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Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual
rainfall amount often exceeds 2000mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics,
slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion
processes generally provide good results but are time-consuming due to calibration and validation.&e goal of this study is to develop
a machine learning model based on support vector machine (SVM) for soil erosion prediction. &e SVM serves as the main
predictionmachinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition,
in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction
and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. &us, the proposed
method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of
training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10
influencing factors. &e training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the
generalization capability of the model. &e experimental results indicate that the newly developed L-SHADE-PWI-SVMmethod is a
competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high
classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis
function artificial neural network (78%).

1. Introduction

Soil erosion induced by water is the main culprit of the
degradation of upland and mountain ecosystems [1]. &e
erosion process poses a threat to the capacity of the land to
provide ecosystem services that are needed to reach the
Sustainable Development Goal (SDG) target 15.3 [2].
Currently, soil erosion is a critical concern in many regions;
this issue must be prevented to achieve sustainable devel-
opment goals [3, 4]. Soil erosion is characterized by a
complex and dynamic process involving detachment,
transport, and deposition of soil material. &ere are many

factors affecting erosion magnitude, namely, climate, soil
type, soil structure, vegetation, and cropping on top and
especially land management [5].

In tropical areas, such as Northwest Vietnam, soil
erosion potential is high due to heavy rainfall and is cur-
rently accelerating under maize monocropping in the up-
lands [6, 7]. A recent increase in maize monocropping in the
region is caused by market demand for the rapid growing
livestock and poultry industry. &e majority of the maize
area expansion has been achieved by encroachment into
steep forested mountain watersheds. Land preparation for a
maize cropping season employed a weeding prior to
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burning, followed by several ploughs before sowing seeds.
&e practice is carried out at the onset of the monsoon rains;
by the time, bare fields are exposed to high-intensity rains.
&is often results in high runoff leading to large erosion and
longer-term degradation with declining crop production on-
site and strong environmental impacts off-site [8, 9]. Erosion
control measures are based on the following: covering the
soil to protect it from raindrop impact; increasing the in-
filtration capacity of the soil to reduce runoff; improving the
aggregate stability of the soil; and increasing surface
roughness to reduce the velocity of runoff [10–12]. Many
attempts have been tested worldwide: contour ploughing or
contour farming using stone, wood, or vegetation barriers/
hedgerow; cover crop; minimum tillage or zero tillage; and
mulching. Such measures can be effective in different geo-
graphic and climatic conditions under various soil charac-
teristics and land management systems. Among these, land
management is crucial in controlling erosion [11, 13–16].

Cerdà et al. [17] investigate the hydrological and ero-
sional impact as well as farmer’s perception on catch crops
and weeds in citrus organic farming; this study recommends
that farmers should be informed and given initial subsidies
for implementing new measures for improving soil quality
and preventing soil erosion. In the study of Tuan et al. [18],
kinetic energy of rainfall is found to be one of the most
important factors that cause soil erosion, particularly when
heavy rains coincide with poor ground cover at the be-
ginning of the cropping season. However, it should be noted
that the importance of a factor varies from case to case and
other comprehensive variables affecting erosion should also
be studied.

Soil loss studies at the plot scale have been of crucial
importance to identify the mechanism of the processes. &e
erosion plot experiments can help to introduce new erosion
prevention as it provides access to dependable and faithful
erosion measurements and large numbers of data necessary
to test new models [19]. A number of empirical erosion
models such as USLE and RUSLE [20], SWAT [21], and
WEPP [22] used data from these types of studies for pre-
diction. However, the performance and accuracy are not as
good as expected [23].

In the last decades, machine learning-based models
have proved to be a helpful alternative to deal with the
multivariate and complex nature of the phenomena in
various disciplines of engineering [24–38]. Optimized
kernel logistic regression models were employed in [39]
for landslide susceptibility assessment. &e evidential
belief function-based function tree (FT), logistic regres-
sion, and logistic model tree were utilized for predicting
landslide occurrences in [40]. Ensemble learning methods
used for natural hazard risk assessment have been pro-
posed in [41–44].

In addition, ANN is used to estimate the soil erodibility
in Malaysia [45] and to conclude that rainfall and runoff are
important factors affecting the amount of soil eroded [46]. In
[47], Kohonen neural networks (KNNs) are utilized to
model runoff erosion with a better outcome than that of the
conventional multiple linear regression models. It was also
shown that ANN is generally more competitive than the

WEPP model in quantitative prediction of soil loss [48].
Albaradeyia et al. [49] confirm that while WEPP under-
estimated the soil loss, ANN provided results that are in line
with observation. Recently, Vu et al. [50] successfully
constructed a machine learning model based onmultivariate
adaptive regression splines for predicting soil loss
occurrences.

Based on the literature review, it can be seen that ad-
vanced machine learning methods can be a good option for
soil erosion modeling. Even though previous research works
extensively relied on ANN, other advanced machine
learning algorithms are worth explored because the pre-
diction of soil erosion is both complex and dynamic. We are
particularly interested in the support vector machine (SVM)
[51–54] because it usually has comparable results with ANN
and has a lower risk of overfitting. In addition, there has
been a great success in using SVM for different but closely
related hydrological and geological problems [55–61].

Furthermore, to enhance the predictive performance
of the SVM, this study relies on the approach of using
metaheuristic approaches. It is noted that the process of
fine-tuning a machine learning model can be formulated
as a global optimization problem. In recent years, various
metaheuristic approaches have been successfully
employed, including monarch butterfly optimization
[62, 63], slime mould algorithm [64], moth search algo-
rithm [65, 66], Harris hawks optimization [67–70], dif-
ferential flower pollination [71], symbiotic organisms
search [72], Henry gas solubility optimization [73], and
satin bowerbird optimizer [74]. As can be seen from the
literature, there is an increasing trend of hybridizing
metaheuristics and machine learning to tackle complex
problems in the field of engineering.

&erefore, the current study aims at extending the body
of knowledge by establishing soil erosion prediction models
for tropical hilly regions based on an integration of the
history-based adaptive differential evolution with linear
population size reduction and population-wide inertia term
(L-SHADE-PWI) metaheuristic and the support vector
machine pattern classification method. A dataset, featuring
ten explanatory variables, collected from plot experiments in
Son La province (Vietnam) is employed to construct and
verify the prediction models. In this study, the problem of
erosion status prediction is formulated as a pattern classi-
fication task within which a vector of explanatory variables is
assigned to either “erosion” or “nonerosion.” We hypoth-
esize that the structure of the L-SHADE-PWI-SVM, an
integration of machine learning and metaheuristic optimi-
zation, is capable of predicting rainfall-induced soil erosion.

