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Abstract. We propose a new method for predicting protein secondary structure of a given amino acid sequence,
based on a training algorithm for the probability parameters of a stochastic tree grammar. In particular, we
concentrate on the problem of predictingβ-sheet regions, which has previously been considered difficult because
of the unbounded dependencies exhibited by sequences corresponding toβ-sheets. To cope with this difficulty, we
use a new family of stochastic tree grammars, which we call Stochastic Ranked Node Rewriting Grammars, which
are powerful enough to capture the type of dependencies exhibited by the sequences ofβ-sheet regions, such as the
‘parallel’ and ‘anti-parallel’ dependencies and their combinations. The training algorithm we use is an extension of
the ‘inside-outside’ algorithm for stochastic context-free grammars, but with a number of significant modifications.
We applied our method on real data obtained from the HSSP database (Homology-derived Secondary Structure
of Proteins Ver 1.0) and the results were encouraging: Our method was able to predict roughly 75 percent of the
β-strands correctly in a systematic evaluation experiment, in which the test sequences not only have less than 25
percent identity to the training sequences, but are totally unrelated to them. This figure compares favorably to the
predictive accuracy of the state-of-the-art prediction methods in the field, even though our experiment was on a
restricted type ofβ-sheet structures and the test was done on a relatively small data size. We also stress that our
method can predict thestructureas well as the location ofβ-sheet regions, which was not possible by conventional
methods for secondary structure prediction. Extended abstracts of parts of the work presented in this paper have
appeared in (Abe & Mamitsuka, 1994) and (Mamitsuka & Abe, 1994).

Keywords: Stochastic tree grammars, protein secondary structure prediction, beta-sheets, maximum likelihood
estimation, minimum description length principle, unsupervised learning.

1. Introduction

Protein is made of a sequence of amino acids that isfoldedinto a three-dimensional struc-
ture. Proteinsecondarystructures are relatively small groups of protein structures exhibiting
certain notable and regular characteristics, that function as intermediate building blocks of
the overall three-dimensional structure and can be classified into three types;α-helix, β-
sheet, and others. In the present paper, we propose a new method for predicting the protein
secondary structure of a given amino acid sequence, based on a classification rule automat-
ically learned from a relatively small database of sequences whose secondary structures
have been experimentally determined. Among the above three types, we concentrate on
the problem of predicting theβ-sheet regions in a given amino acid sequence. Our method
receives as input amino acid sequences known to correspond toβ-sheet regions, and trains

* Both authors contributed equally to this work.
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the probability parameters of a certain type ofstochastic tree grammarso that its distribu-
tion best approximates the patterns of the input sample. Some of the rules in the grammar
are intendeda priori for generatingβ-sheet regions and others for non-β-sheets. After
training, the method is given a sequence of amino acids withunknownsecondary structure,
and uses the learned rules to predict regions that correspond toβ-sheet rules, based on the
most likelyparse for the input sequence.

The problem of predicting protein structures from their amino acid sequences is prob-
ably the single most important problem in genetic information processing, with immense
scientific significance and broad engineering applications. Recently, increasing attention
has been given to the methods for three-dimensional structural prediction that attempt to
predict the entire protein structure, such as ‘homology modeling’ (c.f., May & Blundell,
1994) and ‘inverse folding’ (c.f. Wodak & Rooman, 1993). These methods are based on
alignment/scoring of the test sequence against sequences with known structure, and there-
fore are not effective for those sequences having less than 25 percent sequence similarity
to the training sequences (Sander & Schneider, 1991). At the other end of the spectrum is
proteinsecondarystructure prediction, which is general in the sense that it does not rely on
alignment with sequences having known structure and hence can be applied on sequences
having little or no sequence similarity, but it also provides less information. The present
paper aims at providing a general method that can be applied to sequences with less than
25 percent sequence similarity, and yet provides more structural information.

The classical problem of secondary structure prediction involves determining which re-
gions in a given amino acid sequence correspond to each of the above three categories
(Qian & Sejnowski, 1988; Rost & Sander, 1993; Cost & Salzberg, 1993; Barton, 1995).
There have been several approaches for the prediction ofα-helix regions using machine
learning techniques that have achieved moderate success. Prediction rates between 70 to 80
percent, varying depending on the exact conditions of experimentation, have been achieved
by some of these methods (Mamitsuka & Yamanishi, 1995; Muggleton, King, & Sternberg,
1992; Kneller, Cohen, & Langridge, 1990). The problem of predictingβ-sheet regions,
however, has not been treated at a comparable level. This asymmetry can be attributed to the
fact thatβ-sheet structures typically range over several discontinuous sections in an amino
acid sequence, whereas the structures ofα-helices are continuous and their dependency
patterns are more regular.

To cope with this difficulty, we use a certain family of stochastic tree grammars whose ex-
pressive powers exceed not only that of hidden Markov models, but also stochastic context-
free grammars (SCFGs).1 Context-free grammars are not powerful enough to capture the
kind of long-distance dependencies exhibited by the amino acid sequences ofβ-sheet re-
gions. This is because theβ-sheet regions exhibit ‘anti-parallel’ dependency (of the type
‘abccba’), ‘parallel’ dependency (of the type ‘abcabc’), and, moreover, various combina-
tions of them (e.g., as in ‘abccbaabcabc’). The class of stochastic tree grammars that we
employ in this paper, the Stochastic Ranked Node Rewriting Grammar (SRNRG), is one of
the rare families of grammatical systems that have both enough expressive power to cope
with all of these dependencies and at the same time enjoy relatively efficient parsability and
learnability.2
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The Ranked Node Rewriting Grammars (RNRG) were briefly introduced in the context of
computationally efficient learnability of grammars by Abe (1988), but its formal properties
as well as basic methods such as parsing and learning algorithms were left for future
research. The discovery of RNRG was inspired by the pioneering work of Joshi, Levy, and
Takahashi (1975) and of Vijay-Shanker and Joshi (1985) on a tree grammatical system for
natural language called ‘Tree Adjoining Grammars’, but RNRG generalizes tree adjoining
grammars just in a way that is suited to capture the type of dependencies present in the
sequences inβ-sheet regions. For example, tree adjoining grammars can handle a single
parallel dependency, which cannot be handled by context-free grammars, but cannot deal
with a complicated combination of anti-parallel and parallel dependencies. All of such
dependencies can be captured by some members of the RNRG family.

The learning algorithm we use is an extension of the ‘inside-outside’ algorithm for the
stochastic context-free grammars (Jelinik, Lafferty, & Mercer, 1990), and is also related
to the extension of the inside-outside algorithm developed for the stochastic tree adjoin-
ing grammars by Schabes (1992). These are all iterative algorithms guaranteed to find a
local optimum for the maximum likelihood settings of the rule application probabilities.
We emphasize here that our algorithm learns the probability parameters of agivengram-
mar, andnot the structure of that grammar.3 Perhaps the most serious difficulty with our
method is the amount of computation required by the parsing and learning algorithms.4

The computational requirement of the learning algorithm is brought down drastically by
using the so-called ‘bracketing’ technique. That is, when training an SRNRG fragment
corresponding to a certainβ-sheet region, rather than feeding the entire input sequence to
the learning algorithm, it receives the concatenation of just those substrings of the input
sequence that correspond to theβ-sheet region. In contrast, the parsing algorithm must
process the entire input string, as it clearly does not know in advance which substrings
in the input sequence correspond to theβ-sheet region. Hence most of the computational
requirements are concentrated in the parsing algorithm.

