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Abstract

Measuring the proximity effect and the damping wing of intergalactic neutral hydrogen in quasar spectra during the
epoch of reionization requires an estimate of the intrinsic continuum at rest-frame wavelengths of
λrest∼1200–1260Å. In contrast to previous works which used composite spectra with matched spectral
properties or explored correlations between parameters of broad emission lines, we opted for a nonparametric
predictive approach based on principal component analysis (PCA) to predict the intrinsic spectrum from the
spectral properties at redder (i.e., unabsorbed) wavelengths. We decomposed a sample of 12764 spectra of
z∼2–2.5 quasars from the Sloan Digital Sky Survey (SDSS)/Baryon Oscillation Spectroscopic Survey (BOSS)
into 10 red-side (1280Å<λrest<2900Å) and 6 blue-side (1180Å<λrest<1280Å) PCA basis spectra, and
constructed a projection matrix to predict the blue-side coefficients from a fit to the red-side spectrum. We found
that our method predicts the blue-side continuum with ∼6%–12% precision and 1% bias by testing on the full
training set sample. We then computed predictions for the blue-side continua of the two quasars currently known at
z>7: ULAS J1120+0641 (z=7.09) and ULAS J1342+0928 (z=7.54). Both of these quasars are known to
exhibit extreme emission line properties, so we individually calibrated the uncertainty in the continuum predictions
from similar quasars in the training set, finding comparable precision but moderately higher bias than the
predictions for the training set as a whole, although they may face additional systematic uncertainties due to
calibration artifacts present in near-infrared echelle spectra. We find that both z>7 quasars, and in particular
ULAS J1342+0928, show signs of damping wing-like absorption at wavelengths redward of Lyα.
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1. Introduction

The damping wing of neutral hydrogen Lyα absorption in
the intergalactic medium (IGM) is predicted to be a key
signature of the epoch of reionization at z>6 (Miralda-
Escudé 1998). This damped absorption signature should be
very broad, affecting rest-frame wavelengths redward of Lyα
(λrest=1215.67Å) out to λrest∼1260Å if the IGM is mostly
neutral. Measurement of this signal, however, requires knowl-
edge of the intrinsic (i.e., unabsorbed) profile of the quasar
spectrum, which in the wavelength range relevant to the IGM
damping wing consists of a combination of multiple Lyα and
N V broad emission line components in addition to a smooth
underlying continuum. Our ability to measure the IGM
damping wing is thus mostly limited by our ability to predict
the shape of this part of the quasar spectrum.

Lacking an accurate physical model to predict the combined
emission from the quasar accretion disk and the broad-line
region, we must instead resort to an empirical approach,
perhaps aided by machine learning. Fortunately, thousands of
quasars have been observed by the Sloan Digital Sky Survey
(SDSS), and these spectra hold a wealth of information relating
the correlated strengths and properties of their broad emission

lines. The challenge lies in how exactly to extract these
correlations quantitatively to predict one part of the spectrum
from measurements of a different part. In this case, we would
like to predict the spectral region potentially affected by IGM
absorption (λrest<1280Å, henceforth the blue side of the
spectrum) from the remaining redward spectral coverage
(λrest>1280Å, henceforth the red side of the spectrum).
Correlations between various spectral features in the spectra

of quasars have been studied for decades (e.g., Boroson &
Green 1992), and strong correlations are known to exist
between various broad emission lines from the rest-frame
ultraviolet to the optical (e.g., Shang et al. 2007). In principle,
then, it should be possible to use the information contained in
the red-side portion of the quasar spectrum to predict the quasar
continuum on the blue side. Various techniques exist in the
literature for predicting the quasar continuum close to Lyα,
including the direct approach of Gaussian fitting the red side of
the Lyα line (e.g., Kramer & Haiman 2009) and stacking of
quasar spectra with similar (non-Lyα) emission line properties
(e.g., Mortlock et al. 2011; Simcoe et al. 2012; Bañados
et al. 2018). The most sophisticated predictive model to date
was presented by Greig et al. (2017b), who determined
covariant relationships between parameters of Gaussian fits to
broad emission lines of C IV, C III], and S IV+O IV] and those
of Gaussian fits to the Lyα line.
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Complicating matters is the fact that the spectral properties
of quasars at z6.5—most notably the properties of their C IV
broad emission lines—appear to preferentially occupy a
sparsely populated tail in the distribution of lower redshift
quasars (Mazzucchelli et al. 2017). The two quasars known at
z>7, and in particular, the newly discovered highest redshift
quasar ULAS J1342+0928 (Bañados et al. 2018), show very
large C IV blueshifts relative to the general quasar population.
The blueshift of the C IV emission line is correlated with
properties of the Lyα emission line (e.g., Richards et al. 2011),
and thus must be properly accounted for when modeling the
Lyα region of high-redshift quasars (Bosman & Becker 2015).
Any method trained on typical low-redshift quasars must then
be able to perform well on objects which lie in the tails of the
distribution of spectral properties.10

A common nonparametric method for determining correla-
tions between different regions of quasar spectra is principal
component analysis (PCA), wherein a set of input spectra is
decomposed into eigenspectra that correspond to modes of
common variations between different spectra. PCA was first
applied to the spectral properties of quasars by Boroson &
Green (1992) through analysis of not the spectral pixels
themselves, but of the properties of various emission lines in
the rest-frame optical. Francis et al. (1992) were the first to
apply PCA to the spectral pixels themselves, using a relatively
small sample of rest-frame UV quasar spectra to investigate
PCA as a tool for quasar classification (see also Yip et al.
2004; Suzuki 2006). The idea of using PCA to predict the
intrinsic continuum of absorbed regions of the spectrum
was introduced by Suzuki et al. (2005), who constructed a
predictive PCA model from low-redshift (z∼0.14–1.04)
quasars in the context of predicting the unabsorbed continuum
in the Lyα forest of higher redshift quasars where the
continuum level cannot be measured directly. This technique
was revisited by Pâris et al. (2011) with a somewhat larger

Figure 1. SDSS DR12 spectra of two quasars (black), their noise vectors (red), and their associated auto-fit continua (blue). The wavelength axes have been
normalized to each quasar’s rest frame, and the flux densities have been normalized to unity at λrest=1290 Å. In addition to the Lyα+N V+Si II complex at the blue
end of the spectra, prominent broad emission lines of Si IV, C IV, C III], and Mg II are visible.