In summary, the innovative points of the current study
can be stated as follows:

(i) A novel integration of the L-SHADE-PWI meta-
heuristic and the SVM pattern classifier is first
proposed to predict the complex phenomenon of
soil erosion.

(ii) &e effort to fine-tune the machine learning model
is eliminated via the utilization of metaheuristic
optimization.
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(iii) &e model construction phase of the proposed
L-SHADE-PWI-SVM is entirely data-driven.
&erefore, it is convenient to be used by land-use
planners and hazard prevention agencies without
much domain knowledge in machine learning.

(iv) &e superiority of the proposed hybrid approach is
validated using experiments based on a repeated
subsampling of the collected data.

&e rest of the paper is organized as follows. In Section 2,
we review the related research methods. In Section 3, we
present the proposed L-SHADE-PWI-SVMmodel. Section 4
is devoted to experiments and result comparisons. We end
with the conclusions in Section 5.

2. Material and Methods

2.1. General Description of the Study Area and the Collected
Dataset. For this study, data in Son La province (Northwest
Vietnam) were collected from 2009 to 2011 at two experi-
mental sites, which are two catchments with bounded plots.
Figure 1 shows the location of the study area in the maps of
Son La and Vietnam. &e area is governed by tropical
monsoon climate withmild and generally warm temperature
(the annual average is 21°C, and the lowest and highest
average temperatures are 16°C in February and 27°C in
August, respectively [75]). &e winter (from November to
March) is relatively dry while the summer (from May to
October) can have a lot of rain.

At the experimental sites, erosion plots of 72m2

(4m× 18m) with boundaries were installed to avoid the
exchange of water runoff from outside. &ere were 24 of
them in total: four treatments, three replicates arranged in a
completely randomized block design. In order to gather
deposited sediment from soil erosion at the plots, a system of
buckets was employed. Erosion data were collected on storm
basic during 3 years from 2009 to 2011. Detailed information
on soil, crop, and field managements can be found in the
previous study of Tuan et al. [18].

&ere are many factors contributing towards rill and
interrill soil erosion induced by raindrop impact and surface
runoff. &ey include climate, soil, topography, and land use.
&e amount and intensity of rainfall affect erosivity, while
soil properties, land use, and topography (described via slope
length and steepness) can have a big influence on the degree
of erodibility. To represent these factors, a set of ten ex-
planatory variables has been chosen. In Table 1, these var-
iables are listed together with their statistics.

First, I30 is the prolonged peak rates of detachment and
runoff in 30 minutes (30min intensity). &e storm energy E
is calculated according to the following formula [76]:

E � 1099[1 − 0.72 exp(−1.27i)], (1)

where i is the maximum intensity of 30minutes.&e product
of E and I30 gives us the kinetic rainfall energy (EI) which is
the combined interaction of total energy and peak intensity
in each particular storm. &is quantity represents how
particle detachment is combined with transport capacity
[77].

&e second and third variables are topographic factors,
namely, slope length and steepness. &ey all have a great
influence on soil loss. &e bigger the slope is, the higher
potential of soil loss will be. Similarly, the larger the slope
length is, the more likely there will be soil erosion as there is
a greater accumulation of runoff. In this study, a Nikon
Forestry 550 Inclinometer was used to measure the slope of
the plots.

Soil erodibility is heavily influenced by texture, but
permeability, structure, and organic matter also play a role.
In this study, wet analysis [78] was used to analyze soil
texture with a two pseudoreplicate plot. In addition, it is
known that aggregate stability is the index that is closely
related to soil erodibility. However, there is currently no
efficient method to calculate this index. &erefore, OC and
pH, two simple characteristics of the soil, were used instead.
Total OC was obtained using a C/N analyzer with carbonate
content removed by HCl. pH was measured using a glass
electrode with a soil-to-water ratio of 1 : 2.5.

&e final variable chosen is ground cover rate as this is
one of the most influential factors of soil erosion rate in
tropical areas [18]. For more information on how this
variable is measured, we refer the reader to Tuan et al. [18].

In our model to predict soil erosion, we aim to classify
each sample, which is associated with a vector of values for
the explanatory variables, into two classes: “erosion” or
“nonerosion.” In order to provide ground truth classification
to train the model, we follow the same criterion on soil loss
as in [79]: “erosion” label is assigned to any sample with
more than 3 tons per hectare soil loss, and other records are
classified as “nonerosion.” A total of 236 data samples have
been collected within which 118 records were classified as
“erosion.”

2.2. Support VectorMachine (SVM) for Pattern Classification.
&e original SVM algorithm was first introduced in [80]
for linear binary classification. &e algorithm builds a
hyperplane to separate positive and negative samples with
the margin as large as possible. However, in practice, it is
often the case that samples are not linearly separable and
such hyperplane does not exist. &is can lead to the poor
performance of the algorithm. Accordingly, the original
SVM algorithm is extended for nonlinear classification
via the use of kernel functions [81]. Kernel functions,
which are often nonlinear, map the space of input var-
iables into a much higher-dimensional space, where
separable hyperplanes are more likely to exist [82, 83]. In
addition, soft margin is proposed to handle the case the
hyperplane does not exist even in the higher-dimensional
space [53]. With these improvements, the SVM has be-
come one of the most popular and successful classifica-
tion algorithms [84–86].

Given a training set consists of N samples xk, yk{ }Nk�1,
where xk ∈ Rn is a feature or input vector and yk ∈ −1,+1{ }

is the corresponding response or class label. &e training
phase of the SVM algorithm can be mathematically for-
mulated as the following optimization problem [53, 87].

Find w, b, e to minimize

Mathematical Problems in Engineering 3



Jp(w, e) �
1

2
wTw + C

1

2
∑N
k�1

e2k, (2)

subjected to

yk w
Tφ xk( ) + b( )≥ 1 − ek, k � 1, . . . , N, ek ≥ 0, (3)

where the first two outcomes w ∈Rn and b ∈R define the
classification hyperplane (they are a normal vector and the
corresponding offset, respectively); the third outcome e is
the vector of slack variables introduced to handle the case
data cannot be separated without error; C is the penalty
constant decides how much weight should be put on

classification error; and φ(x) denotes the nonlinear mapping
from the input space to a much higher-dimensional space.

