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Abstract
Predicting the subcellular localisation of proteins is an important part of the elucidation of their

functions and interactions. Here, the amino acid sequence motifs that direct proteins to their

proper subcellular compartment are surveyed, different methods for localisation prediction

are discussed, and some benchmarks for the more commonly used predictors are presented.

INTRODUCTION
Computationally based characterisation of

the features of the proteins found or

predicted in completely sequenced

genomes is an important task in the search

for knowledge of protein function. A

central issue is to predict the subcellular

localisation, which has implications both

for the function of the protein and its

possibility of interacting with other

proteins.1,2

In a prokaryotic cell, basically only

three locations are possible: inside or

outside the plasma membrane, or inserted

into the membrane. In Gram-negative

bacteria, the presence of an outer

membrane adds two possible locations,

the periplasmic space and the outer

membrane. A eukaryotic cell, on the

other hand, is full of various membrane-

surrounded compartments: the

mitochondrion, the microbodies

(peroxisomes/glyoxysomes/glycosomes),

and the nucleus to mention just a few.

Additionally, plants and algae (and some

parasites) also contain plastids, such as the

chloroplast where the photosynthetic

reaction takes place.

The prevailing principal mechanism of

protein sorting is that an amino acid signal

in the protein is recognised by some kind

of import machinery on the surface of the

compartment into which the protein is to

be transferred. This is often carried out

with the help of chaperones, soluble

proteins in the cytoplasm that guide the

protein in question to the surface of its

final compartment. Protein translocation

across membranes often demands an

ATP- or GTP-dependent active transport

or at least a membrane potential.3

However, exceptions to this exist, such as

the nuclear pore complexes, through

which small proteins (,60 kDa) can

diffuse more or less freely into (and out

from) the nucleus.4 The recognised signal

is in most cases present and detectable on

the primary sequence level (and

predominantly located at the N-

terminus), but, obviously, structural

considerations are important for a full

understanding of protein localisation

mechanisms.5,6

A wide variety of methods have been

tried throughout the years in order to

predict the subcellular localisation of

proteins. The methods differ in terms of

what input data they demand and what

technique is employed to make the

decision (prediction) about location.

Once the input data type is fixed, the

methods for prediction-making are

basically of two types: construct manually

explicit rules for localisation prediction

from current knowledge of sorting signals,

or apply data-driven machine learning

techniques (eg neural networks or hidden

Markov models, HMMs) that

automatically extract decision rules from

sets of proteins with known location, but
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Different prediction
performance for
different locations

Signal peptides (SP) for
secretion consist of
three regions

without the need for making any detailed

prior assumptions as to what features it is

interesting to look for. (However, it is

always advisable to incorporate as much

biological knowledge as possible even

into an ‘automatic scheme’.)

The degree of performance differs

markedly between different predictors

and, perhaps biologically more intriguing,

also between different compartments. For

some compartments this is partly due to

lack of sufficient data for rule construction

(be it manual or data-driven), but there is

also a difference in performance that is

due to the complexity of the signal. Some

protein locations are simply easier to

predict than others.

This paper is an attempt to review the

amino acid sequence motifs that direct

proteins to their proper subcellular

compartment, to discuss the available

methods for localisation prediction, and to

present some benchmarks for the more

commonly used multi-category

predictors.

THE COMPARTMENTS
AND THEIR SORTING
SIGNALS
The major eukaryotic compartments will

be presented along with their sorting

signals; see also Table 1 and Figure 1. For

a more extensive description of protein

sorting there is an excellent review by

Nakai.7

Secreted proteins
The basic function of trans-locating

proteins from inside the cytoplasmic

membrane to the outside seems to be vital

to most organisms.8 Accordingly, protein

secretion is one of the most studied

protein translocation processes, both for

its great biological importance and for its

commercial potential in, for example,

drug manufacturing. The signal peptide

(SP) for secretion is N-terminal and

approximately 20–25 residues long. It is

cleaved off by the signal peptidase (SPase)

during the export process.9,10 Small and

apolar residues (preferably alanine) are

found at positions -1 and -3 relative to the

cleavage site. The -3, -1 rule is a motif

that was observed many years ago.11

Another feature is the regional structure

of the SP, with an N-terminal domain

that is positively charged, a hydrophobic

central region (h-region; leucines are most

common), and a cleavage site region with

mostly small residues,12,13 Figures 1 and 2.

There are several different pathways for

secretion present in both eukaryotes and

prokaryotes. The two most common are

the SRP-dependent (signal recognition

particle) pathway15,16 and the SRP-

independent pathway, which is usually

called the Sec-dependent pathway in

prokaryotes.17 In prokaryotes, the delta-

pH or TAT (twin-arginine translocation)

pathway is yet another option for

secretion.18,19 The SRP-dependent

pathway relies on the recognition of

nascent polypeptide chains by the SRP,

which halts translation and brings the

translation complex to the SRP receptor,

where translocation (through the Sec

machinery) subsequently occurs

cotranslationally. The Sec-dependent (or

SRP-independent) pathway uses only the

Sec machinery, which involves many

proteins and the hydrolysis of ATP, for

identification of the signal peptide and

translocation, which is post-translational.