In order to reduce the computational expense of parsing, we have restricted the form of
grammars to a certain subclass of RNRG that we call ‘linear RNRG,’ and we have devised
a simpler and faster algorithm for this subclass. This subclass is obtained by placing the
restriction that the right-hand side of any rewrite rule contains at most one occurrence of
a non-terminal, excepting lexical non-terminals. This significantly simplifies the parsing
and learning algorithms, as the computation of each entry in the parsing table becomes
much simpler. In addition, we parallelized our parsing algorithm and implemented it on
a 32-processor CM-5 parallel machine. We were able to obtain a nearly linear speed-up,
which let the system predict the structure of a test sequence of length 70 in about nine
minutes, whereas the same task took our sequential algorithm almost five hours.

We also employed a method of reducing the alphabet size5 (i.e., the number of amino
acids) by clustering them (at each residue position), using MDL (minimum description
length) approximation (Rissanen, 1986) and their physico-chemical properties, gradually
through the iterations of the learning algorithm.6 That is, after each iteration of the learning
algorithm, the system attempts to merge a small number of amino acids, if doing so reduces
the total description length (using the likelihood calculation performed up to that point).
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We tested our method on real data obtained from the HSSP (Homology-derived Secondary
Structure of Proteins Ver 1.0, Sander & Schneider, 1991) database of the European Molecu-
lar Biology Laboratory.7 The results indicate that the method can capture and generalize the
type of long-distance dependencies that characterizeβ-sheets. Using an SRNRG trained
by data for a particular protein (consisting of a number of sequences aligned to that protein
sequence in HSSP), the method was able to predict the location and structure ofβ-sheets
in test sequences from a number of different proteins, which have similar structures but
have less than 25 percent pairwise sequence similarity to the training sequences. Such a
prediction problem belongs to what is sometimes referred to in the literature as the ‘Twilight
Zone’ (Doolittle et al., 1986), where alignment is no longer effective.

Furthermore, we conducted a systematic evaluation experiment in which proteins used
for training and those for testing had almost no sequence similarityand their structures
had no apparent relationship. Our method was able to identify roughly 75 percent of the
β strands as such, 80 percent of which were predicted correctly including their orientation
with respect to the sterically neighboring strand. With respect to the more usual measure
of residue-wise prediction accuracy of the binary classification problem (distinguishing
betweenβ-sheet regions from non-β-sheet regions), our method achieved about 74 percent.
This figure is comparable to the state-of-the-art prediction methods in the literature, although
our experiment involved only a certain restricted type ofβ-sheet structures and the testing
was done on relatively small amounts of data.

We emphasize that, unlike previous methods for secondary structure prediction, our ap-
proach can predict thestructureof theβ-sheet, namely the locations of the hydrogen bonds.

2. Stochastic tree grammars andβ-sheet structures

2.1. Stochastic ranked node rewriting grammars

We will first informally describe the Ranked Node Rewriting Grammar (RNRG) formalism
and then give its definition in full detail. An RNRG is a tree-generating system that consists
of a single tree structure called thestarting tree and a finite collection of rules that rewrite
a node in a tree with an incomplete tree structure. The node to be rewritten must be
labeled with anon-terminalsymbol, whereas the tree structure can be labeled with both
non-terminal and terminal symbols. Here we require that the node being rewritten has the
same number of child nodes (called the ‘rank’ of the node) as the number of ‘empty nodes’
in the incomplete tree structure. After rewriting, the children of the node are attached to
these empty nodes in the same order as before rewriting. The tree language generated by an
RNRG grammar is the set of all trees whose nodes are labeled solely withterminalsymbols
that can be generated from the starting tree by a finite number of applications of its rewrite
rules. The string language of the grammar is the set ofyields from the trees in its tree
language, namely the strings that appear on the leaves of the trees, read from left to right.

We will now give detailed definitions. (i) The set of labeled directed trees over an alphabet
Σ is denotedTΣ. (ii) The rankof an “incomplete” tree is the number of empty nodes in it.
(iii) The rank of a node is the number of direct descendants. (iv) Therank of a symbol is
defined if the rank of any node labeled by it is always the same and equals that rank. (v) A
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ranked alphabetis one in which every symbol has a rank. (vi) We writerank(x) for the
rank ofx, be it a node or a symbol.

Definition. A ranked node rewriting grammarG is a quintuple〈ΣN ,ΣT , ], βG, RG〉,
where:

(i) ΣN is a ranked nonterminal alphabet.

(ii) ΣT is a terminal alphabet disjoint fromΣN . We letΣ = ΣN ∪ ΣT .

(iii) ‘ ]’ is a distinguished symbol distinct from any member ofΣ, indicating “an empty
node.” 8

(iv) βG is a labeled tree overΣ. We say thatβG is the ‘starting tree’ of the grammar.

(v) RG is a finite set of rewrite rules:RG ⊂ {〈A,α〉 | A ∈ ΣN & α ∈ TΣ∪{]} &
rank(A) = rank(α)}. Henceforth, we writeA→ α for rewrite rule〈A,α〉.

(vi) rank(G) = max {rank(A) | A ∈ ΣN}.

We emphasize that the distinction between nonterminal symbols and terminal symbols
described above does not coincide with that between internal nodes and frontier nodes of
derived trees. (See the example derivation given in Figure 4.)

Definition. We say ‘G derivesα from β in one step’ if there is 〈A, γ〉 ∈ RG such that
some nodeη of α is labeled byA, andβ is the tree obtained by replacingη in α by γ, with
the children ofη attached to the empty nodes inγ preserving their relative order. We write
α `G β and let`∗G denote the transitive closure of the`G relation.

The tree language of a grammar is defined as the set of treesover the terminal alphabet
that can be derived from the grammar. This is analogous to the way the string language of
a rewriting grammar is defined in the Chomsky hierarchy.

Definition. The tree language and string language of an RNRG G, denoted T(G) and L(G),
respectively, are defined as:

T (G) = {β ∈ TΣT | βG `∗G β}
L(G) = {yield(β) | β ∈ T (G)}.

If we now place an upper bound, sayk, on the rank of a node that can be rewritten, we
obtain a family of grammars, RNRG(k), each of which has varying expressive power.

Definition. For eachk ∈ N we let RNRG(k) = {G ∈ RNRG | rank(G) ≤ k }. For each
k ∈ N we let RNRL(k) = {L(G)|G ∈ RNRG(k)}.