&e explicit formula of φ(x) is not normally required.
However, one needs to know the dot product of φ(x) in the
higher-dimensional space. It is referred to as the kernel
function given by

K xk, xl( ) � φ xk( )Tφ xl( ), xk, xl ∈ Rn. (4)

&ere are different choices of kernel functions, such as
linear, polynomial, sigmoid, and radial basis functions. In
this work, radial basis function (RBF) is employed due to its
good performance in pattern recognition tasks [88]. It is
defined as

LAOS

N
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Son La

0 km 50 km 100 km

CHINA
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Figure 1: Location of the study area.

Table 1: Statistical descriptions of soil erosion influencing factors.

Influencing
factors

Notation Min Mean Std. Max

EI30 X1 0.00 134.77 385.10 3008.93
Slope degree X2 24.83 28.85 2.39 34.77
OC topsoil (%) X3 0.89 1.86 0.56 2.79
pH topsoil X4 5.13 5.75 0.56 7.06
Bulk density
(g/cm3)

X5 1.23 1.39 0.08 1.58

Topsoil porosity
(%)

X6 46.34 52.36 3.15 59.48

Topsoil texture
(silt fraction %)

X7 31.35 33.82 1.48 37.71

Topsoil texture
(clay fraction %)

X8 18.61 30.03 4.67 38.35

Topsoil texture
(sand fraction %)

X9 29.66 36.15 4.12 46.51

Soil cover rate (%) X10 1.05 53.51 25.36 99.71

Note: EI denotes energy time intensity. Topsoil refers to the upper layer 0–20 cm of soil, and its characters are indicated by asterisk “∗”. &e soil bulk density
(BD), also known as dry bulk density, is the weight of dry soil (Msolids) divided by the total soil volume (Vsoil). Porosity is a measure of the total pore space in
the soil.
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xk − xl
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2σ2
 , (5)

where xk, xl ∈ Rn, and σ is a parameter that can be tuned.
Once training is finished, the final classification is per-

formed as follows:

y xl( ) � sign ∑SV
k�1

αkykK xk, xl( ) + b , (6)

where αk is the solution of the dual problem of equations (2)
and (3) and SV is the number of support vectors (the
number of αk > 0).

2.3. 4e History-Based Adaptive Differential Evolution with
Linear Population Size Reduction and Population-Wide In-
ertia (L-SHADE-PWI). From Section 2.2, it is obvious that,
before using the SVM algorithm, appropriate values of the
penalty coefficient (C) and the parameter in the kernel
function (σ) need to be determined. &ese hyperparameters
play an important role in the learning phase of the model. As
a consequence, they can have essential influences on the
predictive capability of the soil erosion prediction model.
&e step of selecting these hyperparameters is usually re-
ferred to as model selection. It is problem-dependent. It is
also very challenging because the hyperparameters must be
selected from continuous domains, where there is an infinite
number of possible choices [33, 89–92].

Traditional approaches for model selection include grid
search and random search. In grid search, hyperparameters
are exhaustively searched from a specified subset of the space
of hyperparameters. Random search, on the other hand,
randomly select combinations of hyperparameters for
consideration. Both grid search and random search are
simple and can be done in parallel. However, they cannot
deliver desired predictive accuracy since hyperparameter
selection is highly data-dependent and complex. For the case
of an SVM model, the complexity coefficient (C) and the
kernel function parameter (c) are both real numbers. Hence,
there are an infinite number of possible combinations of C
and c.&is means that an exhaustive grid search is infeasible
and researchers have turned to metaheuristic methods to
address the model selection problem [72, 91, 93, 99].

In this work, we propose to use the history-based
adaptive differential evolution with linear population size
reduction and population-wide inertia (L-SHADE-PWI)
algorithm to select the hyperparameters for the SVM al-
gorithm. &e L-SHADE-PWI [100] is a newly proposed
metaheuristic with promising optimization capability. With
the L-SHADE-PWI algorithm, the model selection of an
SVM model is formulated as a global optimization problem
where the objective function measures how well the model
fits the training and validating sets using a set of the
hyperparameters of the penalty coefficient (C) and the kernel
function parameter (c).

&e L-SHADE-PWI is essentially an extension of the
history-based adaptive differential evolution with linear
population size reduction (L-SHADE) algorithm proposed

in [101]. &is newly developed method inherits the effective
mutation-crossover operator of the standard differential
evolution (DE), the adaptive tuning strategy of the
L-SHADE, the DE/current-to-pbest/1 mutation strategy
described in [102], the linear population size reduction
proposed in [101], and a population-wide inertia term (PWI)
incorporated in the mutation operation [100].

A brief summary of the L-SHADE-PWI algorithm is
presented in Algorithm 1. In the heart of the algorithm, there
are three main steps, including mutation, crossover, and
selection. &e mutation step generates a trial vector. &e
mutation operator requires the computing of the pop-
ulation-wide inertia term PWIg−1. &e PWI term indicates
an averaged direction and size of successful moves that lead
to better solutions in the preceding generation. &e incor-
poration of the population-wide inertia aims at enhancing
the variations of population members in the potential di-
rection that on average brought about cost function’s re-
duction [100]. &e PWI term is calculated as follows [100]:

PWIg−1 �
∑PSg−1
i�1 mvi,g−1

NIg−1
, (7)

mvi,g−1 � ui,g−1 − xi,g−1, if f ui,g−1( )≤f xi,g−1( ), (8)

mvi,g−1 � 0, if f ui,g−1( )>f xi,g−1( ), (9)

where mvi,g−1 denotes the move of a population member in
the search space occurred in generation g− 1. It is worth
noticing that individual moves that do not lead to better cost
function values are not taken into account. &erefore, the
sum described in equation (7) is divided by NIg−1 which
represents the number of beneficial moves [100].

Accordingly, this trial vector v is used in the crossover
step to create a mutated vector u. &e final step compares
the mutated vector with its parent and replaces them in the
next generation if better target is achieved. In Algorithm 1,
PS is the population size; D represents the number of the
searched variables (two in our case); CF(x) is the cost
function; and x denotes the vector of the searched vari-
ables. &e two vectors of length H MF and MCR are ar-
chives containing the mean values of the mutation scale (F)
and the crossover probability (CR). &e two vectors SF and
SCR keep CR and F values delivering offspring better than
the parent. Gmax is the limit (maximum number) of
generations. Finally, a scheme for population size reduc-
tion is implemented to facilitate the convergence rate of
the metaheuristic algorithm.

