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ABSTRACT We discuss how methods
based on hidden Markov models performed in
the fold-recognition section of the CASP2 ex-
periment. Hidden Markov models were built
for a representative set of just over 1,000 struc-
tures from the Protein Data Bank (PDB). Each
CASP2 target sequence was scored against this
library of HMMs. In addition, an HMM was
built for each of the target sequences and all of
the sequences in PDB were scored against that
target model, with a good score on both meth-
ods indicating a high probability that the tar-
get sequence is homologous to the structure.
The method worked well in comparison to
other methods used at CASP2 for targets of
moderate difficulty, where the closest struc-
ture in PDB could be aligned to the target with
at least 15% residue identity. Proteins, Suppl.
1:134–139, 1997. r 1998 Wiley-Liss, Inc.
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INTRODUCTION

One method of protein sequence analysis is the
identification of homologous proteins—proteins which
share a common evolutionary history and have simi-
lar overall structure and function.5 Here, we report
how new extensions of the hidden Markov model (HMM)
methods15,12 for recognition of remote homologs fared in
the fold-recognition section of the CASP2 experiment.
We used linear HMMs trained on sets of aligned or
unaligned sequences, using sequence weighting and
Dirichlet mixture methods to estimate the emission
probabilities for the amino acids in each state based
on the training data (see Sections 2.2 and 2.3).

HMMs combine the best aspects of weight matri-
ces and local sequence alignment methods, and can
be used to assign probabilities to proteins in data-
base search.6 Our HMM fold-recognition method
differs from protein threading methods13,23,16,17 in
that pairwise (residue–residue) interactions are not
modeled or used. Instead, we employ Bayesian meth-
ods4,3,21 to incorporate prior information in the form
of Dirichlet mixture densities24 over position-specific
amino acid distributions and over insertion and

deletion probabilities in different structural environ-
ments (Section 2.1). The priors reflect different pat-
terns of sequence conservation, such as invariant or
hydrophobic, and can be combined with data from
aligned homologs to form data-dependent parameter
estimates. This differentiates our approach from
that of Eisenberg and colleagues,7 which incorpo-
rates more structural and less sequence information.

In the CASP2 experiments, we developed a new
sequence weighting scheme (see Section 2.3) and a
method for constructing joint models for two sets of
presumably homologous proteins (Section 2.4). We
also applied a number of post-hoc analysis tools to
discriminate among the top potential matches (Sec-
tion 2.5). The Results section discusses the success of
our predictions. We used the SAM (http://www.cse.
ucsc.edu/research/compbio/sam.html) HMM soft-
ware suite in these experiments.12

METHODS

Our method for predicting the structure of a target
sequence involved a two-pronged approach: con-
structing an HMM from the target and identified
homologs and scoring the sequences in the Protein
Data Bank (PDB) with this model; and scoring each
target sequence against a library of HMMs con-
structed on a representative subset of PDB.

Those PDB sequences that scored high on one or
(preferably) both lists of potential matches to a
target were examined more closely (Section 2.5).

The HMM Library

Our model library included about 1,000 (now
1,312) structures from PDB, the core of which was a
representative set of PDB structures. For each of
these structures, we constructed an HMM (a struc-
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ture model) using the associated HSSP alignment22

of the structure and its homologs as the initial basis.
This alignment and the corresponding HMM param-
eters were re-estimated using standard HMM meth-
ods in combination with priors over amino acids and
transition probabilities in various structural environ-
ments.14 The transition priors allowed us to incorpo-
rate general structural information, such as the low
probability of an insert in the middle of a helix.
Following re-estimation, we applied sequence weight-
ing (Section 2.3) to generalize the models for recogni-
tion of remote homologs.

Building the Target Model

An initial model was constructed from the target
sequence only, using SAM’s modelfromalign mod-
ule. This established the length of the model to be
the number of positions in the sequence and pro-
vided a mapping between the states of the model and
the residues in the sequence. This initial model was
used to select homologs from a set of neighbors from
the Entrez database. The model parameters were
re-estimated repeatedly on the target sequence and
homologs using Dirichlet mixture densities over
amino acid distributions and a variety of different
transition priors.14

Because proteins can have repeated domains, the
multdomain module of SAM was used to select
subsequences from the putative homolog set. For
instance, some homologs of t0004 (the nucleotidyl-
transferase S1 motif) had three or four regions that
matched the model.