The delta-pH pathway translocation

consumes no ATP but, as the name

suggests, requires a pH-gradient over the

membrane. Proteins transported via this

route contain a twin-arginine motif in the

N-terminal part of the signal peptide, and

the signal peptide is in general somewhat

longer.

Table 1: Summary of common eukaryotic protein sorting signals

Destination Name of signal Typical
length

Extracellular (secreted) Signal peptide, SP 20–30
Mitochondrion (matrix) Mitochondrial transfer peptide, mTP 25–45
Chloroplast Chloroplast transit peptide, cTP 40–70
Thylakoid Lumenal transfer peptide, lTP 20–30
Nucleus Nuclear localisation signal (mono-partite), NLS 4–6
Nucleus Nuclear localisation signal (bi-partite), NLS 15–20
Peroxisome Peroxisomal targeting signal 1, PTS1 3
Peroxisome Peroxisomal targeting signal 2, PTS2 9
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In eukaryotes, proteins that are to be

secreted are translated either on ribosomes

attached to the endoplasmic reticulum

(ER) membrane, or on free ribosomes in

the cytosol. In both cases, it is the signal

peptide that directs the protein into the

ER, where the signal is cleaved off and

degraded, and from which the protein is

further directed to the outside of the

cell.20 Furthermore, there is no TAT

pathway for protein secretion in

eukaryotes, except for the export of

proteins from the chloroplast stroma into

the thylakoid lumen (see thylakoid

section).19

Many other variations on the signal

peptide theme exist. There is a particular

class of uncleaved signal peptides, termed

signal anchors (SAs), which are stuck in

the membrane during the translocation.21

The result is that the entire protein is

anchored in the membrane, hence the

name. SAs differ from SPs not only in the

cleavage site region: in general they also

have a longer h-region, typically of the

same length as a transmembrane Æ-helix.

Another important type of membrane

association is mediated via

glycosylphosphatidylinositol (GPI). A

Figure 1: Schematic view of sorting signals, the corresponding final
compartments, and reported sequence features. Arrowhead, cleavage site;
SP, signal peptide; cTP, chloroplast transit peptide; mTP, mitochondrial
targeting peptide; IMS, intermembrane space (in mitochondria); MIP,
mitochondrial intermediate peptidase; PTS, peroxisomal targeting signal;
aa, amino acids. A = Alanine; x = any amino acid; R = Arginine; M =
Methionine; V = Valine; S = Serine; K = Lysine; L = Lucine; H = Histidine.

Figure 2: Sequence logos
14

of 269 secreted
(SP, upper panel ), 368 mitochondrial (mTP,
middle panel ), and 141 chloroplast (cTP, lower
panel ) proteins, aligned around their
annotated cleavage site (arrow). A sequence
logo is a way to visualise a multiple sequence
alignment and, specifically, the degree of
amino acid conservation at the positions in
the alignment. The scale on the y-axis is
measured in bits, and for protein sequences
it has a maximum value of 4.3 which would
correspond to a totally conserved position
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protein is first targeted to the ER by its

(cleaved) SP, where the C-terminus of

the protein is cleaved off, while a GPI

anchor is covalently bound to the so-

called �-site.22,23

Membranes
There is no known generic signal for

localisation into the different membranes

in the cell. However, most

transmembrane regions are present in the

form of an Æ-helix, with the notable

exception of �-barrel proteins.24 For

helical transmembrane proteins, the mere

fact that the transmembrane regions are

significantly more hydrophobic than an

average piece of sequence has been used

as an indication of transmembrane

location.25 Transmembrane regions range

between 14 and 36 residues in length,26

depending on the angle between the helix

and the membrane (tilting) and the kind

of membrane the protein resides in, since

different membranes have a different

thickness. A striking feature of cell

membrane proteins is their skewed

distribution of charges between inner and

outer loops, the positive-inside rule, and

this has also been used for topology

determination in predictive methods.27

The majority of eukaryotic membrane

proteins are inserted into the ER

membrane employing the translocon

complex used for protein secretion. It has

been proposed that the insertion is a result

of a stop-transfer process, where the

translocation of the protein is halted when

a stop-transfer signal is encountered in the

sequence (cf. the description of signal

anchors in previous section). Various

models have been proposed for the exact

molecular mechanisms for the subsequent

insertion of transmembrane regions of

multi-spanning proteins.28–30

In outer membranes, such as bacterial

(Gram-negative) outer membranes and

chloroplast and mitochondrial outer

membranes, the predominant protein class

is the �-barrel proteins. They consist of an

even number of �-strands (from 8 to 22)

and their functions include, for example,

both passive nutrient import (of molecules

, 6 kDa) and active ion transport.31

Another interesting group of

membrane-associated proteins are the

ones that demand both N-terminal

myristoylation (PROSITE32 motif is

G-{EDRKHPFYW}-x(2)-[STAGCN]-

{P}) and palmitoylation (which occurs at

a Cys residue) for their proper localisation

to the membrane,33,34 and it has been

suggested that the reversible nature of

palmitoylation may function as a regulator

of subcellular localisation in this case.