3. The Proposed L-SHADE-PWI Optimized
SVM for Rainfall-Induced Soil
Erosion Prediction

&is section aims at describing the structure of the L-SHADE-
PWI-SVM model used for rainfall-induced soil erosion. &e
newly developed model is an integration of machine learning
and metaheuristic optimization. In detail, the SVM machine
learning is employed to generalize a decision boundary that

Mathematical Problems in Engineering 5



separates the input space into two distinctive domains: non-
erosion (the negative class) and erosion (the positive class).&e
factors of EI30, slope, OC topsoil, pH topsoil, bulk density, total
pore volume, texture-silt, texture-clay, texture-sand, and soil
cover rate are employed as influencing factors for pattern
classification. Because the model establishment phase of the
SVM necessitates an appropriate specification of the penalty
coefficient and the kernel function parameter, the proposed
model relies on the L-SHADE-PWI to optimize the hyper-
parameter selection phase.

Figure 2 demonstrates the overall structure of the pro-
posed L-SHADE-PWI-SVM model. A software program
based on the model structure has been developed by the
authors in Visual C# .NET (framework 4.6.2) environment
and the Accord.NET Framework [105]. &e newly estab-
lished model has been tested on the ASUS FX705GE-
EW165T (Core i7 8750H and 8GB RAM) platform.

It is proper to note that the influencing factors of the
collected dataset have been randomly separated into a training
(90%) dataset and a testing dataset (10%). &e first set is used
formodel construction and the second set is reserved formodel
validation. Moreover, the Z-score equation has been used to
standardize the data range since it may enhance the classifi-
cation performance [106]. &e Z-score equation is given by

XZ �
XD −MX

STDX

, (10)

where XZ and XD are the normalized and the original
variables, respectively.MX and STDX denote the mean value
and the standard deviation of the soil erosion influencing
factors, respectively.

As described earlier, the model training and soil erosion
prediction phases of the SVM necessitate an appropriate set
of the penalty coefficient and the kernel function parameter.
&e first hyperparameter specifies how the SVM’s loss
function increases due to misclassified data samples. &e
second hyperparameter influences the smoothness of the
classification boundary. &us, these two hyperparameters
strongly affect the generalization and predictive accuracy of
the SVM-based soil erosion prediction model. &is research
proposes to use the L-SHADE-PWI metaheuristic for op-
timizing the performance of the SVM model. At the first
generation, the L-SHADE-PWI initializes a population of
hyperparameters randomly. In each subsequent generation,
this metaheuristic approach gradually explores and exploits
the search space to identify potential regions which contains
high-quality sets of the SVM model’s hyperparameters.

Relying on the hyperparameters found by the L-SHADE-
PWI metaheuristic, the SVM model analyzes the training
dataset and generalizes a decision boundary that separates
input samples associated with nonerosion and erosion
classes. It is noted that this study employs the Accord.NET
Framework [105] to carry out the SVMmodel’s training and
prediction phases. Furthermore, to optimize the SVM-based
soil erosion predictionmodel, this research relies on aK-fold
cross-validation with K� 5. Based on the cross-validation
framework, the dataset is separated into 5 mutually exclusive
sets. In each of the five runs, one set is utilized for model
verification and the other four sets are used as training
samples. &e average predictive performance obtained from
the 5 folds is used to express the generalization capability of
the rainfall-induced soil erosion prediction model.

Define PS, D, CF(x), Gmax, an archive A�∅
Define the two archives of MF and MCR and the two sets of SF and SCR
Create a population P with PS members randomly
Identify and record xbest,g which is currently the best solution
For each generation g
For each individual xi,g
Select MFk and CRk randomly from MF and MCR
Calculate Fi�Gaussian(MFk, 0.1)
Calculate CRi�Gaussian(CRk, 0.1)
Select a xpbest,g randomly from A
Select two random members xr1,g and xr2,g
Calculate the population-wide inertia term PWIg−1
Create a trial vector according to [100]:
vi,g+1 � xi,g + Fi(xr1,g − xr2,g) + Fi(xpbest,g − xi,g) + Fi × PWIg−1
Perform crossover according to [103]:

uj,i,g+1 �
vj,i,g+1, if randj ≤Cr or j � rnb(i)
xj,i,g, if randj >Cr and j≠ rnb(i){

Carry out the selection operator [103]
End For

Collect successful Fi and CRi

Update SF, SCR, MF, MCR, and A [104]
Update PS [101]

End For

Return xbest,g

ALGORITHM 1: Pseudocode of the L-SHADE-PWI algorithm.
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Accordingly, the objective function (F) used for the
L-SHADE-PWI metaheuristic-based optimization is given
by

F �
∑Kk�1 FNRk + FPRk( )

K
, (11)

where FNRk and FPRk are the false-negative rate (FNR) and
the false-positive rate (FPR) obtained from kth run,
respectively.

&e FNR and FPR are calculated according to the fol-
lowing equations:

FNR �
FN

FN + TP
, (12)

FPR �
FP

FP + TN
, (13)

where FN, FP, TP, and TN represent the false-negative, false-
positive, true-positive, and true-negative data samples,
respectively.

4. Model Results and Discussions

4.1. Preliminary Feature Importance Investigation. For the
purpose of constructing a robust soil prediction model, a
preliminary assessment of the relevance of input features (EI30,
slope, OC, pH, bulk density, soil porosity, soil texture (silt, clay,
and sand fractions), and soil cover rate) should be carried out.
&is study relies on the well-known ReliefF method [107] to

investigate the importance of each aforementioned soil erosion
influencing factor. &is step of the study aims at identifying
irrelevant influencing factors. Using the ReliefF method, a
weighting value is computed for each input factor. A large
weight indicates a strong relevance between an influencing
factor and the soil erosion status (either erosion or nonerosion).
&e preliminary assessment of the relevancy of input features is
reported in Figure 3. In this figure, the ReliefF weight values of
all input variables are shown. It is observed that the input factor
X1 (EI30) receives the highest weight value, followed by the
input factor X10 (soil cover rate), X3 (OC topsoil), and X9 (sand
fraction). &e factors X7 (silt fraction) and X8 (clay fraction)
have low weight values. However, these weights are still sig-
nificantly larger than zero. &erefore, the L-SHADE-PWI
metaheuristic-optimized SVM model employs all of the ten
factors.