Figure 2. Auto-fit continua (blue) of SDSS J000113.15+322331.8 (left) and SDSS J235144.37+085649.4 (right), their 40 nearest-neighbor spectra for wavelengths
1280 Å<λrest<2870 Å (gray), and the median stacks of those nearest neighbors (red). The strong associated absorption in the original spectra, shown more clearly
in the bottom panels, is no longer present in the nearest-neighbor stacks.

10 Another option would be to simply restrict the training set to quasars with
similar red-side properties, however there may be too few of such analogs (e.g.,
the 46 C IV-based analogs of ULAS J1342+0928 found by Bañados
et al. 2018) to build a flexible model.
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sample of high signal-to-noise (S/N) spectra of z∼3 quasars
to estimate the evolution of the Lyα forest mean flux.
Example applications of these methods include Lee et al.
(2012) who applied the PCA models of Suzuki et al. (2005)
and Pâris et al. (2011) to estimate the continuum level in the
Lyα forest, and Eilers et al. (2017) who used the same PCA
models to measure the sizes of proximity zones in z∼6
quasar spectra. These PCA models, however, were built from
small (Nqso<100) samples of quasar spectra, and thus they
are not well suited to reconstruct the spectra of outliers,
e.g., the quasars known at z6.5 with large emission line
blueshifts.

In this work, we develop a PCA-based model for predicting
the blue-side quasar continuum from the red-side spectrum in a
similar vein to Suzuki et al. (2005) and Pâris et al. (2011), but
from a much larger sample of spectra encompassing a wide
range of spectral properties. In Section 2 we construct the
training set of quasar spectra that serves as the foundation of

our predictive model. In Section 3 we compute a set of basis
spectra via a PCA decomposition of the spectra (in log space)
and calibrate a relationship (i.e., a projection matrix) between
red-side and blue-side PCA coefficients. In Section 4 we test
the predictive power of the projections from the red side to the
blue side on the training set spectra, and quantify the resulting
(weak) bias and covariant uncertainty of the predicted blue-side
continua. In Section 5 we apply our predictive model to the two
quasars known at z>7, which appear to show signs of
damped Lyα absorption from the IGM. Finally, in Section 6 we
conclude with a summary and describe future applications of
this continuum model.

2. Definition of the Training Set

We draw our training set of quasar spectra from the
SDSS-III/Baryon Oscillation Spectroscopic Survey (BOSS;
Eisenstein et al. 2011; Dawson et al. 2013), which obtained

Figure 3. Blue-side and red-side basis spectra derived from the log-space PCA decomposition of 12,764 SDSS DR12 quasar spectra. The “0th” component in the top
panels represents the mean of the log of the spectra, while the lower panels show the basis spectra ordered from highest to lowest variance explained from top to
bottom. Vertical dashed lines highlight the central wavelengths of transitions of various species (or average wavelengths, in the case of blends) corresponding to broad
emission lines in the spectrum, with line identifications taken from the SDSS/BOSS composite spectrum of Harris et al. (2016). The horizontal dotted line in each
panel represents the zero level.
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R∼1200–2500 spectra covering λobs∼3560–10400Å (Smee
et al. 2013) of 294,512 quasars. We make use of the SDSS
DR12 (Alam et al. 2015) quasar catalog (Pâris et al. 2017) with
a query to the quasar spectrum database IGMSpec (Prochaska
2017) for quasars with BOSS pipeline redshifts of 2.09<
zpipe<2.51,11 BAL_FLAG_VI=0 to reject broad absorption
line (BAL) quasars, and ZWARNING=0 to avoid objects with
highly uncertain redshifts. This redshift range was chosen for

similar reasons as Greig et al. (2017b): the spectra cover the
Lyα and Mg II broad emission lines.
We then compute the median S/N at λrest=λobs/(1+zpipe)

=1290±2.5Å for each spectrum, and apply an S/N cut of
>7.0. This selection resulted in 13,328 quasars with complete
wavelength coverage from λrest∼1170–2900Å, covering a
similar range as observed for z>7 quasars, and a median S/N of
10.1 at λrest=1290±2.5Å. Further references to the S/N of
the spectra will refer to the S/N in this wavelength range if not
otherwise specified. Each spectrum was then normalized such
that its median flux at λrest=1290±2.5Å is unity.

Figure 4. Joint distributions of best-fit red-side (horizontal axis) and blue-side (vertical axis) PCA coefficients from the training set. Strong and weak (anti-)
correlations are visible between several of the coefficients; it is the information in these correlations that allow us to predict the blue-side spectrum from the red side.

Figure 5. Left: distribution of r2 and b1 coefficients determined for the nearest-neighbor-stacked training set spectra (2D histogram and blue contours), as discussed in
Section 3. The red contours show the distribution of r2 and projected b1 after applying Equation (5) to the full set of ri for each spectrum. Right: same as the left panel,
but for r6 and b4. The excess scatter in the blue-side coefficients determined from the spectra relative to the projections may reflect stochasticity in the relationship
between the red-side and blue-side spectral features, or a nonlinear relationship that is not accounted for in the projection matrix (Equation (5)).

11 Motivated by the Appendix of Greig et al. (2017b), we use zpipe rather than
zPCA because the C IV emission line shifts do not show redshift dependencies
due to sky lines.
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We then applied an automated continuum-fitting method
developed by Young et al. (1979) and Carswell et al. (1982), as
implemented by Dall’Aglio et al. (2008), which is designed to
recover a smooth continuum in the presence of absorption lines
both inside and outside of the Lyα forest. In brief, the method
consists of dividing the spectra into 16 pixel segments
(∼1100 km s−1), fitting continuous cubic spline functions to
each segment, and iteratively rejecting pixels in each segment
which lie more than two standard deviations below the fit (i.e.,
pixels inside of absorption lines).

