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Abstract

People exert significant amounts of problem solving effort playing computer games. Simple 

image- and text-recognition tasks have been successfully crowd-sourced through gamesi, ii, iii, but 

it is not clear if more complex scientific problems can be similarly solved with human-directed 

computing. Protein structure prediction is one such problem: locating the biologically relevant 

native conformation of a protein is a formidable computational challenge given the very large size 

of the search space. Here we describe Foldit, a multiplayer online game that engages non-

scientists in solving hard prediction problems. Foldit players interact with protein structures using 

direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure 

prediction methodologyiv, while they compete and collaborate to optimize the computed energy. 

We show that top Foldit players excel at solving challenging structure refinement problems in 

which substantial backbone rearrangements are necessary to achieve burial of hydrophobic 

residues. Players working collaboratively develop a rich assortment of new strategies and 

algorithms; unlike computational approaches, they explore not only conformational space but also 

the space of possible search strategies. The integration of human visual problem-solving and 

strategy development capabilities with traditional computational algorithms through interactive 

multiplayer games is a powerful new approach to solving computationally-limited scientific 

problems.

While it has been known for over 40 years that the three dimensional structures of proteins 

are determined by their amino acid sequencesv, protein structure prediction remains a 

largely unsolved problem for all but the smallest protein domains. The state-of-the-art 

Rosetta structure prediction methodology, for example, is limited primarily by 

conformational sampling; the native structure almost always has lower energy than any non-

native conformation, but the free energy landscape that must be searched is extremely large
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—even small proteins have on the order of 1000 degrees of freedom—and rugged due to 

unfavorable atom-atom repulsion which can dominate the energy even quite close to the 

native state. To search this landscape, Rosetta uses a combination of stochastic and 

deterministic algorithms: rebuilding all or a portion of the chain from fragments, random 

perturbation to a subset of the backbone torsion angles, combinatorial optimization of 

protein sidechain conformations, gradient based energy minimization, and energy-dependent 

acceptance or rejection of structure changesvi, vii, viii.

We hypothesized that human spatial reasoning could improve both the sampling of 

conformational space and the determination of when to pursue suboptimal conformations if 

the stochastic elements of the search were replaced with human decision making while 

retaining the deterministic Rosetta algorithms as user tools. We developed a multiplayer 

online game, Foldit, with the goal of producing accurate protein structure models through 

gameplay (Fig. 1). Improperly folded protein conformations are posted online as puzzles for 

a fixed amount of time, during which players interactively reshape them in the direction they 

believe will lead to the highest score (the negative of the Rosetta energy). The player’s 

current status is shown, along with a leaderboard of other players, and groups of players 

working together, competing in the same puzzle (Fig. 1, arrows 8-9). To make the game 

approachable by players with no scientific training, many technical terms are replaced by 

terms in more common usage. We remove protein elements that hinder structural problem 

solving, and highlight energetically frustrated areas of the protein where the player can 

likely improve the structure (Fig. 1, arrows 1-5). Sidechains are colored by hydrophobicity 

and the backbone is colored by energy. There are specific visual cues depicting 

hydrophobicity (“exposed hydrophobics”), interatomic repulsion (“clashes”), and cavities 

(“voids”). The players are given intuitive direct manipulation tools. The most immediate 

method of interaction is directly pulling on the protein. It is also possible to rotate helices 

and rewire beta sheet connectivity (“tweak”). Players are able to guide moves by introducing 

soft constraints (“rubber bands”) and fixing degrees of freedom (“freezing”) (Fig. 1, arrows 

6-7). They are also able to change the strength of the repulsion term to allow more freedom 

of movement. Available automatic moves—combinatorial sidechain rotamer packing 

(“shake”), gradient-based minimization (“wiggle”), fragment insertion (“rebuild”)—are 

Rosetta optimizations modified to suit direct protein interaction and simplified to run at 

interactive speeds.

To engage players with no previous exposure to molecular biology, it was essential to 

introduce these concepts through a series of introductory levels (Fig. S1 and Table S1): 

puzzles that are always available, and can be completed by reaching a goal score. These 

levels teach the game’s tools and visualizations, and certain strategies. We have found the 

game to be approachable by a wide variety of people, not only those with a scientific 

background (Fig. S2); in fact, few top players are professionally involved in biochemistry 

(Fig. S3).