4.2. Model Performance EvaluationMetrics. To quantify and
compare performances of soil erosion predictionmodels, the
classification accuracy rate (CAR), which is the percentage of
correctly classified cases, is often employed:

CAR �
Nc

Na

× 100%, (14)

where Nc and Na denote the numbers of correctly classified
samples and the total number of data samples, respectively.

Besides CAR, the true-positive rate (TPR) (the per-
centage of positive instances correctly classified), false-
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Model training and pattern classi�cation
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SVM training 

Soil erosion 
prediction

SVM training 
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Figure 2: &e proposed L-SHADE-PWI-SVM model for soil erosion prediction.
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positive rate (FPR) (the percentage of negative instances
misclassified), false-negative rate (FNR) (the percentage of
positive instances misclassified), and true-negative rate
(TNR) (the percentage of negative instances correctly
classified) are also employed [56, 108]. &e FPR and FNR
indices have been defined in the previous section of the
article; the TPR and TNR indices are given by

TPR �
TP

TP + FN
, (15)

TNR �
TN

TN + FP
, (16)

where TP, TN, FP, and FN represent the true-positive, true-
negative, false-positive, and false-negative data samples,
respectively.

In addition, based on the results of the TP, TN, FP, and
FN, indices of precision, recall, negative predictive value
(NPV), and F1 score are also useful for expressing the model
predictive capability [109]:

precision �
TP

TP + FP
, (17)

recall �
TP

TP + FN
, (18)

NPV �
TN

TN + FN
, (19)

F1 − score �
2TP

2TP + FP + FN
. (20)

4.3. Experimental Results and Comparison. To evaluate the
model performance, the original dataset has been randomly
divided into two mutually exclusive sets. Since the size of the
collected dataset is moderate, the training/testing data ratio
is selected to be 9/1 [110]. &is means that 90% of the
original dataset is used for model construction; the rest of
the dataset is reserved for the model testing phase. &e
testing set is employed as novel data instance to verify the
generalization of the constructed L-SHADE-PWI-SVM

model used for rainfall-induced soil erosion. Illustrations of
training and testing datasets are provided in Table 2.

In addition, since the model construction phase of the
SVM-based model requires the setting of the penalty co-
efficient and kernel function parameters, the L-SHADE-PWI
has been used to automatically fine-tune these hyper-
parameters.&e L-SHADE-PWI-based optimization process
is illustrated in Figure 4. It is noted that the metaheuristic
population consists of 20 members and the maximum
number of generations is 100. &e outcomes of the opti-
mization process are as follows:

(i) &e penalty coefficientC � 958.84

(ii) &e kernel function parameter σ � 27.22

To demonstrate the capability of the proposed
L-SHADE-PWI-SVM, the backpropagation artificial neural
network (BPANN) [106, 111] and radial basis function
artificial neural network (RBFANN)models are employed as
benchmark methods.&e BPNN and RBFANNmodels have
been constructed in MATLAB environment with the help of
built-in functions provided in the Statistics and Machine
Learning Toolbox [112].

It is noted that the number of neurons in the hidden
layer of the BPANN model is selected to be (2/3)DX + CN
based on the suggestion in [113], where DX and CN denote
the numbers of input features and class outputs, respectively.
Herein, the numbers of input features and class outputs are
10 and 2, respectively. Moreover, the BPANN is trained
using the Levenberg–Marquardt (LM) algorithms [111, 114].
&e sigmoidal activation function is used for the BPANN to
train with the LM algorithm (denoted as LM-BPANN). &e
BPANN model is trained with the maximum number of
epochs� 1000. Moreover, based on several trial-and-error
experiments with the collected dataset, the appropriate
RBFANN model [115] consists of 30 neurons and has been
trained with a basic width of 1.2.

&e L-SHADE-PWI-SVM as well as the used benchmark
models is trained with a training set (90%) and a testing set
(10%) randomly drawn from the original datasets. It is noted
that since one-time evaluation is not sufficient to verify the
model capability due to the effect of the random data sampling
process, this study has repeated the random splitting of the
dataset into model training and testing phases 20 times to
negate such an undesired effect. Accordingly, the prediction
results of the L-SHADE-PWI-SVM and benchmark models
obtained from 20 runs are reported in Table 3 and Figure 5.

It can be seen that the proposed hybrid machine learning
model has achieved the most desired accuracy on soil erosion
detection with CAR� 92.292% while LM-BPANN ranks sec-
ond with CAR� 87.083% and RBFANN ranks third with
CAR� 77.917%. L-SHADE-PWI-SVM is also the most reliable
predictor with a smaller CAR deviation (5.1 versus 6.6 and 9.9).
&is is clearly demonstrated in the box plots in Figure 5.

&e proposed model is also superior in other metrics such
as precision, recall, NPV, and F1-score with better measure-
ment value and less variation (smaller deviation). More spe-
cifically, L-SHADE-PWI-SVM has precision� 0.944,
recall� 0.900, NPV� 0.904, and F1-score� 0.919, and LM-
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Figure 3: ReliefF-based inspection of variable importance.
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BPANN is the second best prediction approach with pre-
cision� 0.901, recall� 0.854, NPV� 0.868, and F1-score-
� 0.869, followed by RBFANN with precision� 0.804,
recall� 0.758, NPV� 0.769, and F1-score� 0.776.

Moreover, the receiver operating characteristic curve
(ROC) and the area under the curve (AUC) [116] are also
employed for assessing the prediction model performance
[56, 117, 118]. It is because the AUC can express the overall
predictive accuracy of the employed classifiers used for soil
erosion prediction. &is study also computes the AUC to
indicate the generalization capability of the proposed
L-SHADE-PWI-SVM as well as the benchmark models. &e
AUC results are reported in Table 4. As can be seen from the
experimental results, the AUC value in the testing phase of the
proposed L-SHADE-PWI-SVM (0.908) is higher than those
of the LM-BPANN (0.898) and RBFANN (0.787). In addition,
the ROCs of the proposed model are illustrated in Figure 6.

4.4. Discussion. To further confirm the superiority of the
proposed hybrid L-SHADE-PWI-SVM model, the Wil-
coxon signed-rank test [119] with the significant level
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Figure 5: Box plots of the model performances.

Table 2: Illustration of the training and testing datasets.