The alignment of the target and homologs (with
potentially several regions of alignment to some
homologs) was used as the basis of an HMM. Se-
quence weighting was used to control the generality
of the model (see Section 2.3).

For some targets (t00011, t0019, t0026, t0030), the
initial set of training sequences was too small, and so
a search was done of a nonredundant protein data-
base19 using the model and the sequences with cost
less than 28.0 nats† were considered possible ho-
mologs. The model-building procedure was repeated
for this larger training set.

Weighting Schemes

Almost any set of homologous proteins will contain
some highly populated subfamilies and some less
populated subfamilies and a model constructed from

it will favor the most highly represented sequences.
To reduce training-set bias, sequence-weighting
schemes assign relative weights to training se-
quences. The particular method used to assign the
relative weights in the CASP2 contest is described in
the technical report,14 but similar results would have
been obtained by using a scheme such as the Heni-
koffs’8 for the relative weights.

In Bayesian methods (such as our use of Dirichlet
mixtures), the total weight assigned to the set of
training sequences has a large impact on the poste-
rior amino acid distributions used to estimate the
model parameters. Given few sequences (low total
weight), there is only a faint signal for the modeled
family and the posterior amino acid distributions
will be close to the background frequencies of amino
acids. As the number of observations increase (large
total weight), the posteriors will reflect the frequen-
cies in the data, closely modeling the training set. By
adjusting the total weight, one can smoothly interpo-
late between the background frequencies and ob-
served data frequencies, with intermediate weights
giving very natural generalizations.

In remote homolog recognition, we need models
that generalize as much as possible without losing
the ability to recognize the training set. Rather than
specify the total weight directly, we specify the
generality of the model as the average entropy of the
posterior amino acid distribution relative to the
background frequencies used in the null model. For
the CASP2 contest, we chose a relative entropy of 0.3
bits per alignment column for both target and struc-
ture models. By way of contrast, a PAM distance of
120 is about 1.0 bits per column and a PAM distance
of 240 is about 0.5 bits per column. The total weights
assigned ranged from 0.28 to 1.19 for numbers of
sequences ranging from 5 to 147.14

Estimating Joint Models

If a structure and target are distant homologs, the
alignment of the target homologs to the structure
model may not maintain a good mutual alignment of
the target homologs, and conversely for an align-
ment of the structure homologs to the target model.
This reduces our ability to predict the correct pair-
wise alignment between a target and a structure.

If two sets of proteins share a common structure
and evolutionary history, then we ought to be able to
construct a statistical model that gives high probabil-
ity to both sets and, hence, better alignments. This
motivated the development of two methods for esti-
mating joint models, using homologs of both the
target sequence and the PDB sequence together.

One method for constructing a joint model em-
ployed the method for building target models, except
that the homolog set included the PDB sequence’s
homologs and the thresholds were set low enough to
force inclusion of them in the training set. The
second method retrained an existing model using

†The cost (or score) for a sequence s with respect to a model
is—ln(P(s 0model)/P(s 0null)) 1 ln 0s 0 , where 0s 0 is the length of s,
and the null model assumes each amino acid is generated
independently according to a distribution that is the geometric
average of the distributions in the match states of the model,
normalized to sum to 1. The probability P(s 0model) is computed
by summing over all local alignments.1,18,2 Note that the more
negative the cost, the better the fit to the model. The choice of
28.0 nats was rather arbitrary, based on casual observations of
how well the putative homologs in HSSP scored.
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both sets of homologs, keeping the model length
fixed, and assigning sequence weights to allow
roughly equal weight to both groups of sequences.

The joint models were more successful at produc-
ing multiple alignments of both sets of homologs that
retained the mutual alignment within each group
and provided better alignments between the regions
of lower sequence identity in the two groups.

Post-Hoc Analysis Tools

Automated methods identified potential matches
in our structure library and produced the respective
pairwise alignments. Each potential match was then
inspected for the quality of the alignment, similarity
in biological function, and consistency with other
structural assessments. We checked PhD secondary
structure predictions20 for consistency with our struc-
ture predictions. The alignments were inspected
with Leslie Grate’s SAE, a graphical tool combining
RASMOL and an alignment viewer.†† This allowed
us to see if insertions and deletions occurred in
reasonable regions of the structure and whether the
resulting protein structures were compact and con-
tiguous. Alignments were further examined with
Liisa Holm’s solvation analysis software,9,10 which
built 3D models given the target-structure align-
ment, assessing whether a protein-like hydrophobic
core was formed. This solvation analysis is very
sensitive to the correctness of the input alignment.