We show two examples of quasar spectra (S/N∼12) and
their continuum fits in Figure 1. At this stage, we identify
spectra whose continuum fits (normalized to be unity at
λrest=1290 Å) fall below 0.5 at λrest<1280Å and remove
them from the analysis—these 357 quasars exhibit the strongest
associated absorption (e.g., damped Lyα absorbers, strong N V
absorption) or are remaining BAL quasars which were not
flagged by the visual inspection of Pâris et al. (2017). We
additionally remove 207 quasars whose continua drop below
0.1 at λrest>1280Å, because such a weak continuum relative
to λrest=1290Å is indicative of very low S/N in the red-side

spectrum, which typically implies significant systematics from
OH line sky-subtraction residuals. Applying all of these
criteria, our final training set consists of the remaining 12,764
quasar spectra.
Our sample of auto-fit quasar continua still contains a small

fraction of “junk,” typically quasars with strong associated
absorption that were not caught by the blue-side criterion above
or other artifacts that are not straightforward to eliminate in an
automated fashion. To further clean up the training set in an
objective manner, we replace each spectrum with a median stack
of the original spectrum and its 40 nearest neighbors in the set of
auto-fit continua, where the neighbors have been defined via a
Euclidean distance in (normalized) flux units. That is,

D C C , 1ij i j, ,
2å= -

l
l l( ) ( )

where i and j denote two different quasar spectra and Cλ is the
normalized auto-fit continuum. To avoid combining spectra
with similar associated absorbers present in the Lyα+N V

region, we find the nearest neighbors only using pixels with
λrest>1280Å. In Figure 2 we show the resulting nearest-

Figure 6. Example red-side PCA fits (orange) and blue-side predictions (blue) of two SDSS/BOSS quasar spectra (black) with S/N∼10 at λrest=1290 Å. The top
panels show the entire spectrum, while the bottom panels focus on the Lyα region.

Figure 7. Same as Figure 6, but for example quasar spectra with S/N∼7 (left) and S/N∼25 (right) at λrest=1290 Å.
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neighbor stacks (red) for two S/N∼11 quasars with strong
associated absorbers, seen as the large dips in the original
continuum fit (cyan) close to Lyα, whose spectra would
otherwise contribute unwanted features (i.e., not intrinsic
quasar emission) to the analysis.

3. Log-space PCA Decomposition and Blue-side Projection

The PCA decomposes a set of training spectra into a set of
orthogonal basis spectra, such that a spectrum can be expressed as

F F Aa , 2
i

N

i i
1

PCA

å» á ñ +
=

( )

where ai are the coefficients associated with each basis
spectrum Ai, and NPCA is the number of basis spectra used
for the reconstruction. PCA basis spectra represent the
dominant modes of variance between spectra in the training

set, in order from most to least amount of variance explained.
The dominant mode of variation between quasar spectra,
however, is the varying slope of the (roughly) power-law
continuum. Power-law variations are not naturally described by
additive components (e.g., Lee et al. 2012), but they are
perfectly described by a single multiplicative component, i.e.,
F F l= á ñ ´l l

aD where Fá ñl is the average quasar spectrum and
Δα is a change in spectral index. Motivated by this, we
perform the PCA decomposition in log space,

F F Aalog log , 3
i

N

i i
1

PCA

å» á ñ +
=

( )

or in other words,

F e e . 4F A

i

N
alog

1

i i

PCA

» ´á ñ

=

( )

Figure 8. Same as Figure 6, but for quasar spectra with relatively poor blue-side predictions. In the left panel we show a prediction that undershoots the true
continuum, and in the right panel we show a prediction that overshoots the true continuum.

Figure 9. Left: relative uncertainty (1σ, thick curve) and mean bias (thin curve) of the blue-side PCA predictions applied to the full training set sample. Locations of
broad emission lines of Lyα and N V appear as spectral regions with increased uncertainty. The most important wavelength range for constraints from the proximity
zone and IGM damping wing is λrest∼1210–1250 Å. Right: correlation matrix of PCA blue-side prediction errors. The blurring along the diagonal is due to the scale
of the spline fit continua, while the larger scale correlations are due to errors in matching broad emission line features.
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One drawback of working in log space is that negative flux
values are undefined—fortunately, the stacked auto-fit quasar
continua we are using as our training set are essentially always
positive because the true continua (in the absence of artifacts)
should always be positive, and as mentioned above, we have
explicitly thrown out the small fraction of quasars whose auto-
fit continua fall below positive thresholds.

Our goal is to predict the shape of the Lyα region using the
information contained in the rest of the spectrum. We adopt the
projection procedure of Suzuki et al. (2005) and Pâris et al.
(2011), wherein a linear mapping is constructed between the
measured and predicted coefficients. Instead of fitting the red
side and projecting to a combined red+blue continuum as
performed by Suzuki et al. (2005) and Pâris et al. (2011), we
keep the red- and blue-side spectra distinct, although in practice

we find that this makes little difference. We first decompose the
red- and blue-side spectra with the log-space PCA described
above using the PCA implementation in the python SCIKIT-
LEARN package (Pedregosa et al. 2011). We truncate the set of
PCA basis spectra to the first 10 red-side and 6 blue-side basis
spectra ( Ri and Bi for the red and blue sides, respectively). The
choice of the number of PCA basis spectra to keep is largely
arbitrary—we chose 10 red-side basis spectra motivated by
previous PCA analyses by Suzuki (2006) and Pâris et al.
(2011), and then chose the number of blue-side basis spectra
such that the error in the blue-side predictions (discussed later
in Section 4) did not decrease with additional spectra. Tests
with increased number of red-side and blue-side basis spectra
(up to 15 and 10, respectively) showed very similar results, so
our analysis is not particularly sensitive to the number of basis
spectra.
In Figure 3 we show the red-side and blue-side mean of the

log spectra (top row) and basis spectra (lower rows). Notably,
the first red-side basis spectrum, R1, is a smooth curve that
describes the broadband continuum variations between quasars.
As mentioned above, if the variations between quasar continua
were simply described by differences in spectral index (and
uncorrelated with any other spectral features), the first basis
spectrum should be linear in logl, and this is approximately
the case.12 The other red-side components encode correlations
between the strengths of various broad emission lines and
pseudo-continuum features, e.g., overlapping Fe II emission
lines which blanket the spectrum. The blue-side components
are more difficult to interpret directly, but the first two
components appear to show either correlated ( B1) or anti-
correlated ( B2) Lyα and N V line strengths.
To determine the relationship between the red-side and blue-

side PCA coefficients (ri and bi, respectively), we now compute
the coefficients for each individual (i.e., not median stacked)
quasar spectrum in our training set of 12,764. We first fit for the
red-side coefficients, ri, via χ2 minimization on the original
(i.e., not auto-fit) spectra, after masking pixels which deviate