Dataset Sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

Training

1 2044.01 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 42.09 1
2 89.52 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 6.37 1
3 550.22 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 26.25 1
4 973.58 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 10.45 1
5 192.8 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 15.06 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

218 136.44 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 59.12 −1
219 6.82 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 88.05 −1
220 0.01 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 1.76 −1
221 0.01 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 60.71 −1
222 6.42 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 69.61 −1

Testing

1 75.09 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 2.63 1
2 3008.93 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 61.5 1
3 973.58 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 30.48 1
4 862.96 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 46.59 1
5 388.7 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 86.43 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 0.01 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 80.55 −1
21 131.01 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 58.84 −1
22 230.39 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 81.91 −1
23 15.87 28.37 2.07 5.15 1.23 46.34 33.07 32.09 34.84 65.08 −1
24 682.46 26.33 2.38 5.91 1.37 51.75 34.69 34.29 31.01 61.97 −1
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(p value)� 0.05 is also employed in this study to demon-
strate the statistical significance of the difference in model
results. &is nonparametric hypothesis testing method is
widely employed for comparing classification models [120].
&e test outcomes of pairwise model comparison are re-
ported in Table 5. Observably, with p values <0.05, the null
hypothesis of equal means is rejected.

Moreover, to assess the reliability of the L-SHADE-
PWI-SVM-based soil erosion prediction model, the co-
efficient of variation (COV) [121, 122] is employed in this
section of the study. &e COV (%) is computed as follows
[121, 122]:

COV � 100 ×
σ

μ
. (21)

&e COV calculation results of the proposed L-SHADE-
PWI-SVM and the benchmark approaches used for rainfall-
induced erosion susceptibility prediction are reported in
Table 6. It is noted that the COV is the ratio of the standard
deviation to the mean and is used to quantify the dispersion
of a model prediction outcomes obtained from a repeated
data sampling process [123]. In the particular case of rainfall-
induced soil erosion susceptibility evaluation, a small value
of COV is desirable since it indicates a stable data-driven
model used for predicting such phenomenon. As shown in
Table 6, the proposed L-SHADE-PWI-SVM has achieved the
lowest COV in all of the performance measurement metrics
(5.535% for CAR, 7.309% for precision, 9.000% for recall,
8.628% for NPV, and 5.767% for F1-score). &ese outcomes
point out that the newly developedmodel is the most reliable
tool for rainfall-induced soil erosion susceptibility
assessment.

In conclusion, L-SHADE-PWI-SVM is more accurate
and more reliable model compared to LM-BPANN (p
values� 0.009816) and RBFANN (p values� 0.000631).
Statistical tests also confirm that the superior of L-SHADE-
PWI-SVM in terms of accuracy is also significant with p
values <0.05. &is means that the newly constructed
L-SHADE-PWI-SVM is highly appropriate for soil erosion
prediction in the study area.

Compared to the conventional approaches for soil
erosion prediction such as the Revised Universal Soil Loss
Equation (RUSLE) [124, 125] which requires significant
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Figure 6: ROCs of the proposed L-SHADE-PWI-SVM.

Table 4: AUC result comparison.

Phase

L-SHADE-
PWI-SVM

LM-BPANN RBFANN

Mean Std. Mean Std. Mean Std.

Training 0.927 0.011 0.942 0.025 0.795 0.020
Testing 0.908 0.065 0.898 0.044 0.787 0.094

Table 3: Result comparison.

Phase Indices
L-SHADE-PWI-SVM LM-BPANN RBFANN

Mean Std. Mean Std. Mean Std.

Training

CAR 92.052 0.738 92.759 2.431 77.712 1.855
TP 93.650 3.150 95.150 5.594 83.550 3.069
TN 101.500 2.351 101.500 3.547 81.200 3.139
FP 4.250 1.209 4.500 3.547 24.800 3.139
FN 12.600 1.847 10.850 5.594 22.450 3.069

Precision 0.957 0.011 0.957 0.031 0.772 0.022
Recall 0.881 0.018 0.898 0.053 0.788 0.029
NPV 0.890 0.013 0.906 0.044 0.784 0.022

F1-score 0.917 0.009 0.925 0.027 0.780 0.019

Testing

CAR 92.292 5.108 87.083 6.609 77.917 9.943
TP 10.550 1.877 10.250 1.164 9.100 1.252
TN 11.600 2.010 10.650 1.631 9.600 1.759
FP 0.650 0.813 1.350 1.631 2.400 1.759
FN 1.200 0.951 1.750 1.164 2.900 1.252

Precision 0.944 0.069 0.901 0.106 0.804 0.127
Recall 0.900 0.081 0.854 0.097 0.758 0.104
NPV 0.904 0.078 0.868 0.083 0.769 0.094

F1-score 0.919 0.053 0.869 0.060 0.776 0.096
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Table 5: Results of the Wilcoxon signed-rank test.

Model comparison Test outcome p value

L-SHADE-PWI-SVM vs. LM-BPANN Significant 0.009816
L-SHADE-PWI-SVM vs. RBFANN Significant 0.000631

Table 6: Calculations of the coefficient of variation (COV).

Indices L-SHADE-PWI-SVM LM-BPANN RBFANN

CAR (%) 5.535 7.589 12.761
Precision 7.309 11.765 15.796
Recall 9.000 11.358 13.720
NPV 8.628 9.562 12.224
F1-score 5.767 6.904 12.371

Table 7: &e Collected Dataset.

Data sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

1 2044.01 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 42.09 1
2 975.56 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 25.91 1
3 2044.01 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 60.19 1
4 975.56 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 8.98 1
5 2044.01 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 54.96 1
6 1138.37 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 29.74 1
7 975.56 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 18.01 1
8 2044.01 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 51.12 1
9 2044.01 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 44.35 1
10 1138.37 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 23.59 1
11 975.56 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 9.65 1
12 976.92 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 5.99 1
13 975.56 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 29.9 1
14 975.56 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 30.56 1
15 3008.93 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 53.9 1
16 1270.46 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 10.54 1
17 1472.5 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 4.85 1
18 2044.01 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 47.03 1
19 1138.37 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 31.98 1
20 1270.46 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 12.33 1
21 2044.01 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 59.98 1
22 975.56 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 26.91 1
23 975.56 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 7.65 1
24 3008.93 26.27 2.18 5.23 1.32 49.92 32.41 31.09 36.49 60.88 1
25 1138.37 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 27.69 1
26 2044.01 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 65.48 1
27 3008.93 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 44.96 1
28 1270.46 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 13.13 1
29 975.56 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 22.07 1
30 1138.37 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 44.29 1
31 685.09 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 14.97 1
32 1138.37 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 21.1 1
33 3008.93 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 58.07 1
34 685.09 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 12.75 1
35 263.04 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 6.74 1
36 550.22 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 24.66 1
37 2044.01 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 65.79 1
38 1472.5 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 3.69 1
39 973.58 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 9.73 1
40 192.8 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 18.75 1
41 2503.7 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 86.7 1
42 685.09 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 19 1
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Table 7: Continued.