To evaluate players’ abilities to solve structure prediction problems, we posted a series of 

prediction puzzles. Puzzles in this series were blind, in the sense that neither the target 

protein nor homologous proteins had structures contained within publicly available 

databases for the duration of the puzzles. Detailed information for these 10 blind structures, 
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including comparisons between the best scoring Foldit predictions and the best scoring 

Rosetta predictions using the rebuild and refine protocol7, is given in Table 1. We found that 

Foldit players were particularly adept at solving puzzles requiring substantial backbone 

remodeling to bury exposed hydrophobic residues into the protein core (Fig. 2). When a 

hydrophobic residue points outward into solvent, and no corresponding hole within the core 

is evident, stochastic Monte Carlo trajectories are unlikely to sample the coordinated 

backbone and sidechain shifts needed to properly bury the residue in the core. By adjusting 

the backbone to allow the exposed hydrophobic residue to pack properly in the core, players 

were able to solve these problems in a variety of blind scenarios including a register shift 

and a remodeled loop (Fig. 2a-b), a rotated helix (Fig. 2c), two remodeled loops (Fig. 2d), 

and a helix rotation and remodeled loop (Fig. 2e).

Players were also able to restructure beta sheets in order to improve hydrophobic burial and 

hydrogen bond quality. Automated methods have difficulty performing major protein 

restructuring operations to change beta sheet hydrogen-bond patterns, especially once the 

solution has settled in a local low-energy basin. Players were able to carry out these 

restructuring operations in such scenarios as strand swapping (Fig. 3) and register shifting 

(Fig. 2a). In one strand swap puzzle, Foldit players were able to get within 1.06 Å of the 

native, with the top scoring Foldit prediction being 1.36 Å away. A superposition between 

the starting Foldit puzzle, the top scoring Foldit solution, and model 1 of the native NMR 

structure 2kpo are shown in Fig. 3b. Rosetta’s rebuild and refine protocol, however, was 

unable to get within 2 Å of the native structure (Fig. 3a, yellow points). This example 

highlights a key difference between humans and computers. As shown in Fig. 3c, solving the 

strand swap problem required substantially unraveling the structure (Fig. 3c, bottom), with a 

corresponding unfavorable increase in energy (Fig. 3c, top). Players persisted with this 

reconfiguration despite the energy increase because they correctly recognized the swap 

could ultimately lead to lower energies. In contrast, while the Rosetta rebuild and refine 

protocol did sample some partially swapped conformations (Fig. 3a, leftmost yellow point), 

these were not retained in subsequent generations due to their relatively high energies, 

resulting in the top Rosetta prediction being further from the native than the starting 

structure (Fig. S5).

Human players are also able to distinguish which starting point will be most useful to them. 

Fig. 3d-e shows a case where players were given ten different Rosetta predictions to choose 

from. Players were able to identify the model closest to the native structure, and to improve 

it further. Given the same 10 starting models, the Rosetta rebuild and refine protocol was 

unable to get as close to the native as the top scoring Foldit predictions.

Foldit players performed similarly to the Rosetta rebuild and refine protocol for three of the 

10 blind puzzles (Fig. S6). They outperformed Rosetta on five of the puzzles (Figs. 3, S5, 

and S7), including the two above cases where players performed significantly better. A 

larger set of successful solutions for similar, though non-blind, puzzles are described in Figs. 

S8, S9, and S10. For two of the 10 blind puzzles, the top Rosetta rebuild and refine 

prediction was numerically better than the Foldit solution (Table 1) but still basically 

incorrect (RMSD to native structure > 5.7 Å) (Fig. S11).
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Despite the promising results described above, there still exists room for improvement. For 

one particularly difficult class of problems, players are only given an extended protein chain 

to start from. Although the Foldit tools are sufficient to reach the native conformation from 

this unfolded start (Fig. S12), players can have trouble reaching it from so far away (Fig. 

S11a). This indicates the need to find the right balance between humans and computational 

methods; players guided by visual cues perform better in resolving incorrect features in 

partially correct models than “blank slate” de novo folding of an extended featureless 

protein chain.

As interesting as the Foldit predictions themselves is the complexity, variation and creativity 

of the human search process. Foldit gameplay supports both competition and collaboration 

between players. For collaboration, players can share structures with their group members, 

and help each other out with strategies and tips through the game’s chat function, or across 

the wiki. The competition and collaboration create a large social aspect to the game, which 

alters the aggregate search progress of Foldit and heightens player motivation. As groups 

compete for higher rankings and discover new structures, other groups appear to be 

motivated to play more (Fig. S14a), and within groups the exchange of solutions can help 

other members catch up to the leaders (Fig. S14b).