Figure 10. Left: relative error (1σ, thick curve) and mean bias (thin curve) of the red-side PCA continuum fits of the full training set sample. Right: correlation matrix
of red-side PCA continuum fit errors.

Figure 11. Distribution of score—log of GMM probability (see Section 5)—
for the best-fit red-side coefficients of the training set quasars (histogram).
Quasars with a high score are located near the peak of the distribution in red-
side PCA coefficient space (i.e., “typical” quasars), while quasars with a low
score are located in the outskirts of the distribution. The scores of the two z>7
quasars are indicated by vertical lines. Despite the extreme nature of their C IV
blueshifts relative to their systemic frames, the two z>7 quasars are not
extreme outliers of the score distribution, appearing at the 15.0 percentile
(ULAS J1120+0641) and 1.5 percentile (ULAS J1342+0928).

12 In detail, there is a modest non-power-law curvature in R1. Interpreting this
curvature is beyond the scope of this work, but we note that the form of the log-
space decomposition is similar to those used to describe extinction curves.
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more than 3σ from the auto-fit continua to remove metal
absorption lines such as C IV and Mg II. Motivated by the large
velocity shifts between the systemic-frame (given by, e.g.,
[C II] emission from the host galaxy) and the broad emission
lines in z6.5 quasars (e.g., Mazzucchelli et al. 2017), we
simultaneously fit for a template redshift, i.e., we allow the
effective redshift of the PCA basis spectra be a free parameter
in the fit. This template redshift, ztemp, can be consistently
measured for any quasar spectrum with similar spectral
coverage, allowing for direct comparison between our low-
redshift training set and the high-redshift quasars we are
interested in, and we ascribe no physical interpretation to its
value. Then, working in the ztemp frame as defined by the red-
side fit, we fit the blue-side coefficients, bi, via χ

2 minimization
on the auto-fit spectra instead of directly from the spectral
pixels because the actual blue-side spectrum is guaranteed to be
contaminated by Lyα forest absorption at λrest<λLyα.

The predictive power of the PCA decomposition lies in the
correlations between ri and bi, shown in Figure 4, which show
the joint distribution of best-fit coefficients of the training set
spectra. In the left panel of Figure 5, the 2D histogram and
corresponding blue contours show the relationship between r2
and b1, which appears to reflect a correlation between the
strength of C IV (red-side) and Lyα (blue-side) emission line
strengths (see Figure 3). Following Suzuki et al. (2005) and
Pâris et al. (2011), we model these correlations between
eigenvalues with a linear relationship, i.e., b r Xi j

N
j ji1

PCA,r» å = ,
where X is the N NPCA,r PCA,b´ projection matrix determined
by solving the linear set of equations,

b r X, 5= · ( )

where b (N Nspec PCA,b´ ) and r (N Nspec PCA,r´ ) are the sets of
all best-fit blue-side and red-side coefficients from the training
set, respectively. We solved for X using the least-squares solver
in the python package numpy (van der Walt et al. 2011). The

red contours in Figure 5 show the distribution of predicted b1
(left) and b4 (right) as a function of r2 and r6, respectively, after
application of Equation (5) to the full set of ri. While the
projection matrix provides a close approximation to the
relationship between b1 and r2, the relationship between b4 and
r6 in the training set spectra has considerably more scatter in b4
than the predicted values. This excess scatter may be related to
either stochastic variations in the spectrum (e.g., the relation-
ship between red-side and blue-side emission line properties is
not exactly 1-to-1) or nonlinearities in the relationship between
the blue-side and red-side components that are not captured by
the linear model of Equation (5).
We show two examples of red-side PCA fits to quasars with

S/N close to the median of our training set and their respective
blue-side predictions in Figure 6. The information contained in
the shapes and amplitude of the red-side emission lines is
translated into the predicted blue-side spectrum through the
mapping described by Equation (5), and for these quasars those
predictions appear to be close to the true continuum. The
quality of the red-side fits and blue-side predictions are only
modestly affected by S/N, at least for the spectra selected with
our S/N>7 cut, and in Figure 7 we show example fits to
quasars at the lower and upper ends of the distribution of S/N
on the left (S/N∼7) and right (S/N∼25), respectively. To
avoid only showing good examples, and in a sense of full
disclosure, we show two examples of particularly bad blue-side
predictions13 in Figure 8. We quantify the general accuracy and
precision of the blue-side predictions below.

4. Quantifying Uncertainties in the Continuum Predictions

There are several sources of uncertainty in the prediction of the
blue-side continuum, including stochasticity in the relationship

Figure 12. Top: comparison between the spectrum of ULAS J1120+0641 (black) and its two nearest neighbors in red-side PCA coefficient space: SDSS J111823.68
+161436.6 (blue; Dr=1.24) and SDSS J121412.76+172144.2 (magenta; Dr=1.58). The wavelength axis is presented in the best-fit template redshift frame so that
all three spectra shown have a consistently defined redshift. Lower panels: zoom in on the red-side fit (orange curve; right panels) and blue-side projection (blue curve;
left panels) for the nearest-neighbor quasars. The dotted blue curves in the left panel show ±1σ continuum prediction uncertainty.