Mitochondrion
It is believed that the mitochondrion is

the result of an endosymbiotic uptake of

an ancestor to what today is alpha-

proteobacteria into an early eukaryotic

host.35 The evolutionary timing of the

endosymbiotic event is still being

discussed,36 but in any case, most of the

prokaryotic genes have been transferred

to the host nuclear genome during the

course of evolution.

Two membranes, the inner and the

outer mitochondrial membranes,

surround the mitochondrial matrix.

Proteins destined to the mitochondrion

usually contain an N-terminal

mitochondrial transfer peptide (mTP), on

average 35 amino acids long, which is

recognised by the protein import

machinery, the TOM proteins

(translocation machinery of the outer

membrane), on the mitochondrial surface.

The mTP initially interacts with the

TOM20 receptor37 and the protein is

transported, via the GIP complex (general

import pore), in an ATP-requiring

process through the outer mitochondrial

membrane, and further through the inner

membrane by a complex of TIM proteins

(translocation machinery of the inner

membrane) requiring a membrane

potential.38,39

After having entered the mitochondrial

matrix, the mTP is cleaved off by the

mitochondrial processing peptidase,

MPP.40,41 Some mitochondrial proteins

are then cleaved a second time by the

mitochondrial intermediate peptidase,

The mitochondrial
targeting peptide
(mTP) is N-terminal

Two types of
membrane proteins:
Æ-helical and �-barrel

The ‘positive-reside’
rule is a topology
determinant

The mitochondrion is
the result of an
endosymbiotic event
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MIP (Figure 1), which cuts off an

additional eight or nine residues from the

N-terminus.42,43 For yet other proteins, a

second adjacent targeting signal that

resembles the signal peptide for secretion

is exposed after MPP cleavage. These

proteins are re-exported from the matrix

to the intermembrane space (IMS), or

inserted into the inner membrane, in a

process very similar to bacterial protein

secretion (it has accordingly been termed

conservative sorting). Alternatively, the

translocation over either of the

membranes is halted by a stop-transfer

signal, which is specifically recognised by

a TOM or TIM component,44,45 and the

protein is subsequently inserted into the

outer or inner membrane, respectively.

There are also a few mitochondrial

proteins (mostly inner membrane

metabolite carriers) that have been shown

to contain internal (ie not N-terminal)

localisation signals.46 Thus, the

mitochondrial protein import machinery

seems to be extremely versatile.39

In mTP sequences there is an over-

representation of Arg, Ala and Ser, while

negatively charged residues (Asp, Glu) are

scarce.47 Otherwise, it is hard to find any

obvious features that distinguish the mTP

from other N-terminal sequences and the

degree of sequence conservation around

the cleavage site is rather poor. It has been

reported that many mTPs have an

arginine in position -2 or -3 relative to

the MPP cleavage site;48,49 Figures 1 and

2. Additionally, it was recently confirmed

in a nuclear magnetic resonance (NMR)

structure that, as expected by theoretical

studies, the mTP forms an amphipathic

Æ-helix when bound to the receptor

protein, TOM20.5 On the other hand,

when processed by the MPP, it adopts an

extended structure.50

Chloroplast
The chloroplast is an organelle present in

photosynthetic plants and algae and, like

the mitochondrion, it is believed to be of

bacterial origin.51 Thus, it has a small

genome of its own, a reminiscence from

its pre-endosymbiotic days. The majority

of chloroplast proteins are encoded in the

nuclear genome and post-translationally

imported into the organelle. Virtually all

chloroplast proteins encoded in the

nucleus have an N-terminal chloroplast

transit peptide (cTP) recognised by

cytosolic chaperones, whereupon the

complex docks to the Toc (translocon at

the outer membrane) machinery and the

protein is then further transported via the

Tic (translocon at the inner membrane)

complex into the chloroplast stroma in an

ATP- and GTP-dependent manner.52,53

Upon entry, the cTP is cleaved off by the

stromal processing peptidase (SPP).54

cTPs from different proteins show a

wide variation in length (20–120

residues, average is 55) and sequence, but

they tend to be rich in hydroxylated

residues, especially serines, and to have a

low content of acidic residues.47 cTPs

from algae are in general shorter than

those from higher plants.55 At the N-

terminus there is a conserved alanine next

to the initial methionine. A semi-

conserved motif, V-R-A-(;)-A-A-V,

around the SPP cleavage site (arrow) has

also been identified;56 Figures 1 and 2.