RESULTS
Fold-Recognition Results

Table I shows how our HMM models scored on the
eight targets for which we submitted predictions and
received feedback. For consistency, since our meth-
ods and library evolved significantly over the course
of the summer, all scores are reported with the
method and library from the end of the summer.

Analyzing where our HMM methods succeed and
where they fail shows that prediction success is
correlated with sequences being only moderately
divergent—having a pairwise residue identity of at
least 15%. Note that higher residue identities are
sometimes reported for incorrect fold predictions. In
most cases these are from hand-edited alignments
that increased residue identity at the cost of greatly
increasing the number of gaps. Residue identity
alone is a very poor measure of similarity in a gapped
alignment.

HMM scores of remote homologs show some dis-
crimination capability above this point, and post-hoc
analysis is sufficient to differentiate the true homolo-
gies from the pool of candidate structures, given
reasonably accurate alignments. However, when pair-

wise residue identity drops below this level, HMM
scores are weaker and less informative, resulting in
a large pool of poorly aligned candidate structures,
which our post-hoc analysis tools cannot differenti-
ate among.

For example, for targets t0002, t0004, and t0031
the predicted structures were excellent structural
matches and the top-scoring match was correct in
the target model. All three of these targets had
pairwise alignments to their closest structural match
of at least 16%.

For target t0002, like most groups, we misunder-
stood the rather cryptic comment about partial ho-
mology and only predicted the domain homologous to
1wsyB, for which simple sequence methods already
provided an adequate prediction of homology. We
had made some attempts to predict the other do-
main, but we did not come up with a prediction
sufficiently believable to be submitted. We hope that
future contests label targets more clearly when
partial prediction is desired.

For t0031, the best match in Table I with the
target model is for 1fonA, which was not in PDB at
the time the initial searches were done. The pre-
dicted folds 1try and 1elt were the best scoring
sequences at that time.

For t0020 and t0038, the closest structural matches
that scored well in both directions were 1minA and
1bglA, respectively, but we failed to identify them for
the contest.

For t0020, 1minA scored within the top 70 for both
target and library models and was considered along
with several other good structural matches, but we
concentrated on the incorrect 1arv because of a
perceived need for an iron-binding site.

For t0038, 1bglA with 9% residue identity ranked
75 with the target model and 181 with the library
models and was too low-ranked to be considered in
our analysis. We did consider one correct structure
for t0038 (2ayh), based not on its scores but on its
function (we looked at all glucanases and cellulases
with structures in PDB), but we rejected it because of
a too-strict interpretation of solvation scores. While
weak, our 1exg prediction did have a somewhat
similar fold and, interestingly, was also predicted by
several other groups. We wonder if there is a distant
evolutionary relationship between 1exg and t0038.

Targets t0011 and t0030 were determined to be
novel structures by DALI and VAST. We predicted
t0030 essentially correctly, placing 80% of our ‘‘bet’’
on NONE, indicating that we felt that we had found
no similar structure in PDB. However, we did not do
this with t0011, despite its fairly weak scores.

Target t0012 had only very weak structural ho-
mologs; our prediction, 1mydA, a helix-turn-helix,
aligned well to a similar secondary structure in
t0012, but did not yield a useful global structural
match.

††SAE is a prototype tool that we do not intend to release, but
a successor tool, DINAMO, will be released soon—see http://
tito.ucsc.edu/dinamo for more information.
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Quality of Alignments

We submitted alignments for ten fold-recognition
targets and three comparative modeling targets
(counting t0002 as a comparative modeling target).
Results are available for eight of those targets and
Table II summarizes our alignments for the three
comparative modeling targets (t0002, t0027, and
t0028) and the two fold-recognition targets for which
we identified a correct fold (t0004 and t0031).

Our method searched for global, rather than local,
alignments between a target and a structure. While
the average shift in the alignments is generally quite
low, this resulted in alignments with a higher RMS
distance compared to other groups. Loop regions
have high degrees of divergence, and so identifying

these regions and removing them from the align-
ment would improve the evaluation of our align-
ments—this improvement is one we hope to have
implemented by the next CASP contest.