In the ‘RNRG hierarchy’ defined above, one can easily verify that RNRL(0) equals the
class of context-free languages, and RNRL(1) equals the class of tree adjoining languages.
Furthermore, for anyk ≥ 2, RNRL(k) properly contains RNRL(k − 1). For exam-
ple, for eachk, RNRL(k) contains the2(k + 1) count language, namely the language
{an1an2 ...an2(k+1)|n ∈ N}, but RNRL(k − 1) does not. We now give some examples of
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Figure 1. RNRG(1) grammarG1 generating{wwRwwR|w ∈ {a, b}}.
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Figure 2. Derivation of ‘abbaabba’ by an RNRG(1) grammar.

RNRG grammars. The languageL1 = {wwRwwR|w ∈ {a, b}∗} is generated by the
RNRG(1) grammarG1 shown in Figure 1, wherewR denotes the string obtained by ‘re-
versing’w. 9 Figure 2 illustrates the way the derivation in RNRG takes place for the string
‘abbaabba’ by grammarG1. We note thatL1 can be generated by a tree adjoining grammar,
but the ‘three copy’ language,L2 = {www | w ∈ {a, b}∗} cannot (c.f., Vijay-Shanker &
Joshi, 1985). This language can be generated by the RNRG(2) grammarG2 shown in Fig-
ure 3. Figure 4 traces the derivation of the string ‘ababab’ byG2. Each of the trees shown
in Figure 4 is called a ‘partially derived tree.’ As the figure indicates, the tree structure in-
troduced by a particular rule may be split into several pieces in the final derived tree, unlike
usual parse trees in a context-free grammar. (The parts of the derivation tree generated by
ruleα1 are drawn with darker lines.) It is easy to see that the three occurrences of letter ‘a’



PREDICTING PROTEIN SECONDARY STRUCTURE 281

are generated by a single application of ruleα1 and its ‘cross-serial’ dependency therefore
is captured by a single rule.
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Figure 3. RNRG(2) grammarG2 generating{www|w ∈ {a, b}∗}.
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Figure 4. Derivation of ‘ababab’ by an RNRG(2) grammar.

Given the definition of RNRG, thestochasticRNRG is defined analogously to the way a
stochastic context-free grammar is defined from a context-free grammar. That is, associated
with each rewrite rule in a stochastic RNRG is itsrule application probability, which is
constrained so that, for each non-terminal, the sum of the application probabilities of all
the rewrite rules for that non-terminal equals unity. This way, each stochastic RNRG
can be viewed as a probabilistic generator of finite strings, and thus defines a probability
distribution over the set of all finite strings.10 For example, if we assign the probabilities
0.5, 0.3, and 0.2 to the three rewrite rulesα1, α2, andα3 in G2, then it generates the string
‘ababab’ with probability0.5 · 0.3 · 0.2 = 0.03.
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2.2. Modelingβ-sheet structures with RNRG

As we noted in the introduction, the prediction of theβ-sheet regions has been considered
difficult because of the long-distance dependencies exhibited by the corresponding regions.
This is illustrated by the schematic representation of typicalβ-sheet structures given in
Figure 5.

(a) (b)

(d)(c)

Figure 5. Some typicalβ-sheet structures.

The arrows indicate theβ-sheet strands and the line going through them represents the
amino acid sequence. Theβ-sheet structure is retained by hydrogen bonds (H bonds) be-
tween the corresponding amino acids in neighboring strands, so it is reasonable to suspect
that there are correlations between the amino acids in those positions. The structure exhib-
ited in Figure 5 (a) is known as an ‘anti-parallel’β-sheet, as the dependency follows the
patternabc . . . cba . . . abc . . . cba, where use of the same letter indicates that those positions
are connected by H bonds11 and believed to be correlated. In contrast, the structure ex-
hibited in Figure 5 (b) is known as a ‘parallel’β-sheet, since the dependency here is more
of the pattern ofabc . . . abc . . .. Both types of dependency can be captured by RNRG, in
particular,G1 in Figure 1 andG2 in Figure 3, respectively. (See also Figure 2 and Figure 4.)
There areβ-sheet structures that contain both of these types of dependency, such as that
shown in Figure 5 (c). Note that the structure of this figure is the same as theβ-sheet pattern
for one of the proteins used in our experiments, which appears in Figure 6.12

Theseβ-sheet structures can be handled by a grammar likeG1, except each of the trees
on the right-hand sides of the rules(α1) and(α2) have one of the terminal symbols (the
one on the right lower corner) missing. These structures can be combined to obtain larger
β-sheets, as is shown in Figure 5 (d), and can result in a high degree of complexity. If we
use an RNRG of a higher rank, however, such dependencies can be handled. For example,
the dependency pattern of Figure 5 (d) can be expressed by the RNRG(3) grammar given
in Figure 7.
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Figure 6. Three-dimensional view of an actualβ-sheet structure.
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Figure 7. An RNRG(3) grammar generating{wwRwwRwwRwwR|w ∈ {a, b}∗}.

Note also that there can be insertions of irrelevant (i.e., non-β-sheet) regions between the
sub-regions, resulting in a sequence likeabcxyyzxabczzxz, wherex, y, z are irrelevant
letters. The irrelevant lettersx can be introduced by simple rank 1 rewrite rules of the form
S → t(x, S(])) andS → t(S(]), x), where] denotes an empty node.
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3. Learning and parsing of a restricted subclass

The ‘linear’ subclass of SRNRG we use in this paper is the subclass satisfying the following
three constraints: (i) The right-hand side of each rewrite rule contains at most one node
labeled with a non-terminal symbol of rank greater than zero; (ii) Every other non-terminal
(of rank 0) is a specially designated ‘lexical’ non-terminal, sayA, such that all rewrite
rules forA are lexical rules, namely rules of the formA → a for somea ∈ ΣT ; (iii)
Each ‘consecutive’ portion of the right-hand side of every rewrite rule contains at most one
lexical non-terminal. For rank 1 SRNRG, in particular, this means that there is at most one
lexical non-terminal in each of the four corners (left up, left down, right up and right down)
of the unique (if any) non-terminal on the right-hand side. Examples of SRNRG of rank
1 satisfying these constraints can be found in Figure 10(a). Note that each occurrence of
a lexical non-terminal can be thought of as defining a distribution over the alphabet, and
this is written in as part of the rule in the figure. In our current scenario, in which the
terminal alphabet equals the amino acids, the rule application probabilities for these lexical
rules are called ‘amino acid generation probabilities.’ Some structural prediction methods
based on stochastic context-free grammars view the amino acid generation probabilities of
all lexical non-terminals in a given rule as part of ajoint probability distribution, making it
possible to capture thecorrelationsthat may exist between them (Sakakibara et al., 1994;
Eddy & Durbin, 1994). Although we treat the distribution at each non-terminal as being
independent, a comparable effect can be achieved by training multiple copies of the same
rule, as we report in subsection 4.2.