The signal is not very strong and there are

actually several examples of proteins that

are located to both mitochondria and

chloroplasts using identical sorting

signals.57,58

Thylakoid
Proteins designated for the lumen of the

intra-chloroplastic thylakoid

compartment generally have a bi-partite

targeting sequence composed of an N-

terminal stroma-targeting cTP followed

by a thylakoid lumen transfer peptide

(LTP) that shares important features with

signal sequences required for protein

secretion in bacteria (Figure 1).10,59 This

fact is due to the endosymbiotic origin of

the chloroplast, where a photosynthetic

cyanobacteria-like prokaryote was

engulfed by a eukaryote, and

consequently, the stroma to lumen

transport is topologically equivalent to

bacterial protein secretion.51,60

There are at least two different

The chloroplast is the
result of an
endosymbiotic event

The chloroplast transit
peptide (cTP) is N-
terminal

Some proteins have a
dual location

Thylakoid proteins have
a ‘bi-partite’ localisation
signal
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pathways from the chloroplast stroma into

the thylakoid lumen, the Sec-dependent

pathway and the delta-pH or twin-

arginine translocation (TAT) pathway.61

The signals for the two pathways are very

similar, the only significant difference

being that the TAT pathway proteins

contain a twin-arginine (RR) motif in the

LTP (KR and RK may also be

accepted18). The -3,-1 motif found at the

SP cleavage site in secreted proteins is

present also in LTPs, here even more

strongly conserved.19,62

Nucleus
Proteins are transported into the nucleus

in a folded state. Various nuclear import

pathways have been detected which all

involve carrier proteins (eg importins)

that form a complex with the nuclear-to-

be protein, a complex that is subsequently

translocated through the nuclear pore,

where it is dissociated and the importin is

shuttled back to the cytoplasm and reused.

The nuclear localisation signals (NLSs),

which facilitate the nuclear import of a

protein, can be present anywhere in the

protein sequence. NLSs do not generally

show any particular consensus sequence

and it is thus rather hard to discriminate

an NLS from a non-NLS region. The two

classical types of NLS are the mono-

partite, which consists of four basic and

one helix-breaking residues, and the bi-

partite, which consists of two clusters of

basic residues with a spacer of 9–12

amino acids in between.63,64

Unfortunately, these patterns are not at all

unique to nuclear proteins but may well

be observed in many other proteins.65

Many other signals mediating nuclear

import have been found, the 38 amino

acid long M9 sequence66 and the repeated

G-R motif 67 to just mention two.68

However, these signals are in general

significantly less frequent than the mono-

and bipartite NLS. There are also signals

for nuclear protein export and retention,

but these will not be considered in this

review.

Peroxisome
Proteins destined for the peroxisome

contain either of two peroxisomal

targeting signals (PTSs): one in the

N-terminal region (PTS2), and another

one that comprises the three most C-

terminal residues (PTS1), and which by

far is the predominant signal of the two

(Figure 1). The PTS1 consensus sequence

is -Ser-Lys-Leu,69 but in a recent survey

of peroxisomal proteins in SWISS-

PROT, 35 different variations of the C-

terminal peroxisome-targeting tripeptide

motif were found (Emanuelsson, Elofsson,

von Heijne, Cristobal, manuscript in

preparation).

PTS1-containing proteins are

recognised by the soluble Pex5 receptor.

The Pex5-PTS1-protein complex is then

docked to the translocation machinery on

the peroxisomal surface.70 A two-hybrid

system was used to show that also part of

the adjacent upstream region may play a

role in the binding of PTS1-containing

proteins to the Pex5 receptor,71 and this

was recently confirmed by a

crystallographic study of Pex5 with a

bound PTS1.6

As hinted, PTS2-containing proteins

are scarce. PTS2 is a bipartite signal with

consensus sequence [R/K]-[L/V/I]-x-x-

x-x-x-[H/Q]-[L/A], usually but not

necessarily located in the N-terminal

part.72,73 In mammals and plants the PTS2

is located within a cleavable part of the

sequence, much like, for example, the

secretory case, except that import and

cleavage do not occur in a coordinated

manner.

METHODS FOR
PREDICTING PROTEIN
LOCALISATION
Subcellular localisation predictors can be

classified according to (i) the input data

they demand and (ii) how the prediction

rules are constructed. The input data may

be the amino acid composition of the

entire protein, some features derived from

the sequence, eg hydrophobicity in

certain regions, the presence of certain

motifs or the actual amino acid sequence

Peroxisomal targeting
signals (PTS) are either
C- or N-terminal

Proteins are
transported into the
nucleus in a folded state
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itself (usually only part of the entire

sequences), or, of course, a mixture.