Data sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

43 1138.37 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 35.06 1
44 88 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 12.06 1
45 550.22 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 21.08 1
46 2044.01 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 61.2 1
47 976.92 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 6.43 1
48 1138.37 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 26.56 1
49 1138.37 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 27.73 1
50 2503.7 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 82.31 1
51 973.58 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 18.13 1
52 973.58 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 8.29 1
53 976.92 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 17.52 1
54 2503.7 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 86.5 1
55 3008.93 28.37 1.95 5.15 1.23 46.34 33.07 32.09 34.84 66.18 1
56 550.22 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 26.25 1
57 976.92 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 5.1 1
58 2503.7 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 82.9 1
59 263.04 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 5.74 1
60 306.15 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 11.06 1
61 180.82 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 16.56 1
62 1969.39 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 87.25 1
63 685.09 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 29.65 1
64 3008.93 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 59.03 1
65 976.92 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 24.94 1
66 263.04 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 7.23 1
67 973.58 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 10.45 1
68 152.99 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 70.78 1
69 2503.7 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 89.3 1
70 89.52 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 6.37 1
71 3008.93 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 64.44 1
72 192.8 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 15.06 1
73 973.58 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 26.16 1
74 3008.93 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 61.5 1
75 685.09 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 16.08 1
76 184.93 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 18.07 1
77 89.52 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 8.04 1
78 973.58 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 27.24 1
79 263.04 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 17.64 1
80 2503.7 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 87 1
81 685.09 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 29.52 1
82 976.92 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 25.61 1
83 973.58 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 30.44 1
84 3008.93 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 58.33 1
85 550.22 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 38.42 1
86 973.58 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 22.25 1
87 1270.46 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 30.71 1
88 682.46 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 52.7 1
89 685.09 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 27.86 1
90 85.74 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 13.55 1
91 1472.5 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 8.73 1
92 685.09 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 34.51 1
93 82.99 27.57 2.08 5.13 1.48 55.87 33.29 32.17 34.54 41.51 1
94 75.09 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 2.63 1
95 976.92 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 21.36 1
96 88 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 9.56 1
97 550.22 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 38.42 1
98 3008.93 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 66.21 1
99 184.93 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 22.5 1
100 89.52 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 7.48 1
101 192.8 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 34.01 1
102 550.22 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 29.34 1
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Table 7: Continued.

Data sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

103 82.99 28.47 2.15 5.36 1.25 47.09 31.47 34.59 33.93 30.78 1
104 973.58 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 30.48 1
105 88 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 27.89 1
106 88 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 11.23 1
107 270.98 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 54.14 1
108 88 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 26.64 1
109 862.96 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 41.05 1
110 388.7 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 86.91 1
111 263.04 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 25.93 1
112 89.52 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 28.75 1
113 88 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 31.63 1
114 685.09 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 23.51 1
115 263.04 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 25.19 1
116 862.96 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 46.59 1
117 85.74 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 16.88 1
118 388.7 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 86.43 1
119 136.44 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 59.12 −1
120 0.13 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 66.79 −1
121 0.07 26.27 2.39 5.23 1.32 49.92 32.41 31.09 36.49 92.23 −1
122 51.22 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 32.17 −1
123 152.99 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 78.9 −1
124 0.01 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 76.61 −1
125 248.37 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 67.52 −1
126 0.07 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 89.2 −1
127 0.01 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 78.39 −1
128 0.06 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 78.29 −1
129 1.59 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 42.49 −1
130 0.02 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 12.47 −1
131 2.09 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 78.27 −1
132 6.82 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 88.05 −1
133 0.01 27.57 2.08 5.13 1.48 55.87 33.29 32.17 34.54 54.61 −1
134 4.61 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 74.21 −1
135 41.92 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 94.48 −1
136 0.13 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 68.43 −1
137 0.53 27.9 2.36 5.5 1.34 50.69 35.81 29.23 34.95 22.47 −1
138 0.13 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 13.56 −1
139 0.01 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 1.76 −1
140 299.78 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 87.63 −1
141 0.01 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 60.71 −1
142 6.79 26.33 2.36 5.91 1.37 51.75 34.69 34.29 31.01 68.94 −1
143 46.34 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 29.89 −1
144 0.01 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 17.34 −1
145 0.27 28.47 2.15 5.36 1.25 47.09 31.47 34.59 33.93 50.56 −1
146 10.42 32.33 2.29 5.6 1.41 53.11 33.21 35.47 31.32 12.61 −1
147 0.27 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 79.4 −1
148 0.36 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 31.35 −1
149 6.67 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 45.21 −1
150 299.78 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 85.91 −1
151 9.59 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 33.71 −1
152 2.59 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 90.72 −1
153 6.42 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 69.61 −1
154 25.4 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 68.61 −1
155 3.38 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 49.22 −1
156 12.41 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 28.42 −1
157 89.52 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 26.26 −1
158 152.99 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 73.49 −1
159 15.22 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 94.25 −1
160 202.32 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 25.35 −1
161 115.94 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 64.78 −1
162 3.91 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 66.79 −1
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Table 7: Continued.