Perhaps the most striking difference between the
RMS measure and the other measures of correctness
for the alignment is for our t0031 predictions. The
number of exactly correct residues is high and the
average shift is quite low, but the RMS deviation is
suprisingly high. This results from a single segment
(residues 163–183) which is badly misaligned (see
Fig. 1). The segment should be aligned to residues
149–168 of 1mctA, which includes the edge strand of
a conserved beta sheet. Instead, the edge strand was
skipped and the segment was aligned to a loop and

TABLE I. Summary of Predicted Sequences

Target Structure Bet cost
Target Library DALI

PredictedRank/7,991 Cost Rank/1,312 Score %ID %ID

t02 1psdA 0.0 23.8 221 21.5 278 1.00 6
t02 1wsyB‡ 1.0 238.6 1 217.0 3 1.00 20 24
t04 1csp‡ 0.6 27.1 1 20.9 223 1.00 21 29,30
t04 1mjc‡ 0.4 25.4 7 22.6 24 1.00 23 22,24
t11 1grl† 1.0 22.0 1656 22.7 55 0.00 25
t11 3gapB† 0.5 23.5 197 26.0 3 0.00 21
t11 1frpA† 0.5 23.1 505 25.9 4 0.00 19
t12 1mdyA† 0.5 20.6 3173 26.0 2 0.00 20
t12 1pht‡ 0.5 22.1 302 22.1 85 0.00 16
t12 1atr 0.0 20.7 2829 20.7 432 0.22
t12 1gerA 0.0 21.9 372 0.28
t20 1arv‡ 1.0 27.5 2 21.4 319 0.00 18,24
t20 7aatA 0.0 21.8 2903 25.0 4 0.43 5 (18)
t20 1scuB 0.0 22.7 1130 23.1 42 0.55 (11)
t20 2dln 0.0 25.6 24 20.6 705 0.82 (17)
t20 1minA 0.0 24.9 67 22.7 64 1.00 (19)
t30 2hwf1† 0.1 21.2 805 20.4 446 0.00 19
t30 1hsbA† 0.1 20.3 4254 22.9 7 0.00 32
t30 NONE† 0.8 1.00
t31 1fonA 0.0 210.8 1 1.00
t31 1hcgA 0.0 21.9 990 212.3 6 1.00 14
t31 4ptp 0.0 21.8 1085 214.9 3 1.00 15
t31 1elt† 0.2 28.6 4 211.3 7 1.00 14 16
t31 1mctA† 0.2 22.1 816 215.0 1 1.00 16 21
t31 1try‡ 0.6 210.5 3 213.1 5 1.00 18 18
t38 1exg‡ 1.0 23.0 200 20.9 217 0.57 15 11,17,28
t38 1lpbB 0.0 25.2 1 20.7 268 0.85 8
t38 1celA 0.0 20.8 2897 22.4 22 1.00 10
t38 1bglA 0.0 24.3 75 21.0 181 1.00 10
t38 2ayh 0.0 20.8 3082 20.3 705 1.00 10 (21,31)

Scoring of our predicted sequences (marked with † for UCSC-only predictions and ‡ for joint UCSC-EBI predictions) and some of the
lowest-cost sequences which DALI11 considered to have similar structure. Structures are listed in increasing order of similarity to the
known structure. The bets for t11 add up to more than 1.0 because we submitted predictions for two separate domains. Ranks and
scores are based on an October 1996 version of PBD and the April 1997 version of our HMM library. Ranks are somewhat inflated by
redundancy (e.g., there are five sequences identical to 1csp in the PDB database, so the rank of 7 for 1mjc would be 3 in a
non-redundant database). DALI scores are rescaled so that Z # 2 becomes 0 and Z $ 6 becomes 1, as reported by the CASP2 assessors.
The percent residue identity for DALI alignments is also as reported by the assessors. For target t2, we had to use VAST scores and
residue identity, as the DALI results were never sent to us. Missing DALI percent figures were not reported by the assesors. Residue
identities in parentheses are for alignments we considered but did not submit. Multiple residue identities are for multiple competing
alignments that we submitted.
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helix on the surface. This misalignment should have
been detected before we submitted the prediction,
since it results in a large distance between the
predicted positions of residues 162 and 163, but we
failed to notice the problem.

Our alignment for t0027 and 2pec was reasonable
in the beta sheets of the core, but we included
alignments for the rather variable surface helices,
which turned out to be rather different in the two
structures. Trimming our global alignment to re-

move the surface elements would have considerably
improved the statistics for the prediction.