With the above three constraints, the parsing and learning algorithms can be significantly
simplified. For general SRNRG, the entries in the table used in the extended inside-outside
algorithm (indexed by a2(k + 1)-dimensional array) must be node-addresses of the tree
structures appearing in the rewrite rules of the grammar, paired with their probabilities of
generating the designated sections of the input string. With constraint (i), it suffices to place
just the non-terminals (and the rewrite rules in the case of parsing) in the table entries, paired
with their probabilities. These constraints also imply that the ‘yield’ of any particular rule
consists of at most2(k + 1) sections in the input string, and hence can be found in ‘one
shot.’ Note that, in a general SRNRG, there is noa priori limit on how many pieces the
yield of any given rule body can be divided into (though it is bounded above by a constant
depending on the grammar) and thus they cannot be found in ‘one shot’ even if all the
2(k + 1) tuples of sub-strings of the input string are inspected.

3.1. The learning algorithm

Our learning algorithm is an extension of the ‘inside-outside’ algorithm for stochastic
context-free grammars, which is itself an extension of the Baum-Welch algorithm (or the
‘forward-backward’ algorithm) for the hidden Markov models. All of these algorithms
are local optimization algorithms for the maximum likelihood settings of the rule appli-
cation probabilities in the input model or grammar. We emphasize again that a fixed
model/grammar is given as input – they are not learned from the data. For ease of expo-
sition, we will first explain the basic ideas behind the Baum-Welch algorithm for hidden
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Markov model (c.f., Levinson, Rabiner, & Sondhi, 1983) and then describe how it is ex-
tended for stochastic ranked node rewriting grammars.

The Baum-Welch algorithm consists of the procedures for calculating the ‘forward’ proba-
bilities and ‘backward’ probabilities, and for re-estimating the rule application probabilities
and symbol generation probabilities in terms of these probabilities. The forward probability
of a certain statei in an hidden Markov model at time stept is the probability that the model
generates the firstt symbols of the input sequence and arrives at statei. The backward
probability ofi′ at t′ is the probability that the model will generate the rest (all but the first
t′ symbols) of the input sequence given that it is now at statei′. Using these probabilities,
one can calculate the sum (over arbitrary time stept) of the probabilities that the model
is at statei at time t and goes toi′ at t + 1 and generates the entire input sequence, as
well as the sum of the probabilities that the model is at statei at timet and generates the
input sequence. The transition probability from statei to i′ is then re-estimated to be the
ratio between the above two probabilities, calculated using the probability parameter values
from the previous iteration. It is well-known (Levinson, Rabiner, & Sondhi, 1983) that this
re-estimation is guaranteed to increase the likelihood given to the input sample, and hence
iterative applications of this re-estimation results in a local optimum.

For both stochastic context-free grammars and stochastic RNRG, the forward probability
and the backward probability are generalized as ‘inside probability’ and ‘outside proba-
bility,’ which are no longertemporalnotions. That is, forward/backward probability is
defined for each position in the input string (which coincides with the time step), whereas
inside/outside probability will be defined for a sequence of positions, as we will define
shortly. Below, we will describe our training algorithm for the rank 1 stochastic RNRGs
that adhere to the three constraints specified above.

Let σ be the input amino acid sequence and letN be its length, and letσt denote the
t-th letter (amino acid) ofσ. Note that when we use the ‘bracketing’ technique,σ is a
concatenation of the substrings corresponding to theβ-sheet region of interest. We define
the ‘inside probability’ of non-terminalS at i, j, k, l on σ, written Inσ[S, i, j, k, l], to be
the sum of the probabilities of all partially derived trees whose root node is labeled byS
and whose (two discontinuous) yields match the sub-strings from thei-th to j-th and from
k-th to l-th letters ofσ. Similarly, we define the ‘outside probability’ of non-terminalS at
i, j, k, l, writtenOut[S, i, j, k, l], to be the sum of the probabilities of all partially derived
trees whose (three discontinuous) yields match the sub-strings from the first toi-th, from
j-th tok-th, and froml-th toN -th letters ofσ, and containS as the unique non-terminal.

Now letG be the input grammar, and letN(G) denote the set of non-terminals ofG. For
each rewrite ruler inG, letT (r) denote the rule application probability ofr, andL(r) and
R(r) the non-terminal of the left-hand side and the (unique) non-terminal on the right-hand
side ofr, respectively. Letnrf , f = 1, ..., 4, denote the number (0 or 1) of terminal symbols
at each of the four corners (left up, left down, right down, and right up) of the unique (if
any) non-terminal symbol in the right-hand side ofr, andP rf (α), α ∈ A (|A| = 20) denote
the generation probability of amino acidα at positionf of r.

Now we show how the inside and outside probabilities are calculated. The inside proba-
bilities at arbitrary index(i, j, k, l) can be defined recursively solely in terms of the inside
probabilities of its sub-intervals, so it can be calculated as long as one has already com-
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puted the inside probabilities at those(i′, j′, k′, l′) such thati ≤ i′, j′ ≤ j, k ≤ k′, l′ ≤ l.
The looping used in the procedure for calculating inside probabilities exhibited in Table 1
ensures that this condition is satisfied. The outside probabilities can be calculated in a

Table 1.Method for calculating the inside probabilities within the extended inside-outside algorithm.

For i := N to 1
For j := i toN

For k := N to j + 1
For l := k toN

For S ∈ N(G)

Inσ [S, i, j, k, l] =
∑

{r∈G|L(r)=S}

{ T (r) · Inσ [R(r), i+nr1, j−nr2, k+nr3, l−nr4]·

(P r1 (σi+1))n
r
1 (P r2 (σj−1))n

r
2 (P r3 (σk+1))n

r
3 (P r4 (σl−1))

nr4 }

similar fashion, as shown in Table 2.

Table 2.Method for calculating the outside probabilities within the extended inside-outside algorithm.

For i := 1 toN
For j := N to i+ 1

For k := j toN
For l := N to k + 1

For S ∈ N(G)

Outσ [S, i, j, k, l] =
∑

{r∈G|R(r)=S}

{ T (r) ·Outσ [L(r), i−nr1, j+nr2, k−nr3, l+nr4]·

(P r1 (σi−1))
nr1 (P r2 (σj+1))n

r
2 (P r3 (σk−1))

nr3 (P r4 (σl+1))n
r
4 }

Now if we letPrσ[r, i, j, k, l] denote the probability that the grammar generates the input
sequenceσ anduses ruler at the(i, j, k, l) position, then it can be calculated by the equality:

Prσ[r, i, j, k, l] =Outσ[L(r), i, j, k, l] · Inσ[R(r), i+nr1+1, j−nr2−1, k+nr3+1, l−nr4−1]
·T (r) · (P r1 (σi+1))n

r
1(P r2 (σj−1))n

r
2(P r3 (σk+1))n

r
3(P r4 (σl−1))n

r
4

Let Uσ(r) denote the ‘weighted average frequency’ of rewrite ruler, namely the average
frequency ofr in a single parse ofσ, weighted according to the generation probability of
each parse using the current setting of the probability parameters. Similarly, defineV r,fσ (α)
to be the weighted average frequency of amino acidα at positionf in rule r in a single
parse ofσ. More precisely, we define (we show the casef = 1 only for V r,fσ ):

Uσ(r) =

∑
i

∑
j

∑
k

∑
l Prσ[r, i, j, k, l]

P (σ)

V r,1σ (α) =

∑
i

∑
j

∑
k

∑
l

∑
σi+1=α

Prσ[r, i, j, k, l]

P (σ)
.
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Finally, fromUσ(r) andV r,fσ (α), the update values for the rule application probabilities
T (r) and the amino acid generation probabilitiesP rf (α) can be calculated by the formulas

T (r) =
∑
σ∈Ξ Uσ(r)∑

σ∈Ξ

∑
{r′∈G|L(r′)=L(r)} Uσ(r′)

P rf (α) =
∑
σ∈Ξ V

r,f
σ (α)∑

σ∈Ξ

∑
α′ V

r,f
σ (α′)

,

whereΞ denotes the input sample. The above process is repeated until some stopping
condition is satisfied, usually until the changes in the probability parameters become smaller
than a certain preset amount.