13 These poor predictions were discovered by inspecting spectra whose
residuals at λrest∼1230 Å were at the upper and lower ends of the distribution.
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between red-side and blue-side features and the inability of the
PCA model to exactly reproduce a given spectrum. We quantify
the sum of these uncertainties by testing the full predictive
procedure on every quasar in the training set, computing the
relative continuum error of F F FC pred true pred º -∣ ∣ , where Fpred
is the predicted flux and Ftrue is the true flux. For the purposes of
this analysis, we consider the auto-fit continuum of each quasar to
be the true continuum, although this introduces an additional
source of noise and a source of uncertainty in the actual true
continuum that we do not attempt to quantify here. From
simulations of mock Lyα forest absorption applied to noisy
spectra at roughly half the resolution of the SDSS/BOSS spectra
used here, Dall’Aglio et al. (2009) found that the auto-fit continua
were biased low by a few percent in the Lyα forest at z∼2–2.5.
In this work we ignore this bias because the Lyα forest bias only
affects the spectrum blueward of Lyα, which is strongly absorbed
in high-redshift quasars.

In the left panel of Figure 9, we show the mean and standard
deviation of òC as thin and thick curves, respectively, as a
function of rest-frame wavelength (where the rest frame of each
quasar is defined by its best-fit template redshift, ztemp) after
three iterations of clipping individual pixels that deviate more
than three standard deviations from the mean (resulting in ∼2%
of all blue-side pixels masked). The 1σ error in the region most
relevant to damping wing studies, 1210<λrest<1250Å, is
∼6%–12%, comparable to the ∼9% error of the parametric
method in Greig et al. (2017b)14 but without requiring a strict
prior over nearby redward flux that may bias against detecting
extended damping wing absorption (i.e., high neutral fraction).
We also note that Greig et al. (2017b) only considered quasars
whose Lyα profiles were well modeled by their Gaussian fits,

while in principle our method has more freedom to reproduce
more complicated spectral morphologies.
Errors in the continuum prediction are strongly correlated across

neighboring pixels, in part due to small correlated errors in the
smoothed spline fit continua that we assume to be the true
continua, but mostly due to smooth variations in the shape of broad
emission lines and features of the underlying continuum
reconstructed by the PCA model. We show the correlation matrix
of òC in the right panel of Figure 9. The prediction uncertainty is
strongly correlated on the scale of the spline fit (the roughly fixed
width along the diagonal), and shows larger scale correlations due
to variations in the strengths of broad NV (λrest∼1240Å) and
Si II (λrest∼1260Å) emission lines. These strongly correlated
continuum uncertainties, not limited to our method (Kramer &
Haiman 2009), are a critical feature of quasar damping wing
analyses that must be fully propagated when conducting parameter
inference.
We also note that the red-side fits are not perfect, i.e., the PCA

basis is unable to exactly reproduce the input spectra. Assuming
again that the auto-fit continuum models represent the true
continua, we show the 1σ relative error and mean bias of the red-
side fits in the left panel of Figure 10. The error on the best-fit
red-side PCA continuum is typically ∼3%, increasing smoothly
above λrest∼2100Å to ∼5% at ∼2800Å, close to the Mg II
broad emission line. Interestingly, the typical red-side fit is biased
by ∼1% across the entire wavelength range, except for small
regions close to the peaks of the C IV and Mg II broad emission
lines where the sign is reversed. This bias likely comes about
because the actual pixels are used to fit the PCA model of the
spectrum instead of the auto-fit continua, which may be biased
slightly high due to differences in how outlier pixels are rejected.
We also show the correlation matrix of the red-side fit errors in the
right panel of Figure 10.

Figure 13. Similar to Figure 12, but for ULAS J1342+0928 and its two nearest neighbors: SDSS J003339.3+133422.5 (blue; Dr=2.30) and SDSS J133129.89
+410509.0 (magenta; Dr=2.46). The substantial difference between systemic and template redshift frames is evident from the onset of saturated Lyα absorption at
λrest∼1225 Å in ULAS J1342+0928. While globally the spectra look very similar, the C IV profiles of the nearest-neighbor quasars appear to differ somewhat from
that of ULAS J1342+0928.

14 Greig et al. (2017b) state that ∼90% of their predicted fluxes at
λrest=1220 Å lie within 15% of the true continuum, corresponding to
∼±1.64σ assuming Gaussian distributed errors.
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5. Predicted Blue-side Continua of the Known z>7
Quasars

We now demonstrate our continuum-fitting machinery on
the two highest redshift quasars known: ULAS J1120+0641
(z=7.09, Mortlock et al. 2011) and ULAS J1342+0928
(z=7.54, Bañados et al. 2018). Modeling the intrinsic
continuum of these quasars, and understanding the uncertainty
in those models, is critical to constraining the neutral fraction of
the IGM, so they provide a first test of the applicability of our
continuum modeling procedure.

For our analysis of the two z>7 quasars, we use the
previously published spectra from their respective discovery
papers. We use the combined VLT/FORS2 + Gemini/GNIRS
spectrum of ULAS J1120+0641 published in Mortlock et al.

(2011) and we use the combined Magellan/FIRE + Gemini/
GNIRS spectrum of ULAS J1342+0928 published in Bañados
et al. (2018). We fit the red-side continua of these quasars
nearly identically to our fits of the training set, performing χ2

minimization to fit both their red-side coefficients, ri, and their
template redshifts, ztemp. As with the training set, we reject
pixels that deviate from an automated spline fit of the
continuum by >3σ to reject strong metal absorption lines. In
addition, for both spectra we mask spectral regions corresp-
onding to regions of poor atmospheric transmission in the gaps
between the J-/H-/K-bands, and for ULAS J1120+0641, due
to the relatively low spectral resolution (R∼500) compared to
the training set (R1200), we manually mask regions of
strong metal line absorption reported by Bosman et al. (2017)
from their extremely deep VLT/X-Shooter spectrum. For
ULAS J1120+0641 we find ztemp=7.0834, a very small
blueshift of Δv=63 km s−1 from the systemic redshift
(zsys=7.0851 from host galaxy [C II] emission, Venemans
et al. 2017b), while for ULAS J1342+0928 we find ztemp=
7.4438, a blueshift of Δv=3422 km s−1 from the systemic
redshift (zsys=7.5413 from host galaxy [C II] emission,
Venemans et al. 2017a).
Both of these quasars have peculiar broad emission line

properties, most notably large blueshifts in the C IV line relative
to Mg II: Δv∼2800 km s−1 for ULAS J1120+0641, and
Δv∼6100 km s−1 for ULAS J1342+0928. We quantify the
outlying nature of these quasars in the context of our PCA
model by modeling the 10D probability distribution of the best-
fit ri from the training set as a mixture of multivariate
Gaussians, i.e., a Gaussian mixture model (GMM), using the
GAUSSIANMIXTURE package in SCIKIT-LEARN. We chose the
number of Gaussians, NGauss=9, to minimize the Bayesian
information criterion (BIC; Schwarz 1978), defined by

k N LBIC log 2 log , 6spec= - ˆ ( )