Humans use a much more varied range of exploration methods than computers. Different 

players use different move sequences, both according to the puzzle type and throughout the 

duration of a puzzle (Fig. 4a). For example, some players prefer to manually adjust 

sidechains; some will forego large amounts of continuous minimization at the beginning of a 

puzzle, but increase it as the puzzle progresses; and some prefer a more direct approach and 

use more rubber bands when the puzzle begins from an extended chain. Within teams, there 

is often a division of labor; some players specialize in early stage openings, others in middle 

and end game polishing. Our informal investigation revealed a fascinating array of thought 

processes, insights and previously unexplored methodologies developed solely through 

Foldit gameplay (see Supplemental Text, Player Testimonials section and Table S3 for more 

information).

In designing Foldit we sought to maximize both engagement by a wide range of players (a 

requirement common to all games), and the scientific relevance of the game outcomes 

(unique to Foldit). We fine-tuned the game through continuous iterative refinement based on 

observations of player activity and feedback, taking approaches from players who did well 

and making them accessible to all players. Most of the tools available to players today are a 

product of this refinement. They either did not initially exist or have undergone major 

revision. The introductory levels were also iteratively tuned to reduce player attrition due to 

difficulty or lack of engagement. Just as Foldit players gained expertise by playing Foldit, 

both individually and collectively, the game itself adapted to players’ best practices and skill 

sets. We suspect that this process of co-adaptation of game and players should be applicable 

to similar scientific discovery games.

To attract the widest possible audience for the game and encourage prolonged engagement, 

we designed the game so that the supported motivations and the reward structure are diverse, 

including short-term rewards (game score), long-term rewards (player status and rank), 
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social praise (chats and forums), the ability to work individually or in a team, and the 

connection between the game and scientific outcomes. A survey of Foldit players (Fig. S4) 

revealed that while the purpose of contributing to science is a motivating factor for many 

players, Foldit also attracts players interested in achievement through competition and point 

accumulation, social interaction through chat and web-based communication, and 

immersion through engaging gameplay and exploration of protein shapesix. We expect 

generally future scientific discovery games will also benefit from varied motivation sets.

There is still much to be learned about the basis for human achievement with Foldit, which 

will require more specific analysis of how players acquire domain expertise through 

gameplay, and can discover promising solutions. Such insights could also lead to improved 

automated algorithms for protein structure prediction.

The solution of challenging structure prediction problems by Foldit players demonstrates the 

considerable potential of a hybrid human-computer optimization framework in the form of a 

massively multiplayer game. The approach should be readily extendable to related problems, 

such as protein design and other scientific domains where human 3D structural problem 

solving can be leveraged. Our results suggest that scientific advancement is possible if even 

a small fraction of the energy that goes into playing computer games can be channeled into 

scientific discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Foldit screenshot illustrating tools and visualizations
The visualizations include a clash representing atoms that are too close (arrow 1); a 

hydrogen bond (arrow 2); a hydrophobic sidechain with a yellow blob because it is exposed 

(arrow 3); a hydrophilic sidechain (arrow 4); and a segment of the backbone that is red due 

to high residue energy (arrow 5). The players can make modifications including bands 

(arrow 6), which add constraints to guide automated tools and freezing (arrow 7), which 

prevents degrees of freedom from changing. The GUI includes information about the 

player’s current status, including score (arrow 8); a leaderboard (arrow 9), which shows the 

scores of other players and groups; toolbars for accessing tools and options (arrow 10); chat 

for interacting with other players (arrow 11); and a cookbook for making new automated 

tools or “recipes” (arrow 12).
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Figure 2. Structure prediction problems solved by Foldit players
Examples of blind structure prediction problems in which players were successfully able to 

improve structures. Native structures are shown in blue, starting puzzles in red, and top 

scoring Foldit predictions in green.

(a) The red starting puzzle had a register shift and the top scoring green Foldit prediction 

correctly flips and slides the beta strand.

(b) On the same structure as above, Foldit players correctly buried an exposed Isoleucine in 

the loop on the bottom right by remodeling the loop backbone.

(c) The top scoring Foldit prediction correctly rotated an entire helix that was misplaced in 

the starting puzzle.