3.2. Reducing the alphabet size with MDL approximation

Since there are twenty amino acids and hence the alphabet size is twenty, it is difficult to
estimate the amino acid generation probabilities at each position with reasonable accuracy
with the small data size we have available in practice. Taking advantage of the fact that
‘similar’ amino acids tend to be easily substitutable, we cluster the amino acids at each
residue position to effectively reduce the alphabet size. The obvious trade-off that we must
resolve is between having a fine clustering, and thereby gaining high discriminability, and
having a coarse clustering, and thereby achieving more accurate estimation. In order to
resolve this trade-off, we make use of the MDL (minimum description length) principle
(Rissanen, 1986), which gives a criterion for an optimal clustering relative to a given data
size.

We now describe our clustering method in some detail. After each iteration of the learning
algorithm, the algorithm merges some of the amino acids at each lexical rule if the merge re-
duces the total description length (approximated using the probability parameters calculated
up to that point). For this purpose it makes use of the Euclidean distance between the 20
amino acids in the (normalized) two-dimensional space defined by their molecular weight
and hydrophobicity. At each iteration, it selects the two among the clusters from the previ-
ous iteration that areclosestto each other in the above Euclidean space and merges them
to obtain a single new cluster, but only if the merge reduces the following approximation
of ‘description length’:

−m
∑
c∈C

P (c) log
P (c)
|c| +

|C| logm
2

.

In the above, we letc ∈ C be the clusters,P (c) the sum of the generation probabilities for
amino acids in the clusterc, andm theeffectivesample size, namely the weighted frequency
of the lexical rule in question in the parses of the input sample, i.e.m =

∑
σ∈Ξ Uσ(r).

Note that the above approximation of ‘data description length’ by the average minus log-
likelihood using the current values of the probability parameters is accurate only if those
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probability values are reliable. The algorithm keeps merging clusters in this fashion, but
once it fails to merge one pair, it will not try to merge any other pair in the same iteration,
in order to ensure that the merge process does not take place too fast at an early stage when
the parameter estimation is particularly unreliable.

Figure 8(a) illustrates the distribution of the 20 amino acids in the two-dimensional
space defined by their molecular weights and hydrophobicity, based on the hydrophobicity
measure given by Fauchere and Pilska (1983). We chose these two dimensions because the
formation ofβ-sheet is considered to depend on the relative compatibility of corresponding
amino acids (i.e., facing one another within a strand), in terms of ‘size’ (molecular weight)
and ‘hydrophobicity.’13 Figure 8(b) shows an example of a clustering over them obtained
by our method at some residue position in one of our experiments. The clustering obtained
here is largely consistent with known classifications in the biochemistry literature (e.g.,
Taylor, 1986). Thus, our method gives a flexible clustering that is tailored to the conditions
of each residue position, and that is also biologically meaningful.
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Figure 8. (a) Distribution of 20 amino acids in the two-dimensional space, and (b) an example of a clustering
obtained by our method.

3.3. Parallel parsing and prediction

For predicting theβ-sheet regions of a test amino acid sequence whose secondary structure
is unknown, we use the stochastic tree grammar that has been trained by the learning
algorithm on a training data, and use it to parse the input sequence. We predict the regions
generated by the ‘β-sheet rules’ in the grammar in themost likelyparse of the input string
to beβ-sheet regions. The parsing algorithm can be easily obtained by replacing ‘

∑
’ by

‘max’ in the definition of the ‘inside’ algorithm, and retaining the most likely sub-parse at
any intermediate step.

As we noted in the introduction, we parallelized our parsing algorithm to run on a 32-
processor CM-5. In parallelizing this algorithm, we isolated the data dependency by in-
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troducing into the outmost loop a parameterd, which stands for the total length of all the
sub-strings that areinsidethose designated by the current indices. (d = (j− i)+ (l−k) in
the rank 1 case.) That is, we replace the first fourFor loops in the algorithm for calculating
the outside probabilities by the four loops shown in Table 3. This way, the computation

Table 3.For loops for parsing in parallel.

For d := N to 1
For i := 0 toN − d

For j := i+ 1 to i+ d
For l := i+ d toN

of all table entries for a givend can be performed in parallel. In particular, we allocate to
each processor the computation for a block of consecutive values ofi, each of sizedN/32e
or bN/32c, and let each of the processors request and receive necessary data from other
processors by message passing. Note that constraint (iii) of the linear subclass ensures that
for the computation of each entry (indexed byi, j, k, l) only those entries indexed by either
i or i ± 1 are needed. Hence, message passing is required only wheni is at an end of the
consecutive block, and only between neighboring processors, resulting in a large savings
in the amount of communication necessary between the processors.

We now examine the speed-up obtained by our parallel parsing algorithm on the CM-5
in our experiments. Figure 9(a) shows the processing time (for parsing) in seconds, for
input sequences of varying lengths, by our sequential parsing algorithm and by its parallel
implementation on CM-5. Figure 9(b) shows the speed-up factor achieved by the parallel
parsing algorithm as a function of the input length. For example, for input length of 70, our
parallel implementation ran 31.4 faster than the sequential version, a nearly linear speed-up
with 32 parallel processors.14
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Figure 9. (a) The processing time (in seconds) and (b) the speed-up factor.
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4. Experimental results

4.1. Cross-prediction with structurally similar proteins

We applied our method to real data obtained from the HSSP (Homology-derived Secondary
Structure of Proteins Ver 1.0) database (Sander & Schneider, 1991). In all of our experi-
ments, we used sequences listed in the PDBSELECT 25% list (Hoboem et al., 1992) for
both training and test data. The PDBSELECT 25% list is a database containing sequences
of protein with known structure possessing at most 25% sequence similarity with one
another, and thus it ensured that no test sequence had more than 25% sequence similarity
with any training data. For each of these sequences, we formed a ‘training data group’
by collecting the set ofaligned sequencesas having between 30 and 70 percent sequence
similarity, according to the HSSP database. In what follows, we sometimes say we use a
particular protein sequence as training data when we mean that we use all the sequences in
its training data group.