Figure 14. Similar to Figures 12 and 13, but for two other nearest-neighbor quasars to ULAS J1342+0928: SDSS J092510.07+162759.0 (blue; Dr=2.70, 12th-
nearest) and SDSS J105632.55+215411.2 (magenta; Dr=2.92, 29th-nearest) which have been chosen by eye to have more similar C IV line profiles than the
neighbors shown in Figure 13.

Figure 15. Relative uncertainty (1σ, thick curves) and mean bias (thin curves)
for the 1% of quasars in the training set with red-side coefficients most similar
to ULAS J1120+0641 (blue) and ULAS J1342+0928 (purple), compared to
the full training set sample (gray).
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where k is the number of model parameters of the GMM (i.e.,
means, amplitudes, and covariances of the individual Gaus-
sians),

k N N N
1
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Nspec is the number of spectra in the training set, and L̂ is the
maximum likelihood (i.e., the product of the GMM evaluated
for each quasar) for the given number of Gaussians. The
distribution of scores of each quasar in the training set, defined
as the log of the GMM probability evaluated at their
corresponding values of ri, is shown in Figure 11. Quasars
whose spectra have a higher score are located closer to the
mean quasar spectrum, while lower scores represent outliers.
The scores of ULAS J1120+0641 and ULAS J1342+0928 are
shown by the vertical blue and purple lines corresponding to
percentiles of ∼15.0% and 1.5% in the distribution of scores,
respectively. Given the extreme broad emission line properties
of these two quasars (Mortlock et al. 2011; Bosman &
Becker 2015; Bañados et al. 2018), these percentiles may seem
somewhat high—however, the GMM score is sensitive to more
than just the particularly extreme features of the z>7 quasar
spectra (e.g., their large C IV blueshifts), illustrating that in
other aspects the quasars are more representative of the bulk
sample at low redshift (e.g., continuum slope and equivalent
widths of broad emission lines).

Our ability to constrain the intrinsic blue-side continua of
peculiar quasars like ULAS J1120+0641 and ULAS J1342
+0928 can be determined by testing how well we can make
predictions for similar quasars, i.e., with similar ri, in the
training set. We define a distance in ri space by
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where i is the PCA component index, NPCA,r=10, is the
number of red-side PCA basis vectors, Δri is the difference
between the best-fit ri values, and σ(ri) is the standard deviation
of best-fit ri values in the training set sample. The median
distance between randomly chosen quasars is Dr,med∼7.5. We
then identify the 1% of quasars (NQSO=127) in the training
set with the smallest Dr to the quasar whose continuum we are
predicting, i.e., the set of nearest-neighbor quasar spectra in the
training set. In Figures 12 and 13 we show the two nearest
neighbors (i.e., the first and second smallest Dr) to ULAS
J1120+0641 and ULAS J1342+0928, respectively, along with
their respective red-side PCA fits and blue-side predicted
continua. While the ULAS J1120+0641 neighbors have
strikingly similar red-side broad emission line profiles, the
ULAS J1342+0928 neighbors are less similar, reflecting the
more sparse sampling of the distribution of quasar spectra.
More qualitatively similar spectra exist in the set of nearest
neighbors, however, and we show two examples in Figure 14,

Figure 16. Top: FORS2+GNIRS spectrum of ULAS J1120+0641 (black) and its noise vector (red) from Mortlock et al. (2011). The red-side PCA fit and bias-
corrected blue-side prediction are shown as the orange and blue curves, respectively. Gray shaded regions represent pixels that were masked out when performing the
red-side fit. Middle: zoom in on the red-side fit of the strongest broad emission lines. The brown transparent curves show 100 draws from the covariant red-side fit
error shown in Figure 10. Bottom: zoom in of the blue-side spectrum, where the vertical dashed line corresponds to rest-frame Lyα. The blue transparent curves show
100 draws from the covariant blue-side prediction error measured for 127 similar quasars in the training set.
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which were chosen by eye solely from a comparison of their
red-side spectrum to that of ULAS J1342+0928.

The blue and purple curves in Figure 15 show the relative
error and mean bias for the ULAS J1120+0641 and ULAS
J1342+0928 nearest-neighbor samples, respectively, as a
function of rest-frame (ztemp-frame) wavelength. Quasars
similar to ULAS J1342+0928 tend to have smaller continuum
errors than average at λrest<1245Å with a modest bias, while
those similar to ULAS J1120+0641 tend to have error
comparable to the full training set and a ∼5% bias at 1220Å

1235rest l Å. In Figures 12 through 14 we have corrected
the blue-side predictions for their corresponding mean biases,
and we similarly correct the predictions for the z>7 quasars
shown below.

To model the relative uncertainties between our blue-side
predictions and the observed spectra, we approximate the
continuum error distribution as a multivariate Gaussian distribution
with mean and covariance set by the mean and covariance matrix
of prediction errors òC measured from 127 nearest-neighbor
quasars as described above. Our Gaussian approximation to the
continuum errors appears to be a good one, and we show
distributions of continuum error at representative rest-frame
wavelengths in Appendix A. To generate plausible representations
of the true continuum Fsample, we draw samples of òC from this
multivariate Gaussian and multiply the blue-side prediction by
1+òC, i.e., Fsample=Fpred×(1+òC). This procedure can be
used to draw Monte Carlo samples of the uncertainty in the
continuum prediction for analyses of, e.g., the damping wing from
the IGM.