It is interesting that we got better alignments for
t0004 and t0031, which were classified as a fold-
recognition targets, than for t0027, which was classi-
fied as a comparative modeling target. Perhaps in
future CASP contests the targets should not be
preclassified, but all targets should be made avail-
able for all prediction types. The assessment for each
type of prediction can then focus on the targets that

TABLE II. Summary ofAlignments

Target Structure
Alignment

length

Residues
aligned
correctly

Avg.
shift

Avg.
RMSD SC%id %ID

Alignment
specificity

Alignment
sensitivity

t02 1wsyB VAST 245 117 1.316 5.15 20.07 24.08 47.76 51.09
t04 1csp VAST 63 34.80 0.338 3.52 24.53 29.37 55.24 65.66
t04 1mjc DALI 62 39.14 0.471 3.64 22.58 23.20 62.62 63.23
t27 2pec DALI 319 99 3.938 14.40 21.93 24.14 31.03 36.80
t28 1celA DALI 359 342 0.205 2.37 48.74 49.30 95.26 95.80
t31 1elt DALI 200 111 2.427 8.73 13.90 15.50 55.50 59.36
t31 1mctA DALI 195 105 2.437 8.77 15.86 20.51 53.85 57.38
t31 1try DALI 198 101 1.624 7.45 17.74 18.69 51.01 54.30

This table compares our alignments of the targets to the structural alignments produced by VAST or DALI. Alignment length refers to
the total number of residues aligned, including loop regions. Residues aligned correctly describes the number of positions in which the
alignment was correct, as compared to the structural alignments. Avg. RMSD and Avg. shift refer to the average RMS deviation and
shift, as computed by the assessors. SC%ID describes the percent residue identity for each structural alignment, and %ID describes
the percent residue identity of our alignment. Alignment specificity and Alignment sensitivity refer to the number of correctly aligned
residues as a fraction of the number aligned in the prediction and the number aligned in the structural alignment, respectively.

Fig. 1. The alignment we predicted for t0031 and 1mctA, with bars indicating positions aligned
by the structure–structure aligner DALI. The numbers are the residue numbers in t0031. Most of the
segments are shifted by only one or two, but the segment from 163 to 183 is shifted by 16 residues,
as indicated by the arrows.
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show a difference between the predictors. Existing
servers for sequence-based alignment can be used as
baseline comparisons to see whether the more sophis-
ticated methods provide better results on the easy
targets.

CONCLUSIONS

Fold recognition and alignment by HMMs shows
considerable promise, but there were too few targets
with homologs of known structure to draw a defini-
tive conclusion. Our method seems to be effective in
cases where the residue identity between the target
and the sequence of known structure is in the
15–25% range, which brings us some distance into
the ‘‘twilight zone,’’ but we have no evidence yet that
it will be effective in harder cases.

Our methods were developed very hastily while
the contest was in progress and we had no time to
validate the methods before making predictions. We
are now building a new library, developing new
methods, and putting together a test suite for the
methods. These improvements include refinement of
the SAM software suite, better methods for building
target models, a more complete library, better meth-
ods for building joint models, better postprocessing
to identify problems in proposed alignments, meth-
ods to adjust alignments to remove or realign the
unreliable parts, and extensive testing of the meth-
ods to determine which are most useful.

We hope to have some tested methods available in
time for the CASP3 contest and we will be putting up
at least the automatic part of these methods on our
web site
http://www.cse.ucsc.edu/research/compbio

Since HMMs do not use pairwise contacts, they are
more computationally efficient than threading mod-
els. Their minimal dependency on structure informa-
tion also allows them to be used to search for remote
homologs of protein families that contain no se-
quence with known structure. It may turn out that
other techniques, which make real use of structural
information, may be able to do better at finding very
distant homologs, but we feel that the HMM meth-
ods can still be improved enough to remain competi-
tive with more expensive methods.
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24. Sjölander, K., Karplus, K., Brown, M.P., Hughey, R., Krogh,
A., Mian, I.S., Haussler, D. Dirichlet mixtures: A method
for improving detection of weak but significant protein
sequence homology. CABIOS 12:327–345, 1996.

139PROTEIN STRUCTURE AND HIDDEN MARKOV MODELS


	INTRODUCTION
	METHODS
	RESULTS
	Fig. 1.
	TABLE I.
	TABLE II.

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