In our first experiment, we picked three different proteins, ‘Fasciculin’ (or ‘1fas’ in
the code used in PDBSELECT 25%), ‘Caldiotoxin’ (1cdta) and ‘Neurotoxin B’ (1nxb),
all of which are toxins. Although these three proteins have relatively similar structures
(their common structure was shown in Figure 6), their sequences have less than 25 percent
sequence similarity to one another, and hence alignment alone cannot detect this similarity.
We trained a stochastic RNRG with training data consisting ofbracketedsequences for one
of the three proteins, say 1fas, and used the acquired grammar to predict the location ofβ-
sheet regions in an amino acid sequence of another one of the three, either 1cdta or 1nxb. By
bracketingthe input sequences, we mean that we isolated the (discontinuous) sub-strings of
the training sequences that correspond toβ-sheets from the rest, and trained the probability
parameters of the ‘β-sheet rules’ in the grammar with them.15 The probability parameters
of the non-β-rules were set to be uniform. We then used the acquired stochastic RNRG
grammar to parse an amino acid sequence of either 1cdta or 1nxb, and predicted the location
of β-sheet regions according to where theβ-sheet rules are in the most likely parse. The
system predicted the location of all threeβ-strands contained in the test sequence almost
exactly (missing only one or two residues that were absent in all of the training data) in both
cases. We carried out the analogous runs for all (six) possible combinations of the training
data group and the test sequence from the three proteins. Our method was able to predict
all three of theβ-strands in all cases, except in predicting the location ofβ-sheet in the test
sequence for 1cdta based on the training data group of 1nxb: The system failed to identify
one of the threeβ-strands correctly in this case.

Figure 10(a) shows the part of the stochastic RNRG(1) grammar obtained by our learning
algorithm on the training set for 1fas that generates theβ-sheet regions. Note that, in the
figure, the amino acid generation probabilities at each position are written in a box. For
example, the distribution at the right upper corner in (α4) gives probability 0.80 to the
cluster{I, L, V } and probability 0.10 to the single amino acidY . The interpretation of the
grammar is summarized schematically in Figure 10(b). It is easy to see that the grammar
represents a class ofβ-sheets of type (c) in Figure 5. Each of the rules (α1), (α2), (α3),
(α4), (α6) and (α7) generates part of theβ-sheet region corresponding to a row of amino
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Figure 10. (a) A part of the acquired RNRG grammar and (b) its interpretation.

acids connected by H bonds and (α5) inserts an ‘extra’ amino acid that does not take part
in any H bond. Rule (α4) says that in the third (from the top) row, amino acidsI, L andV
are equally likely to occur in the leftmost strand, and it is very likely to beK in the middle
strand. Note thatI, L, andV have similar physico-chemical properties, and it is reasonable
that they were merged to form a cluster.

Figure 11(a) shows the most likely parse (derived tree) obtained by the grammar on a
test sequence of 1cdta. The shaded areas indicate the actualβ-sheet regions, which areall
correctly predicted. The seven types of thick lines correspond to the parts of the derived
tree generated by the seven rules shown in Figure 10(a). The structural interpretation of this
parse is indicated schematically in Figure 11(b), which is also exactly correct. Note that
the distributions of amino acids in the acquired grammar are quite well spread over many
amino acids. For example, none of the amino acids in the third strand of the test sequence,
except the last twoCs, receives a dominantly high probability. The clustering of amino
acids, therefore, was crucial for the grammar to predict the third strand of theβ-sheet in the
test sequence.

4.2. Capturing correlations with multiple rules

One apparent shortcoming of the experiment we just described is that only one copy of
each of the rules(α1), ..., (α7) was present in the trained grammar. As a result, each of the
acquired rules could capture the distributions of amino acids at each residue position, but
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Figure 11. (a) The parse of the test sequence and (b) its interpretation.

could not truly capture the correlations that exist between residue positions, even if they
are captured by a single rule. We conducted another experiment using exactly the same
data as in the above experiment, but that used multiple copies (two in particular) of each
of theβ-sheet rules(α1), ..., (α7). (Randomly generated numbers were used for the initial
values of their probability parameters.) In the acquired grammar, some rules were split into
a pair of rules that significantly differ from each other, while others became basically two
copies of the same rule. An example of a rule that was split is(α3) in Figure 10(a); the
two rules into which it split are shown in Figure 12(a). This split is meaningful because, in
the new grammar, the joint distribution over the two nodes at the top are seen to be heavily
concentrated on(K, {N,H}) and (N, {R,K}), which is finer than what we had in the
previous grammar({K,N}, {N,H,R,K}). This way, the grammar was able to capture
the correlation between these residue positions, which are far from each other in the input
sequence.

We used the grammar containing two copies each of theβ-sheet rules obtained using
training data for 1fas to predict a test sequence for both 1cdta and 1nxb. As before, the
locations of all threeβ-strands were predicted exactly correctly. Interestingly, distinct
copies of some of the split rules were used in the respective most likely parses for 1cdta
and 1nxb. For example, rule(α3-1) was used in the most likely parse for the test sequence
for 1cdta, and(α3-2) for 1nxb. It seems to indicate that the training sequences for 1fas
contained at least two dependency patterns for this bonding site, as shown in Figure 12(b):
The corresponding bonding site in 1cdta was of the first type and the site in 1nxb was of
the second type.

The point just illustrated is worth emphasizing. If one tried to capture this type of
correlation in bonding sites by a hidden Markov model, it would necessarily result in much
higher complexity. For example, suppose that eight bonding sites in a row (say each with
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Figure 12. (a) The two rules(α3) was split into and (b) their interpretations.

just two residue positions for simplicity) are split into two distinct rules. In a hidden Markov
model, the eight rules would have to be realized by two copies each of consecutive states –
sixteen states in a chain. Since there are28 = 256 possible combinations of rules to use,
the hidden Markov model would need 256 non-deterministic branches of state sequences,
each corresponding to a possible combination of the eight options. In the case of stochastic
tree grammar, we only needed2 × 8 rules. Clearly this huge reduction in complexity is
made possible by the richer expressive power of stochastic tree grammars.

4.3. Systematic performance evaluation

The experiments described so far involved proteins that do not have notable sequence sim-
ilarity but still share very similar structures. In this subsection, we will describe systematic
experiments we conducted in which the sequences used for training and those for testing
haveno apparent relation at all. In particular, we selected all proteins containing a four-
strandβ-sheet pattern of the type shown in Figure 5(a) in isolation (which we will call
‘type a’) satisfying a certain condition to ensure that they are all unrelated. For each of the
selected proteins, we formed a ‘data group’ consisting of aligned sequences for that protein
sequence. We then obtained a stochastic grammar fragment for each of the data groups,
using the sequences in that data group as training data. We then attempted to predict the
structure and location of theβ-sheet region in test sequences that are similarly selected
but unrelated to the training sequences, using the stochastic grammar fragments of all data
groups. We describe the details of this experiment below.
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Table 4.Training data used in the experiment.