Data sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

163 61.6 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 40.05 −1
164 0.24 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 28.69 −1
165 0 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 24.7 −1
166 0.07 28.63 2.36 5.2 1.44 54.49 34.73 28.89 36.37 80.3 −1
167 0.03 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 95.27 −1
168 21.94 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 63.41 −1
169 51.22 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 28.54 −1
170 550.22 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 40.79 −1
171 4.21 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 19.05 −1
172 64.15 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 70.53 −1
173 54.17 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 59.86 −1
174 385.11 27.57 2.11 5.13 1.48 55.87 33.29 32.17 34.54 71.11 −1
175 0.01 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 48.2 −1
176 0.03 27.57 2.11 5.13 1.48 55.87 33.29 32.17 34.54 28.77 −1
177 0.01 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 80.55 −1
178 6.42 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 47.99 −1
179 0.01 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 86.16 −1
180 0.02 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 22.84 −1
181 248.37 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 68.24 −1
182 0.13 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 47.47 −1
183 1.96 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 10.46 −1
184 295.82 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 89.38 −1
185 22.45 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 57.02 −1
186 0.01 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 45.64 −1
187 131.01 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 62.69 −1
188 25.82 26.33 2.38 5.91 1.37 51.75 34.69 34.29 31.01 43.64 −1
189 0.13 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 48.41 −1
190 0.01 32.33 2.3 5.6 1.41 53.11 33.21 35.47 31.32 57.92 −1
191 0.03 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 81.94 −1
192 0.14 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 47.9 −1
193 0.72 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 24.38 −1
194 0.01 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 70.92 −1
195 0.01 32.33 2.29 5.6 1.41 53.11 33.21 35.47 31.32 80.56 −1
196 0.38 27.9 2.18 5.5 1.34 50.69 35.81 29.23 34.95 66.79 −1
197 0.01 26.33 2.36 5.91 1.37 51.75 34.69 34.29 31.01 63.38 −1
198 57.23 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 82.15 −1
199 0.53 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 25.72 −1
200 6.74 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 17.21 −1
201 1.36 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 41.61 −1
202 0.01 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 83.99 −1
203 0.03 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 81.04 −1
204 0.42 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 52.59 −1
205 6.82 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 95.3 −1
206 180.82 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 35.11 −1
207 131.01 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 58.84 −1
208 0.01 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 17.44 −1
209 0.79 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 19.32 −1
210 766.63 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 74.62 −1
211 34.74 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 31.81 −1
212 17.58 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 11.52 −1
213 3.32 28.37 1.95 5.15 1.23 46.34 33.07 32.09 34.84 67.05 −1
214 14.81 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 33.43 −1
215 152.99 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 65.34 −1
216 0.03 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 63.29 −1
217 0.1 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 94.6 −1
218 6.16 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 21.81 −1
219 4.35 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 76.4 −1
220 0.01 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 14.91 −1
221 230.39 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 81.91 −1
222 0.01 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 59.49 −1
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efforts on parameter calibration, the newly proposedmethod
is entirely data-driven in which all of the model parameters
are determined via the model training process. In addition,
recently proposedmachine learningmethods for soil erosion
susceptibility prediction have dominantly relied on indi-
vidual or ensemble of models [126–128]. &erefore, trial-
and-error processes and modeling experience are required
for constructing such machine learning models. An inte-
gration of machine learning and metaheuristic used for soil
erosion prediction is rarely investigated. &us, the current
study is an attempt to fill this gap in the literature and show
the great potentiality of this hybrid framework for tackling
the problem at hand.

Nevertheless, one disadvantage of the proposed ap-
proach is that the optimization process to determine an
optimal set of parameters of the SVMmodel might be costly,
especially when the size of the collected dataset is large. It is
because the model training and prediction processes of the
SVM are embedded into the cost function calculation phase
of the employed metaheuristic. Another limitation of the
current approach is that automatic feature selection has not
been integrated into the hybridization of the L-SHADE-PWI
and SVM. Such drawbacks should be resolved with in future
extensions of the study.

5. Conclusions

In tropical regions, soil erosion is a natural hazard that
causes various harmful effects on the land including loss of
soil, soil structure breakdown, and the decline of organic
matter as well as nutrients within the soil. &ese ultimately
lead to a critical economic loss for landowners. &is study
has developed a hybrid intelligent method, named as
L-SHADE-PWI-SVM, for predicting the status of
soil erosion based on an integration of machine learning
and metaheuristic. &e SVM pattern recognition method
is employed to generalize a decision boundary that sep-
arates input data into two categories of erosion and
nonerosion.

&e ten variables of EI30, slope, OC topsoil, pH topsoil,
bulk density, soil porosity, soil texture (silt, clay, and sand
fractions), and soil cover rate are used as erosion

conditioning factors. In addition, to optimize the SVM
model performance, the state-of-the-art L-SHADE-PWI
metaheuristic is employed. &e newly developed L-SHADE-
PWI-SVM has achieved a good predictive performance
(CAR� 92.292%, F1 score� 0.919, and AUC� 0.908) ob-
tained from a repeated data sampling process. &e experi-
mental results supported by the Wilcoxon signed-rank test
demonstrate that the proposed hybrid model is superior to
the benchmark methods including the LM-BPANN
(CAR� 87.083%, F1-score� 0.869, and AUC� 0.898) and
the RBFANN (CAR� 77.917%, F1-score� 0.776, and
AUC� 0.787). &e proposed L-SHADE-PWI-SVM has
outperformed the benchmark approaches in all of the
evaluation metrics. &ese facts strongly confirm the efficacy
of applying the proposed hybrid machine learning method
for solving the problem of interest. &e L-SHADE-PWI-
SVM can be a very promising tool to assist landowners and
managers to quickly identify the potential soil erosion areas
and develop preventive measures (Table 7).

Future developments of the current study may include
the following:

(i) &e applications of other advanced metaheuristics
in optimizing the machine learning model used for
soil erosion prediction

(ii) &e integration of state-of-the-art feature selection
into the machine learning structure to further en-
hance the prediction accuracy

(iii) &e investigation of advanced kernel functions for
better dealing with nonlinearity in soil erosion data
classification
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&e data used to support the findings of this study can be
found in Table 7.
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Table 7: Continued.

Data sample X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Class output

223 0.03 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 84.78 −1
224 0.03 26.5 2.07 5.39 1.38 52.05 32.65 29.37 37.98 96.62 −1
225 6.82 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 97.64 −1
226 61.6 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 36.87 −1
227 6.16 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 68.71 −1
228 9.8 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 39.13 −1
229 1.79 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 44.54 −1
230 10.42 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 1.05 −1
231 15.87 28.37 2.07 5.15 1.23 46.34 33.07 32.09 34.84 65.08 −1
232 0.42 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 48.18 −1
233 25.4 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 66.82 −1
234 21.94 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 64.13 −1
235 682.46 26.33 2.38 5.91 1.37 51.75 34.69 34.29 31.01 61.97 −1
236 0.38 28 2.17 5.13 1.37 51.53 33.07 31.51 35.42 39.53 −1
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