In Figure 16 we show the red-side continuum fit (orange) and
blue-side prediction (blue) for ULAS J1120+0641, where the
latter has been corrected for the mean bias of the prediction for
similar quasars (i.e., the thin blue curve in Figure 15). The pixel
mask for the red-side fit is shown by the gray shaded regions. As
shown in the middle panels, the PCA is able to fit the Si IV, C IV,
C III], and Mg II broad emission lines very well, although most of
the core of the C IV line has been masked out due to associated
C IV absorbers which are unresolved in the GNIRS data. The blue-
side prediction, shown more closely in the bottom panel, matches
the blue-side continuum very closely for λrest>1225Å, but at
λrest∼1216–1225Å there is evidence that the observed spectrum
lies below the predicted continuum. This deficit suggests the
presence of an IGM damping wing, as reported by Mortlock et al.
(2011) and Greig et al. (2017a). However, from the covariant error
draws Fsample, shown as the transparent curves, it is clear that the
uncertainty in our continuum model is of comparable amplitude to
any putative damping wing signal, so any reionization constraint
based solely on this damping wing signature will be weak at best.
In Figure 17 we show the red-side continuum fit and bias-

corrected blue-side prediction for ULAS J1342+0928, analo-
gous to Figure 16. The middle panels show that the PCA model
is able to fit the red-side spectrum reasonably well despite the
odd shape of the broad emission lines, although the fit to the
Mg II line is quite poor.15 Contrary to ULAS J1120+0641, and
in agreement with the analysis in Bañados et al. (2018) based

Figure 17. Similar to Figure 16, but for the FIRE+GNIRS spectrum of ULAS J1342+0928 from Bañados et al. (2018). The FIRE portion of the spectrum in the top
two panels has been rebinned to match the pixel scale of the GNIRS data used in the K-band, while the bottom panel is shown at the original FIRE pixel scale to better
highlight the smooth continuum regions close to Lyα between the narrow foreground absorption lines.

15 If we exclude the Mg II portion of the ULAS J1342+0928 spectrum from
the red-side fit, we predict a very similar blue-side spectrum, so this does not
appear to compromise the prediction procedure in general.
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on a C IV-matched composite spectrum, the ULAS J1342
+0928 spectrum shows a significant, extended deficit relative
to the blue-side prediction. This deficit is too large to explain
with continuum error, and the deficit smoothly increases from
λrest∼1250Å to λLyα in qualitative agreement with the
expected profile of a Lyα damping wing from a substantially
neutral IGM.

Finally, we note that the spectra of z>7 quasars are
typically taken with near-infrared echelle spectrographs, and
so there may be additional systematic uncertainties in the red-
side spectra (e.g., relative flux calibration uncertainty
between echelle orders and telluric corrections) which are
not present in our training set. Fully characterizing and
quantifying these uncertainties is beyond the scope of this
work, but in Appendix B we analyze two additional spectra
of ULAS J1120+0641 taken with Magellan/FIRE (Simcoe
et al. 2012) and VLT/X-Shooter (Barnett et al. 2017;
Bosman et al. 2017). The continuum predictions vary
between the three spectra at the ∼1–2σ level, but the
differences between transmission spectra are somewhat
smaller, hinting at the presence of differences between the
intrinsic spectra at the different epochs at which the quasar
was observed, although no substantial red-side variations
were observed across different epochs of the X-Shooter data
(G. Becker 2018, private communication).

In Davies et al. (2018) we determine constraints on the
reionization epoch and quasar lifetimes from the continuum-
normalized spectra of ULAS J1120+0641 and ULAS J1342
+0928, making use of the continuum error covariance matrices
measured for their spectral nearest neighbors.

6. Conclusion

In this work, we have developed a PCA-based method for
predicting the intrinsic quasar continuum at rest-frame wave-
lengths of λrest<1280Å from the properties of the spectrum at
1280Å<λrest<2850Å. We exploited the large number of
high-quality quasar spectra from SDSS/BOSS whose broad
wavelength coverage enables us to build a continuous spectral
model covering 1175Å<λrest<2900Å from a sample of
12,764 spectra with S/N>7. After the initial processing of the
spectra with adaptive, piecewise spline fits and subsequent
nearest-neighbor stacking, we performed a log-space PCA
decomposition of the training set truncated at 10 red-side and 6
blue-side basis spectra. We determined the best-fit values of these
coefficients, and red-side template redshifts, for each quasar
spectrum in the training set, and derived a projection matrix
relating the red-side and blue-side coefficients. This projection
matrix can then be used to predict the blue-side coefficients (and
thus the blue-side spectrum) from a fit to the red-side coefficients
(and template redshift) of an arbitrary quasar spectrum.

By testing our procedure on the training set, we found that
we can predict the blue-side spectrum of an individual quasar to
∼6%–12% precision with very little mean bias (1%),
although prediction errors are strongly covariant across the
entire blue-side spectrum. As a proof-of-concept test, we
predicted the blue-side spectra of two z>7 quasars thought to
exhibit damping wings due to neutral hydrogen in the IGM:
ULAS J1120+0641 (Mortlock et al. 2011) and ULAS J1342
+0928 (Bañados et al. 2018). These two quasars are known to
possess outlying spectral features from the primary locus of
quasar spectra at lower redshift, so we established that our

method works similarly well on such outliers by testing the
machinery on the 1% nearest-neighbor quasars in the training
set to each z>7 quasar. While ULAS J1120+0641 shows
only modest evidence for an IGM damping wing, ULAS J1342
+0928 appears to be strongly absorbed redward of systemic-
frame Lyα. In a subsequent paper we will constrain the neutral
fraction of the IGM at z>7 through statistical analysis of
these two spectra.
A critical caveat of our analysis of z>7 quasar spectra is that

their near-infrared echelle spectra typically contain calibration
artifacts that are not present in SDSS optical spectra. As shown in
Appendix B, these systematic uncertainties may introduce
additional scatter comparable to the blue-side prediction uncer-
tainty measured from the training set. Future z>7 quasar spectra
taken by the James Webb Space Telescope should be free of these
artifacts, and thus provide more definitive continuum predictions.
Our relatively unbiased method for quasar continuum

prediction can be applied more broadly to quasar proximity
zones at any redshift where direct measurement of the
continuum is difficult, i.e., z>4. Measurements of the quasar
proximity effect using our predicted continua can in principle
constrain the strength of the ionizing background (e.g.,
Dall’Aglio et al. 2008), the helium reionization history from
the thermal proximity effect (Khrykin et al. 2017, J. F.
Hennawi et al. 2018, in preparation), and timescales of quasar
activity (Eilers et al. 2017). The predicted continua may also be
useful for analyzing proximate absorption systems such as
damped Lyα absorbers at z5.
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Appendix A
Distribution of Continuum Prediction Errors