PDB no. of
code protein alignments

1aak UBIQUITIN CONJUGATING ENZYME (E.C.6.3.2.19) 19
1apmE $C-/AMP$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) 107
1dlh B HLA-DR1 HUMAN CLASS II HISTOCOMPATIBILITY 20
1ppn PAPAIN CYS-25 WITH BOUND ATOM 56

4.3.1. The data

We again used the aligned data available in HSSP database. As training data, we used
sequences containing four-strand patterns of typea such that their aligned sequences are
reasonable as training data. More precisely, we usedall (and therefore unbiased) sequences
satisfying four conditions:

1. The ‘key sequence,’ to which the other sequences in the group are aligned, is that of
a protein contained in the PDBSELECT25% list (Hoboem et al., 1992). This ensures
that no two key sequences have 25% or more sequence homology.

2. It contains a four-strandβ-sheet pattern of typea in isolation, not as part of a larger
β-sheet pattern.

3. In at least 18 of the sequences aligned to the key sequence as having 30 % to 70 %
sequence similarity in HSSP,β-strands corresponding to all fourβ-strands in the key
sequence are present.

4. Eachβ-strand has length at least three.

We obtained four proteins in this way (containing one four-strand pattern each) which
we list in Table 4. We call the set of aligned data for each of the above proteins a ‘training
data group.’ Thus, our training data consist of a number of groups of sequences that are
similar and alignable within the groups, but that are dissimilar (< 25% homology) and
non-alignable across the groups.

The test data were similarly selected, except the additional condition on the aligned
sequences was replaced by a length bound. More precisely, we extracted all (and therefore
unbiased) sequences satisfying the four conditions:

1. It is contained in the PDBSELECT25% list.

2. It contains a 4-strandβ-sheet pattern of typea in isolation, not as part of a largerβ-sheet
pattern.

3. Its length does not exceed 120.

4. It is not contained in the training data.

We introduced the third condition for efficiency reasons. We obtained five test data in this
way, which are shown in Table 5.
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Table 5.Test data used in the experiment.

PDB
code protein

1bet BETA-NERVE GROWTH FACTOR
1bsaA BARNASE (G SPECIFIC ENDONUCLEASE) (E.C.3.1.27.-) MUTANT
1cska C-SRC KINASE (SH3 DOMAIN) (E.C.2.7.1.112)
1tfi TRANSCRIPTIONAL ELONGATION FACTOR SII
9rnt RIBONUCLEASE T=1= (E.C.3.1.27.3)

4.3.2. Training and prediction procedures

We manually constructed a tree grammar fragment (consisting only ofβ-sheet rules) for
each of the four training data groups, and then trained the probability parameters in it, using
as training data all the aligned sequences in that group. In doing so, we set the initial amino
acid distribution at each leaf node to be uniform. As we stated earlier, we employed the
bracketing technique, namely of extracting theβ-strand portions in the training data and
training theβ-sheet rules of each grammar fragment with them.

The prediction was done by analyzing the input sequence using each of the grammar
fragments trained on the training data groups, and taking the location and structural pattern
of the most likely analysis among them all, i.e., the analysis that was given the highest
probability. Henceforth, we refer to this prediction method as ‘MAX.’

4.3.3. The results

The results of these prediction experiments are shown in Table 6 (under the columns for
MAX). In the table, ‘#located’ denotes the number of strand positions predicted by MAX that
have non-empty intersections with the actualβ-strands of the test sequence, and ‘#paired’
denotes the number of strands among these, that are correctly paired with a sterically
neighboring strand, including their relative orientation. The result on #located indicates
that 75 percent (15 out of 20) of the strands that were predicted had a non-empty intersection
with an actual strand. As for #paired, 80 percent of these locations (and 60 percent overall)
had a correct local structure as well.

For comparison we also tested the performance of a naive randomized prediction method.
The randomized prediction method, which we call RAND, randomly picks four strand
regions, each of length six (which is the average length of aβ-strand in the training data)
and predicts accordingly. The results for RAND are shown in Table 6, each averaged over
ten trials. We observe that the total #paired for RAND is about three, and is significantly
lower than that of MAX.

We also calculated the more usual measure of residue-wise prediction accuracy of the
binary classification problem (distinguishing betweenβ-sheet regions and non-β-sheet re-
gions). Table 7 gives the details of this analysis: Our method correctly predicted roughly
74 percent of the residues in the five test sequences. This figure compares well against the
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state-of-the-art protein secondary structure prediction methods, although the size of the test
data in our experiment was admittedly small. For example, the accuracy of Riis and Krogh’s
(1996) method for the three-state prediction problem (distinguishing betweenα-helix, β-
sheet, and others) was about 72 percent.16 The problem of identifying theβ-sheet regions,
however, is known to be more difficult (due in part to the long-distance interactions that
govern these regions), and, for example, the above method of Riis and Krogh’s identified
only 57 percent of theβ-sheet regions.

An interesting fact is that for all five test sequences, the prediction was done using
the grammar fragment trained on the data group of ‘1aak’. It appears that someβ-sheet
patterns are more representative of the general pattern than others, and are more suited for
predicting theβ-sheet structures of unknown sequences. Now recall that there were two
test sequences for which all strands were predicted approximately correctly; ‘1cska’ and
‘1tfi’. Clearly both of these were predicted with the grammar fragment for ‘1aak’, but
they are both very different proteins from ‘1aak’. These results seem to suggest that there
may be a relatively small number of representative four-strand patterns, which are useful
for predicting structures in very different proteins having no obvious sequence similarity.
Collecting an exhaustive list of such representative patterns would then be a key to success.

Table 6.Prediction results in terms of #located and #paired.

PDB MAX RAND
code #located #paired #located #paired

1bet 3 2 1.90 0.60
1bsaA 3 2 1.40 0.40
1cskA 4 4 2.10 0.40
1tfi 4 4 2.40 1.10
9rnt 1 0 1.60 0.80

total 15 12 9.40 3.30

MAX: Proposed prediction method.
RAND: Naive randomized prediction method.
#located: Number of correctly located positions.
#paired: Number of correctly paired positions.

4.3.4. Further evaluation

The above results show that the predictive performance of our method is not only better than
random but also appears to be comparable with the state-of-the-art methods for predicting
β-sheet regions. Yet the predictive performance of our method, at75% accuracy, still falls
short of being satisfactory. In order to assess how much improvement in performance would
be possible with more data, we attempted to isolate the error due to the model employed (i.e.,
the linear subclass of SRNRG) and the error resulting from insufficient data, by conducting
additional experiments.
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Table 7.Residue-wise prediction accuracy.

PDB code Accuracy (%) ( no. correctly predicted / no. of residues )

1bet 81.3 ( 87 / 107 )
1bsaA 70.1 ( 75 / 107 )
1cskA 80.7 ( 46 / 57 )
1tfi 76.0 ( 38 / 50 )
9rnt 66.3 ( 69 / 104 )

total 74.1 ( 315 / 425 )

We ran two experiments, one with real data and the other with simulated data. In the first
experiment, we estimated the ‘learning curve’ for training the SRNRG grammar fragment
for ‘1aak’ by varying the amount of training data. (We picked ‘1aak’ because, as we
remarked earlier, the grammar fragment for ‘1aak’ was used to predict the structure of all
test sequences.) More specifically, we measured the prediction accuracy (both in terms of
#located and #paired) on the five test sequences for various training sizes, each averaged
over five random sessions.