Expression patterns have also been used

for predicting the subcellular localisation

of sets of proteins, together with sequence

motifs, based on the observation that

expression data and subcellular localisation

are correlated.2 A slightly different idea is

to use the phylogenetic profile of a

protein (ie a list obtained by checking in

several fully sequenced genomes the

presence or absence of homologues to the

query protein), with the assumption that

similar phylogenetic profiles imply co-

localisation, since the endosymbiotic

origin of the organelles will be reflected in

the profiles.74 The two lastly mentioned

principles have not been taken all the way

to independent automated predictors

where users can submit their own data,

and will thus not be further covered in

this review.

Methods for the construction of

prediction rules span from completely

manual collections of rules from the

literature to entirely automatic pattern

recognition techniques such as neural

networks. However, even when using

automated feature extraction methods, it

is wise to incorporate as much biological

knowledge as possible in the model. For

instance, when the input data comprise an

amino acid sequence one obvious

operation is to restrict the automated

feature extraction to sequence regions

where the signal is known to be located

(eg the N-terminal when looking for

signal peptides), or when a signal is

known to have a regional structure,

prediction will benefit from modelling

the various regions differently.75

Many predictors are constructed to

make a binary decision whether the

protein belongs to one particular

compartment of interest, while multi-

category predictors aim at sorting the

query protein to one out of several

possible locations. A common problem

with binary predictors is that they tend to

produce many false positives by

overestimating the number of proteins

predicted to the compartment of their

special interest, or in other words their

sensitivity is good while their specificity is

poor.48

A related issue is the differences in

prediction accuracy for various

compartments, which may be due to

scarce data or the complexity (or lack of

complexity) of the signal. Generally, the

more data available for a particular signal,

the better prediction rules may be

constructed (manually or automatically).

There are two aspects of the signal

complexity. A very complex signal means

that a lot of data will be needed to ensure

(at some degree of confidence) that we

have covered all variants of the signal in

the data set used for predictor

construction. On the other hand, a less

complex signal means that there will

probably be many proteins that are not

located to the particular compartment but

still contain a signal-like motif by chance.

For instance, for peroxisomal proteins

with the C-terminal PTS1 signal, there

are in SWISS-PROT (release 40)76

approximately twice as many non-

peroxisomal proteins containing a valid

PTS1 signal at their C-terminus as there

are truly peroxisome-located proteins

with PTS1-signal (Emanuelsson, Elofsson,

von Heijne, Cristobal, manuscript in

preparation). Finally, it should also be

noted that some predictors are specialised

on a certain group (or groups) of

organisms, eg plant proteins only.

In the following, some of the most

widely used subcellular localisation

predictors will be presented (see Table 2

for web references to the predictors). The

benchmark presented in Table 3 was done

using the TargetP training and test set.77

Accordingly, only cross-validated test set

performance figures (ie measured on

sequences that were not used in the

training) are presented for TargetP, in

order not to favour this particular

predictor over the others.

PSORT
PSORT78,79 is a knowledge-based, multi-

category subcellular localisation program.

It represents an impressive work and is the

Localisation rules can
be manually or
automatically derived

Binary predictors often
produce many false
positives
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gold standard in the field of localisation

prediction, both because of its early

appearance and its hitherto unchallenged

comprehensiveness. Predictions are made

by calculating a set of sequence-derived

parameters and comparing them with a

representation of a number of localisation

rules that have been collected from the

literature. Many of these rules concern the

presence of various sequence motifs that

enable proteins to be localised to a certain

compartment. PSORT is actually two

different programs. PSORT I deals with

17 subcellular compartment

(discriminating, for example, between

different types of membranes), and was

trained on a set of 295 proteins from

various species. PSORT II comprises 10

localisations, and the web version was

trained on 1,080 yeast proteins. Thus,

PSORT II does not deal with plant

sequences. Besides this, the most apparent

difference is between the reasoning

algorithms of the two versions. While

PSORT I sequentially applies a set of if-

then rules in a tree-like manner (Figure 3)

and calculates a certainty factor for each

localisation, PSORT II stores all the

sequence-derived features of the entire

training set, and predicts a new sequence

by choosing the majority localisation

among a certain number of nearest

training examples (k nearest-neighbours

classification). Apart from resulting in

better performance, this approach also

facilitates the incorporation of new

training data. PSORT manages to

PSORT deals with 17
different subcellular
locations

Table 2: Web addresses of subcellular localisation predictors

Predictor Web address

PSORT http://psort.nibb.ac.jp/
iPSORT http://hypothesiscreator.net/iPSORT/
TargetP http://www.cbs.dtu.dk/services/TargetP/
SignalP http://www.cbs.dtu.dk/services/SignalP/
ChloroP http://www.cbs.dtu.dk/services/ChloroP/
Predotar http://www.inra.fr/predotar/
NNPSL http://www.doe-mbi.ucla.edu/~astrid/astrid.html
SubLoc http://www.bioinfo.tsinghua.edu.cn/SubLoc/
MitoProt http://www.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter/
predictNLS http://cubic.bioc.columbia.edu/predictNLS/
TMHMM http://www.cbs.dtu.dk/services/TMHMM/

Table 3: Performance of multi-category predictors on a set of 940 plant proteins or 2,738
non-plant proteins.