In Section 4 we approximated the distribution of continuum
errors in the training set with a multivariate Gaussian, and in
Section 5 we did the same for much smaller subsets of nearest-
neighbor spectra to the z>7 quasars. In Figure 18 we show
representative distributions of continuum error in the training
set (left panels) and the two nearest-neighbor samples (middle
and right panels) at λrest=1210, 1220, 1230, and 1240Å from
top to bottom. The distributions (histograms) are well
approximated by the Gaussian approximations (solid curves),
and in each of the nearest-neighbor panels we show the
distribution for the entire training set as a dotted curve,
highlighting the significant differences in the error properties
(i.e., the mean and variance) of the different subsets of quasars.

Appendix B
Calibration Systematics in z>7 Quasar Spectra

The broadband spectra of z>7 quasars are typically taken
with near-infrared echelle spectrographs, potentially introdu-
cing significant order-by-order flux calibration and telluric
correction uncertainties. While our log-PCA method should
correct for any single power law tilt across the entire spectrum,
order specific calibration systematics will not be represented by

the SDSS-based training set that we use to quantify continuum
prediction uncertainties.
In an attempt to qualitatively estimate the effect of these

systematic uncertainties, we have applied our methodology to two
additional independent spectra of ULAS J1120+0641 taken with
Magellan/FIRE (Simcoe et al. 2012) and VLT/X-Shooter
(Barnett et al. 2017; Bosman et al. 2017). We show the three
spectra in Figure 19, normalized to the flux at λrest=1290Å, and
we have smoothed the FIRE and X-Shooter spectra with a three-
pixel median filter for ease of comparison by eye. We can see
subtle differences between the three spectra, most obviously a
slight power law tilt in the FIRE spectrum relative to the other two.
We fit only λrest<2810Å due to artifacts in the K-band in the
FIRE and X-Shooter spectra, and we refit the GNIRS data over the
same restricted wavelength range for consistency. In Figure 20 we
show the red-side fits to each spectrum, making the (PCA fit)
differences more visible. The relative differences between the red-
side fits are shown in the left panel of Figure 21. Interestingly, the
largest relative differences between the red-side fits are evidently
inside of broad emission lines, hinting at a possible physical (rather
than instrumental) origin to the differences between spectra,
although we note that broad emission lines dominate the red-side
PCA eigenspectra (Figure 3), so they may be more sensitive to
small-scale artifacts in the data. However, especially given the time
dilation due to the high redshift of ULAS J1120+0641, the FIRE

Figure 18. Distributions of continuum error measured for the full training set (left panels), nearest-neighbor spectra to ULAS J1120+0641 (middle panels), and
nearest-neighbor spectra to ULAS J1342+0928 (right panels). From top to bottom, the error distributions are shown for λrest=1210, 1220, 1230, and 1240 Å.
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spectrum differs enough from the GNIRS and X-Shooter spectra
that calibration artifacts seem to be a more likely explanation.

The resulting blue-side continuum predictions are shown in
the right panel of Figure 21. The FORS2+GNIRS prediction
differs from the fiducial prediction in the main text due to the
difference in the fitted wavelength range, but the differences
are1σ. The predictions for the FIRE and X-Shooter spectra
differ from the FORS2+GNIRS continuum prediction by
∼1–2σ, which at first glance seems to suggest that we may
have underestimated the continuum uncertainties by a factor of
∼2. In Figure 22 we show that the differences between the
continuum-normalized spectra are smaller—in fact, the differ-
ence between the FORS2+GNIRS and FIRE spectra largely
disappears at λrest<1230Å. This agreement suggests a

possible physical origin for the disagreement between the
continuum models, i.e., joint variability between broad emission
lines across the spectrum, but no such variability was seen across
different years of the X-Shooter data (G. Becker 2018, private
communication). Additionally, there are conspicuous regions
where the transmission spectra differ substantially between spectra,
in particular at λrest∼1218Å and ∼1242Å where the differences
(roughly 10%–20%) are comparable to the continuum prediction
uncertainty measured from the training set. Precisely quantifying
the additional uncertainty due to calibration artifacts is beyond the
scope of this work, but we note that all three continuum models
suggest the presence of a damping wing from neutral hydrogen
along this sightline, and similarly consistent with the best-fit
absorption model in Davies et al. (2018).

Figure 19. Comparison between the three independent spectra of ULAS J1120+0641. Our fiducial FORS2+GNIRS spectrum is shown in black, while theMagellan/
FIRE (Simcoe et al. 2012) and VLT/X-Shooter (Barnett et al. 2017; Bosman et al. 2017) spectra are shown in green and blue, respectively. The FIRE and X-Shooter
spectra have been median filtered over a three-pixel window for ease of comparison. Rest-frame wavelengths in regions with strong telluric absorption are not shown.
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Figure 20. Similar to Figure 19, but now showing the red-side PCA fits of the ULAS J1120+0641 spectra.

Figure 21. Left: red-side PCA fits of the ULAS J1120+0641 spectra (top panel) and the relative difference between the FORS2+GNIRS red-side fit and the FIRE
(green) and X-Shooter (blue) fits (bottom panel). The 1σ and 2σ error in the red-side fits of the training set are shown by the dark and light shaded regions,
respectively. Right: same as the left panels, but for the blue-side continuum predictions.
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