In the second experiment, we used the SRNRG grammar fragment obtained for 1aak
(using all 19 training sequences for it) as thetrue model, so to speak. That is, as training
data we used strings generated probabilistically using the SRNRG grammar fragment for
1aak, and its predictive performance was tested on synthetic test sequences generated by the
same model (SRNRG fragment) that was used to generate the training data. Again we did
this for various numbers of training cases, with the number of test data fixed at 20 cases. We
calculated the performance for each amount of data by averaging over 25 random sessions,
obtained by five random choices for training set and five for the test set.

Figure 13 shows the results of these experiments. (Figure 13(a) shows the learning curves
for #located, whereas Figure 13(b) shows the curves for #paired.) In each graph, the lower
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Figure 13.Learning curves with real and synthetic data: (a) #located (b) #paired.
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learning curve is the result of the first experiment, and the top curve is that of the second
experiment. We can draw a number of conclusions from these results. First, the (vertical)
difference between the two curves indicates how much the actualβ-sheet sequences/patterns
in the test data deviate from the model we use – the SRNRG fragment for ‘1aak.’ This can
be further broken into two parts. Part of it is attributed to the intrinsic difference between
the pattern of ‘1aak’ and its aligned sequences, and the patterns of the test data (from
very different proteins). The rest may be attributed to inadequacies in our modeling (say
a particular type of SRNRG with various assumptions) of the pattern of the ‘1aak’ data
group. In order to bridge either of these gaps, we would need more of these ‘data groups,’
rather than just more data for the same data groups.

The second notable fact is that, modulo the vertical difference explained above, the two
learning curves appear to have the same general shape. Since the predictive accuracy of
the second simulation experiment steadily goes up as the training set size increases (up to
200 or so), it seems safe to suppose that the prediction accuracy of our method will also
increase if we can use more training data.

The number of training cases we currently have available in HSSP seems hardly sufficient
for learning the patterns implicit in them, even if the SRNRG model we use were entirely
adequate. However, the quantity and quality of publically available genetic data bases are
improving at a rapid rate. The results of these last experiments suggest that we can expect
further improvement in the predictive performance of our method as more training data
become available.

5. Concluding remarks

We have proposed a new method for predicting protein secondary structures using a training
algorithm for a novel class of stochastic tree grammars. Our experiments indicate that our
method can capture the long distance dependency inβ-sheet regions in a way that was
not possible by any earlier method. Furthermore, they provide positive evidence for the
potential of our method as a tool for the scientific discovery of unnoticed structural similarity
in proteins having no or little sequence similarity. In terms of prediction accuracy for the
binary classification problem of distinguishing betweenβ-sheet regions and non-β-sheet
regions, our method achieved roughly 74 %, which is comparable to the performance of the
state-of-the-art methods in the field, although the test data set used was quite small due to
limitations on the computational resources. The most important future challenge, therefore,
is to reduce the rather high computational requirement of our parsing algorithm, which
to date has kept us from conducting full scale experiments involvingβ-sheet structures in
amino acid sequences of arbitrary length. We would like in particular to increase the current
upper limit of length from 140 to 300, so that the majority of actual protein sequences can
be processed in realistic time. We are currently investigating further simplifications of the
SRNRG grammars and of our parsing algorithm, which should let us drastically reduce
their computational requirements.



PREDICTING PROTEIN SECONDARY STRUCTURE 299

Acknowledgments

We thank Mr. Katsuhiro Nakamura, Mr. Tomoyuki Fujita and Dr. Satoshi Goto of
NEC C & C Research Laboratories for their encouragement, and Mr. Atsuyoshi Naka-
mura of NEC C & C Research Laboratories for helpful discussions. We also thank the
anonymous reviewers for their helpful comments. Finally, we thank Dr. Ken’ichi Takada
for his programming efforts.

Notes

1. Hidden Markov models, and to some extent stochastic context-free grammars, are used extensively in speech
recognition, and have been recently introduced to genetic information processing
(Krogh et al., 1994; Baldi et al., 1994; Sakakibar et al., 1994; Eddy & Durbin, 1994).

2. Searls (1993) noted that the language ofβ-sheets is beyond context-free and suggested that they are indexed
languages. However, indexed languages are not recognizable in polynomial time, and hence they are not useful
for our purpose. The languages of RNRG fallbetweenthe two language classes and appears to be just what
we need.

3. An example of the latter type is Stolcke and Omohundro’s (1994) work on learning stochastic context-free
grammars.

4. The time complexity of the inside-outside algorithm for RNRG of a bounded ‘rank’k, written RNRG(k), is
roughlyO(n3(k+1)). (We define the notion of ‘rank’ for an RNRG in Section 2.1.) We note that RNRL(0)
equals the class of context-free languages and RNRL(1) equals the tree adjoining languages and RNRL(k+1)
properly contains RNRL(k) for anyk.

5. As is well known, there are twenty amino acids, and hence we are dealing with an alphabet of size 20.

6. The physico-chemical properties we use are the molecular weight and the hydrophobicity, which were used
by Mamitsuka and Yamanishi (1995) in their method for predictingα-helix regions.

7. HSSP provides alignment data with more than 30% sequence similarity to protein sequences with known
structure.

8. In context-free tree grammars (Rounds, 1969), variables are used in place of]. These variables can then be
used in rewrite rules to move, copy, or erase subtrees. It is this restriction against using such variables that
keeps RNRGs efficiently recognizable.

9. Note in the figure that we use capital letters for non-terminal symbols and lower case letters for terminal
symbols. Also, ‘λ’ indicates the empty string, and the special symbol ‘]’ stands for an empty node.

10. To be more precise, some technical conditions are needed to ensure that a given stochastic grammar defines a
distribution (e.g., Paz, 1971).

11. To be more precise, one out of every adjacent pair is connected by an H bond.

12. In the figure, the winding line represents the amino acid sequence and the arrows indicate theβ-sheet strands.
This figure was drawn using the three-dimensional coordinates given in the PDB (Protein Data Bank) database
(Bernstein, et al., 1977).

13. We omitted other possible dimensions, such as ‘charge’ and ‘polarity,’ since they are strongly related to the
property of hydrophilicity (the opposite of hydrophobicity) and not independent of the previous two measures.
In fact, one can see that, in the map of Figure 8(a), the charged amino acids (K, R with ‘+’ charge and D,
E with ‘-’ charge) are grouped close together, and the polar amino acids (R, K, E, D, Q, N, H, Y, W, T, S)
concentrate in the upper left corner of the map.

14. Length 70 to 80 was the upper limit posed by the memory requirement of the sequential algorithm, while
length 130 to 140 was the upper limit for our parallel algorithm on a 32-processor CM-5.

15. Bracketed input samples are often used in applications of stochastic context-free grammars to speech
recognition.
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16. A direct comparison of these figures is not necessarily meaningful, as the experimental conditions are not
exactly the same. For example, Riis and Krogh’s method makes use of extra information in the form of aligned
sequences to thetestsequences, which we do not use in our experiments. On the other hand, our experiment
is restricted toβ-sheet regions of typea, whereas theirs is not.
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