(d) The starting puzzle had an exposed Isoleucine and Phenylalanine on the top, as well as 

an exposed Valine on the bottom left. The top scoring Foldit prediction was able to correctly 

bury these exposed hydrophobic residues.

(e) Another successful Foldit helix rotation that correctly buries an exposed Phenylalanine.

Images were produced using PyMOL softwarex.

Cooper et al. Page 8

Nature. Author manuscript; available in PMC 2011 February 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 3. Puzzles in which human predictors outperform the Rosetta rebuild and refine protocol
Panels a, b, and c show puzzle 986875. Panels d and e show puzzle 986698.

(a) Comparison of Foldit player solutions (green) to the low energy structures sampled in 

Rosetta rebuild and refine trajectories (yellow) for blind Foldit puzzle 986875 based on the 

recently determined structure and sequence of 2kpo. The x-axis is the all-atom RMSD to 

2kpo, and the y-axis is the Rosetta energy. The starting Foldit puzzle was 4.28 Å away from 

the native structure (shown by the black dot on the plot); Foldit players sampled many 

different conformations, with the top scoring submission (the lowest scoring Rosetta energy) 

1.4 Å away from the native, while the automated Rosetta protocol did not sample below 2Å. 

The blue dots and lines correspond to the trajectory of a single Foldit player in c.

(b) Superposition of the top-scoring Foldit prediction in green with the experimentally 

determined NMR model 1 in blue. The starting puzzle is in red, where the terminal strand is 

incorrectly swapped with its neighbor, 8% of all Foldit players were able to correctly swap 

these strands (Table S2).

(c) A score trajectory with selected structures for the top scoring player in puzzle 986875 

over a two hour window, showing how the player explores through high energy 

conformations to reach the native state. The y-axis is the Rosetta energy and the x-axis is the 

elapsed time in hours. The starting structure had a Rosetta energy of -243. Each point in the 

plot represents a solution produced by this player. The first structure (c1) is near the starting 

puzzle structure, shown as the black dot in a. The following structures (c2-6) are shown as 

blue dots in plot a. In structures c2-4 the player must explore higher energies to move the 

strand into place, shown by the blue lines. In structures c5-6 the player refines the strand 

pairing.

(d) Comparison of Foldit player solutions (green) to the low energy structures sampled in 

Rosetta rebuild and refine trajectories (yellow) for blind Foldit puzzle 986698 based on the 
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recently determined structure and sequence of 2kky. Foldit players were able to get the best 

Foldit score by correctly picking from multiple alternative starting Rosetta models (black) 

the model that was closest to the the native structure.

(e) The native structure is shown in blue with the top scoring Foldit prediction shown in 

green. The top Rosetta rebuild and refine prediction given the same 10 starting models 

(shown in yellow) was unable to sample as close to the native as the Foldit players.
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Figure 4. Player move preferences
(a) Different Foldit players take different approaches to solving the same problem. Each 

circle represents the move type frequencies used in the top solution produced by each player 

in different time frames: the inner denotes the first hour, the middle denotes the first day, 

and the outer denotes the puzzle’s entire duration. Each color represents a different type of 

move that can be made in the game. The left column reflects player move types for puzzles 

that start relatively close to the native topology. The right column reflects player move types 

for puzzles that start from a fully extended conformation. Each row represents a different 

Foldit player. Each player’s preferred move types across each puzzle class are distinct from 

one another, yet a player’s preferences are similar for both classes of puzzles. Also note that 

the move preferences change over the lifetime of a puzzle; local minimize is heavily 

preferred by the end of puzzles but not by all players at the beginning. The move types 

preferences are very different from Rosetta’s current best automated protocol, rebuild and 

refine, shown in b.

Cooper et al. Page 11

Nature. Author manuscript; available in PMC 2011 February 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

Cooper et al. Page 12

T
ab

le
 1

B
lin

d 
da

ta
 s

et

P
uz

zl
e 

ID
F

ol
di

t 
C

A
-R

M
SD

R
eb

ui
ld

 a
nd

 r
ef

in
e 

C
A

-R
M

SD
N

at
iv

e
M

et
ho

d
L

en
gt

h
F

ig
ur

e(
s)

98
68

75
1.

4
4.

5
2k

po
N

M
R

99
3a

-c
, S

4

98
66

98
1.

8
3.

7
2k

ky
N

M
R

10
2

3d
-e

98
68

36
5.

7
6.

6
3e

pu
X

-r
ay

13
6

2c
, S

6d

98
70

88
3.