77
All predictors were tested using the version that appeared at their

respective web site (Table 2), using default parameter settings. Note that performances usually
differ when measuring on different test sets. Consequently, the figures in this table should be
interpreted with care and not automatically be taken as proof that one predictor is better than
another

(a) Plant data set
Predictor % correct Mitochondrion Secreted Chloroplast ‘Other’

sens spec sens spec sens spec sens spec

iPSORT 83.4 0.84 0.86 0.91 0.98 0.68 0.71 0.83 0.70
PSORT 69.8 0.66 0.87 0.82 0.74 0.47 0.69 0.78 0.47
TargetP 85.3 0.82 0.90 0.91 0.95 0.85 0.69 0.85 0.78
Predotar 84.8 0.86 0.87 – – 0.82 0.77 0.85� 0.86�

(b) Non-plant data set
Predictor % correct Mitochondrion Secreted Nuclear Cytosolic

sens spec sens spec sens spec sens spec

iPSORT 88.5 0.74 0.68 0.92 0.92 ‘other’: 0.90 0.92
PSORT 83.2 0.81 0.60 0.64 0.93 0.84 0.75 0.44 0.46
TargetP 90.0 0.89 0.67 0.96 0.92 ‘other’: 0.88 0.97
NNPSL 73.1 0.74 0.46 0.62 0.77 0.72 0.80 0.45 0.42
SubLoc 77.4 0.67 0.61 0.50 0.74 0.84 0.79 0.64 0.46

sens (sensitivity): the fraction of proteins known to belong to the compartment that actually are predicted to be there;
spec (specificity): the fraction of proteins predicted to the compartment that are known to belong there.
�Secreted and ‘other’ sets pooled.
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correctly predict from slightly below 70

per cent of plant proteins and up to above

80 per cent for non-plant proteins, for

several different test sets, and taking into

account various numbers of possible

locations48,77 (Table 3).

iPSORT80 is a development of

PSORT restricted to deal with secreted,

mitochondrial, chloroplast and other

localisations. Compared with the original

PSORT, the rules are updated and the

prediction algorithm is constructed in a

greedy way, according to the degree of

discriminative performance. Thus, in the

first step rules that concern whether a

protein is secreted are applied. If they are

not fulfilled, rules for organelle

(mitochondrial/chloroplast) localisation

are tried, and if these also fail, the protein

is assigned to the other group. iPSORT

was trained on the TargetP data sets (see

below), and is available in plant and non-

plant versions. See Table 3 for

performance comparisons.

TargetP/ChloroP/SignalP
TargetP77 is conceptually based on the

earlier binary predictors SignalP81 and

ChloroP56 which deal with SPs and cTPs,

respectively. These predictors both

employ neural networks and are able to

predict not only whether there is an N-

terminal sorting signal, but also, with

some degree of success, where it is

cleaved. SignalP is also available in a

hidden Markov model version,75 which in

addition to the SP/non-SP prediction is

able to discriminate uncleaved signal

anchors from cleaved signal peptides.

When developing SignalP and ChloroP

it soon became evident that the mix-up

between different locations due to

overprediction was significant.

Specifically, many mitochondrial proteins

were wrongly predicted as secretory or

chloroplast. The four-category predictor

TargetP was then constructed with the

intention to reduce this problem.

TargetP comes in two versions: one for

plant proteins (trained to recognise cTP,

SP and mTP) and one for other

eukaryotic proteins (recognising SP and

mTP). Both versions are otherwise

virtually identical, with two layers of

neural networks, where the first layer

consists of two (three for the plant

version) parallel networks, each of which

assigns a value of signal peptide-ness or

mTP-ness (or cTP-ness for the plant

version), respectively, to each residue in

the query protein. The top layer network

then integrates these values for the 100

N-terminal residues in the sequence and

outputs one score per potential subcellular

location, ie three scores for the non-plant

version (mTP, SP, other) and four scores

for the plant version (cTP, mTP, SP,

other); Figure 4. TargetP was trained

(using five-fold cross-validation) on a set

of 940 plant and 2,738 non-plant SWISS-

PROT sequences76 that were

redundancy-reduced by aligning all

against all (within the categories), and

removing too similar sequences using the

Hobohm algorithm.82 On a SWISS-

PROT test set with by and large equal

amounts of chloroplast, mitochondrial,

TargetP uses amino
acid sequence as input

Figure 3: Reasoning tree of PSORT I (simplified). Adapted from the
original PSORT paper.

