.53±0.03 0.55±0.01 0.55±0.01 0.53±0.01 0.54±0.02

method [13]. The prediction result and Wnt-related net-

work are shown in Fig. 5. The dark blue lines are true

prediction, and red lines are false prediction.

Discussion

Although many computational methods have been used

to predict PPIs, the effectiveness of previous prediction

models can still be improved. Existing methods that fail to

take into account local amino acid environments are nei-

ther reliable nor robust, therefore we propose a Conjoint

Triad method that accounts for the properties of each

amino acid when accompanied by its two vicinal peptide

amino acids.

We use one PPIs dataset to construct a model to predict

other five independent species PPIs datasets. This find-

ing indicates that the proposed model can be successfully

applied to other species for which experimental PPIs data

is not available. It should be noticed that the biological

Fig. 3 An one-core network for the CD9 network

hypothesis of mapping PPIs from one species to another

species is that large numbers of physically interacting

proteins in one organism are co-evolved.

The most useful application of PPIs prediction method

is its capability of predicting PPIs networks. Accurately

predicting PPI networks is the most important issue for

PPI predictionmethods.We extend ourmethod to predict

three real important PPIs networks: one-core network,

multiple-core network and crossover network. General

PPIs networks are crossover networks, so our method is

useful in practical applications. All these results demon-

strate that our proposed method is a very promising and

useful support tool for future proteomics research. Main

improvements of the proposed method come from adopt-

ing an effective feature extractionmethod that can capture

useful protein sequence information. In the future work,

we will extend our method to predict other important

PPIs networks.

Conclusions

In this paper, we develop a new method for predict-

ing PPIs using primary sequences of two proteins. The

prediction model is constructed based on random forest

and ensemble feature representation scheme. In addition,

we use MMI to improve the performance in predict-

ing PPIs. For the performance evaluation, our method

is applied to S.cerevisiae PPIs dataset. The prediction

result shows that our method achieves 95.01 % accu-

racy and 92.67 % sensitivity. To further demonstrating

the effectiveness of our method, we also use H .pylori

PPIs dataset. Our method achieves 87.59 % accuracy and

86.81 % sensitivity. On human8161 dataset, the experi-

mental result shows that our method achieves 97.56 %

accuracy and 96.57 % sensitivity. We use S.cerevisiae PPIs

dataset to construct a model to predict other five inde-

pendent species PPIs datasets. Our proposed method

achieves 92.80, 92.16, 94.33, 91.13, and 95.85 % accuracies
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Fig. 4 A multiple-cores network for the Ras-Raf-Mek-Erk-Elk-Srf pathway

Fig. 5 A crossover network for the Wnt-related pathway
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on E.coli,C.elegans, human1412,H .pylori and M.musculus

datasets, respectively. We extend our method to predict

three real important PPIs networks, and accuracy of our

method is increased 6.25, 2.06 and 18.75 % compared with

CT. The prediction ability of our approach is better than

that of other existing PPIs prediction methods.
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