5
4.

3
2k

pt
N

M
R

11
6

2a
-b

, S
6a

-b

98
71

62
4.

5
5.

2
3l

ur
X

-r
ay

15
8

S6
c

98
70

76
3.

3
3.

5
2k

pm
N

M
R

81
2e

, S
5c

98
66

29
3.

5
3.

3
2k

k1
N

M
R

13
5

S5
b

98
71

45
2.

6
2.

3
no

ne
 y

et
X

-r
ay

10
5

2d
, S

5a

98
68

44
6.

9
5.

8
2k

i0
N

M
R

36
S1

0a

98
69

61
10

.6
5.

7
2k

nr
N

M
R

11
8

S1
0b

A
 li

st
in

g 
of

 a
ll 

th
e 

Fo
ld

it 
pu

zz
le

s 
ru

n 
in

 th
e 

bl
in

d 
da

ta
 s

et
. A

 C
A

-R
M

SD
 c

om
pa

ri
so

n 
to

 th
e 

na
tiv

e 
is

 g
iv

en
 b

et
w

ee
n 

th
e 

be
st

 s
co

ri
ng

 m
od

el
 p

ro
du

ce
d 

by
 F

ol
di

t p
la

ye
rs

 a
nd

 th
e 

be
st

 s
co

ri
ng

 m
od

el
 p

ro
du

ce
d 

by
 th

e 
R

os
et

ta
 r

eb
ui

ld
 a

nd
 r

ef
in

e 
pr

ot
oc

ol
, g

iv
en

 th
e 

sa
m

e 
st

ar
tin

g 
m

od
el

(s
).

 S
ol

ut
io

ns
 c

on
si

de
ra

bl
y 

be
tte

r 
w

ith
 o

ne
 m

et
ho

d 
th

an
 th

e 
ot

he
r 

ar
e 

in
di

ca
te

d 
in

 b
ol

d.
 T

he
 s

ol
ve

d 
st

ru
ct

ur
es

 (
w

hi
ch

 w
er

e 
re

le
as

ed
 

af
te

r 
ea

ch
 p

uz
zl

e 
en

de
d)

 a
re

 r
ep

re
se

nt
ed

 b
y 

th
ei

r 
PD

B
 c

od
es

. R
es

ul
ts

 f
ro

m
 th

es
e 

Fo
ld

it 
pu

zz
le

s 
ca

n 
be

 a
cc

es
se

d 
on

 th
e 

Fo
ld

it 
w

eb
si

te
 b

y 
us

in
g 

th
e 

co
rr

es
po

nd
in

g 
Fo

ld
it 

pu
zz

le
 I

D
 a

t h
ttp

://
fo

ld
.it

/p
or

ta
l/

no
de

/I
D

. 2
kk

y,
 2

kp
t, 

2k
pm

, 2
kk

1 
an

d 
2k

nr
 w

er
e 

ta
ke

n 
fr

om
 th

e 
C

A
SD

-N
M

R
 e

xp
er

im
en

tx
i. 

2k
po

 w
as

 p
ro

vi
de

d 
by

 N
ob

uy
as

hu
 a

nd
 R

ie
 K

og
a.

 2
ki

0 
an

d 
3e

pu
 w

er
e 

fo
un

d 
by

 s
ea

rc
hi

ng
 f

or
 u

nr
el

ea
se

d 
st

ru
ct

ur
es

 o
n 

th
e 

PD
B

 w
eb

si
te

 (
ht

tp
://

w
w

w
.r

cs
b.

or
g/

pd
b/

se
ar

ch
/s

ea
rc

hS
ta

tu
s.

do
).

 3
lu

r 
w

as
 p

ro
vi

de
d 

by
 th

e 
JC

SG
, a

s 
w

el
l a

s 
th

e 
re

m
ai

ni
ng

 s
tr

uc
tu

re
 th

at
 h

as
 n

ot
 y

et
 b

ee
n 

re
le

as
ed

 to
 th

e 
PD

B
. F

ig
ur

es
 

co
nt

ai
ni

ng
 r

es
ul

ts
 f

or
 e

ac
h 

pu
zz

le
 a

re
 p

ro
vi

de
d 

in
 th

e 
la

st
 c

ol
um

n.

Nature. Author manuscript; available in PMC 2011 February 01.

http://fold.it/portal/node/ID
http://fold.it/portal/node/ID
http://www.rcsb.org/pdb/search/searchStatus.do