79
At each node, a decision is made based on the

result of the corresponding calculation. (+), yes; (�), no; ER, endoplasmic
reticulum; TMS, transmembrane segment; KDEL, ER retention signal; NLS,
nuclear localisation signal; SKL, peroxisomal location signal; PM, integral
plasma membrane; LSM, lysosome membrane; ERL, endoplasmic
reticulum lumen; LSL, lysosome lumen; OT, extracellular; MT,
mitochondrion (OM, outer membrane; IM, inner membrane; IT,
intermembrane space; MX, matrix); NC, nuclear; PX, peroxisomal; GG,
Golgi complex; CP, cytoplasmic

ER-transferon

ER-degron (specific signals)
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secreted and other proteins, TargetP was

able to predict 90 per cent of the non-

plant sequences and 85 per cent of the

plant sequences correctly;77 Table 3.

Predotar
Predotar83 is primarily aimed at

distinguishing between chloroplast and

mitochondrial proteins, and is thus

exclusively constructed on, and aimed at,

plant sequences. It can also predict dual

location, ie proteins that are found in

both chloroplasts and mitochondria,

which has been experimentally detected

and reported for several proteins.58,84

Predotar was constructed using neural

networks, but with a slightly different

architecture than TargetP. Even though

the construction of data sets differs, the

performance of Predotar is very similar to

that of TargetP with the exception that

Predotar does not deal with predicting

secreted proteins (Table 3).

NNPSL
NNPSL85 is yet another neural network-

based predictor. Unlike TargetP and

Predotar it uses the overall amino acid

contents of the protein to assign one of

four subcellular localisations (cytosolic,

extracellular, mitochondrial and nuclear)

to a query sequence. The advantage of

using the amino acid frequencies instead

of particular motifs is that the prediction is

less sensitive to errors and omissions in the

query protein sequence. The idea of using

amino acid composition for localisation

prediction was pioneered by Nakashima

and Nishikawa, who used it in

combination with residue pair frequencies

to discriminate between extra- and

intracellular proteins.86

In the training of NNPSL, some 2,400

eukaryotic SWISS-PROT sequences

were included, redundancy-reduced so

that the mutual identity was at most 90

per cent for any pair of proteins in the

training set. In the original paper, 66.1 per

cent of test set proteins were reported to

be correctly located in a multi-category

prediction. See also Table 3 for

performance comparisons.

SubLoc
SubLoc87 predicts subcellular localisation

using support vector machines (SVM), a

machine-learning technique that finds the

optimal separating hyperplane between

classes of data. Like the above-mentioned

NNPSL, SubLoc uses the amino acid

composition as input data, and was in fact

trained on the same data sets.

Performance mounted to 79.4 per cent

using the SVM instead of the NN

technique. The large difference in

performance between the support vector

approach (SubLoc) and the neural

network approach (NNPSL) is

remarkable, considering that the data used

for training are identical. However, the

benchmark study in this review using

another test set indicates a smaller

difference in performance (Table 3).

MitoProt
MitoProt II88,89 predicts mitochondrial

localisation of a sequence by calculating

several physicochemical parameters from

the sequence and then computing a linear

discriminant function (LDF). The

parameters considered are obtained from

Predotar is able to
predict dual location

NNPSL and SubLoc use
amino acid composition
as input

Figure 4: TargetP architecture (plant
version).

78
TargetP was constructed with

two layers of neural networks (first layer and
integrating networks) and a decision unit that
outputs a prediction and a reliability class
(RC), which is a measure of the certainty of
each prediction

cTP           mTP SP

prediction:
cTP/mTP
SP/other RC

decision
unit

first layer
networks

input
sequence

outputs

cutoffs

MATAAGVIGAACLVR...

network
integrating
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the literature, and the ones with greatest

influence on the prediction turned out to

be the amino acid content in certain

regions (quite unsurprisingly, the N-

terminus is one of the considered parts),

and the hydrophobicity of regions. When

tested on a set of human proteins from

SWISS-PROT (3,419 sequences),

MitoProt II was able to predict 86.7 per

cent correctly in a binary prediction

(mitochondrial/non-mitochondrial).48

MitoProt II can also be used to predict

chloroplast location, but this property has

not been documented in any paper.

predictNLS
predictNLS65 represents an interesting

approach to motif finding. It predicts

whether a protein is nuclear (ie if it

contains a nuclear localisation signal,

NLS) or not by scanning the query

protein for the presence of any of a set of

more than two hundred known or

constructed NLS motifs. An initial set of

91 experimentally verified motifs (NLSs)

were found by searching the literature.

The number of motifs associated with

nuclear localisation was then increased by

‘in silico mutatogenesis’ of the known

NLSs in such a way that only motifs that

exclusively matched known nuclear

proteins but no other proteins were

accepted. In this way, the specificity

(when applied to known sequences) was

1.00 while sensitivity was reported to be

0.43 when testing on the eukaryotic

proteins in SWISS-PROT.76

TMHMM
TMHMM90 is a general predictor of Æ-

helical transmembrane regions in proteins.

It was constructed using HMMs, which

are particularly suitable for modelling the

different (and sequentially appearing)

regions that a transmembrane protein

consists of: cytoplasmic and extracellular

loops, hydrophobic transmembrane

helices and border regions (helical caps).

The HMM approach also permits

TMHMM to predict not only the actual

transmembrane regions but also which

non-membrane loops/regions that are on

the inside (cytosolic side) of the

membrane and which are on the outside,

ie the topology. On a protein level,

approximately 80 per cent of their cross-

validated data set were reported to be

correctly predicted, and an independent

study has coined TMHMM as the

currently best-performing transmembrane

prediction program.91

Very recently, a similar HMM-based

approach aimed at recognising �-barrel

regions in proteins was presented.92 The

most interesting feature of this predictor is

perhaps the inclusion of evolutionary

information in the training set, by using

sequence profiles derived from PSI-

BLAST searches.93,94 On a residue level,

83 per cent of the test set was reported to

be correctly assigned.

DISCUSSION
Predictions – of many various kinds –

have indeed speeded up the pace of

molecular biology and have become

indispensable tools for experimentalists. It

appears as if localisation prediction is

possible to carry out with decent

performance, and there is a range of

programs available, all with their own

strengths and weaknesses. A benchmark

for some of the more widely used

predictors is presented in Table 3, but the

figures should be considered as rough

estimates rather than absolute

performance standards. It is hard to assess

how well the predictors are doing when

encountering large amounts of unknown

data (such as complete genomes) since all

of them – for very natural reasons – in

one way or the other are based upon the

current knowledge about sorting

mechanisms and upon the databases that

have been collected with this knowledge,

and generally this knowledge only, in

mind. However, extrapolating

(conservatively) from the figures

presented in Table 3 and counting on

some general prediction performance

improvement when incorporating even

more data from the ever-growing

databases (or database in singular, rather,

since SWISS-PROT is the prime choice

TMHMM predicts
transmembrane
proteins and their
topology
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for virtually all players on the subcellular

localisation prediction field) and the

literature, it does not seem unlikely that

some 90 per cent of all proteins in an

organism could soon be correctly sorted

in silico among the compartments

mentioned in this review. Careful manual

examination of prediction results could

raise this figure additionally. The issue is,

however, corrupted by phenomena such

as dual location and erroneous

annotations, which effectively prevent the

construction of an even near-perfect

predictor.

Another aspect, already mentioned in

the Introduction, is that some

compartments are harder to predict than

others, which partly is a reflection of the

fact that we do not know all the

underlying mechanisms in enough detail.

For instance, the role of the three-

dimensional structures of many types of

signals (and their receptors) remains to be

investigated. Structures of complexes of

signal sequence and receptor have been

reported for mTP5 and PTS1,6 but are

still lacking for other signals. For

chloroplast transit peptides, it has been

speculated that cTPs have evolved to

provide maximum random coil

potential,95 while NMR studies of both

algal and plant cTPs in the presence of a

membrane-mimetic solvent system,

suggest a mixture of Æ-helix and random

coil.96–99

The figures in Table 3 also reveal that

the methods looking for the actual

localisation motifs are advantageous to

those relying solely on amino acid

composition. While it is still obvious that

overall residue composition is correlated

with subcellular localisation, this

correlation may be a secondary effect

stemming from the fact that various

compartments perform different tasks and

thus are inhabited by different protein

families with different compositional

biases.

The use of dedicated localisation

predictors should of course always be

coordinated with more general

bioinformatic tools such as alignments and

phylogenetic analyses to ensure maximum

insight. Another observation is that, if

possible, it is wise to try more than one

localisation predictor since that tends to

increase the reliability of the prediction (if

they agree, that is). In addition if you’re

not satisfied with the verdict of the first

doctor, why not get a second opinion? In

homology modelling of 3D-structures,

consensus predictors have been in use for

a while99 but within the field of

subcellular localisation, the idea of

consensus predictions has not as of yet

been very extensively tried. When applied

to whole-genome data, a related approach

is to serially apply predictors to narrow

down the set of predicted proteins. Peltier

et al.100 used a combined approach of

several serially connected localisation

predictors (TargetP, SignalP, TMHMM)

and cutoff parameters derived from sets of

experimentally verified proteins to predict

the entire protein complement

(‘proteome’) of the A. thaliana thylakoid.

The study highlights another important

consideration in the localisation

prediction business, namely that the goal

may not necessarily be perfect predictions

from a single predictor but instead a set of

comparably reliable predictions

potentially giving new insights into the

functions carried out in a particular

compartment and providing a starting

point for further experimental studies.
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