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A B S T R A C T

Purpose
Despite significant progress in the molecular understanding of medulloblastoma, stratification of risk in
patients remains a challenge. Focus has shifted from clinical parameters to molecular markers, such
as expression of specific genes and selected genomic abnormalities, to improve accuracy of treatment
outcome prediction. Here, we show how integration of high-level clinical and genomic features or risk
factors, including disease subtype, can yield more comprehensive, accurate, and biologically interpre-
table prediction models for relapse versus no-relapse classification. We also introduce a novel Bayesian
nomogram indicating the amount of evidence that each feature contributes on a patient-by-
patient basis.

Patients and Methods
A Bayesian cumulative log-odds model of outcome was developed from a training cohort of 96
children treated for medulloblastoma, starting with the evidence provided by clinical fea-
tures of metastasis and histology (model A) and incrementally adding the evidence from
gene-expression– derived features representing disease subtype–independent (model B) and
disease subtype– dependent (model C) pathways, and finally high-level copy-number
genomic abnormalities (model D). The models were validated on an independent test cohort
(n � 78).

Results
On an independent multi-institutional test data set, models A to D attain an area under receiver
operating characteristic (au-ROC) curve of 0.73 (95% CI, 0.60 to 0.84), 0.75 (95% CI, 0.64 to 0.86), 0.80
(95% CI, 0.70 to 0.90), and 0.78 (95% CI, 0.68 to 0.88), respectively, for predicting relapse versus no
relapse.

Conclusion
The proposed models C and D outperform the current clinical classification schema (au-ROC,
0.68), our previously published eight-gene outcome signature (au-ROC, 0.71), and several new
schemas recently proposed in the literature for medulloblastoma risk stratification.

J Clin Oncol 29:1415-1423. © 2011 by American Society of Clinical Oncology

INTRODUCTION

Medulloblastomas are primitive embryonal tu-
mors of the CNS arising in the cerebellum and
disseminating throughout the CNS. Over the past
15 years, significant progress has been made in
understanding the biologic mechanisms driving
these tumors.1 These advances provide a growing
framework for new risk stratification schemas and
targeted therapies. Efforts to determine risk in the
context of current treatment seek to improve
overall survival and decrease long-term deficits
associated with multimodal treatment regimens

based on conventional chemotherapy, surgical re-
section, and craniospinal irradiation.2-5

The current clinical medulloblastoma classifi-
cation schema, based on age and metastasis status at
diagnosis, extent of initial resection, and histology,
has limited predictive power. However, 5-year sur-
vival rates for standard-risk patients can be up to
85%, with 60% to 80% for high-risk groups. Despite
this relative success, survival almost universally
comes at the expense of long-term neurologic and
neurocognitive deficits resulting from the aggres-
siveness of the treatments. Importantly, the current
clinical schema fails to identify a significant group of
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Table 1. Features or Risk Factors Used by the Bayesian Cumulative Log-Odds Model to Predict Relapse

Feature Values

Patients

(%) Posterior Log-Odds Ratio Ev (r � x; 95% CI)

Average

Absolute

Evidence (AvEv) Description Source Gene Set Reference

Relapse (prior) �0.28 0.28 Prior

Clinical

Histology

Classic 68 0.0033 � 0.06 0.094 Tumor histology at

diagnosis

Desmo 14 �0.34 � 0.20

LCA 17 0.27 � 0.02

Metastasis Yes M1-4 17 0.58 � 0.07 0.236 Metastasis status at

diagnosis

No M0 75 �0.16 � 0.18

Subtype-independent

expression

signature

c-Myc activation

High 44 0.53 � 0.22 0.485 Genes upregulated (43) and

downregulated (65) by

c-Myc

MSigDB v2.5/C2 YU_CMYC_UP/DN

Low 56 �0.45 � 0.25 Yu et al34

Disease subtype

(c1-c6)

c1 15 0.69 � 0.03 0.352 Disease subtype as

determined by gene

expression

c2 18 �0.25 � 0.13 See Appendix

c3 29 0.23 � 0.23

c4 19 �0.33 � 0.16

c5 9.4 0.08 � 0.22

c6 10 �0.68 � 0.52

DNA copy number

gains or losses

amp(8q24.21) Amp 3.1 0.44 � 0.40 0.113 Amplification of chr8q24.21.

Locus of c-Myc14

(c-MYC) Norm 36 �0.085 � 0.83 Amplification of chr2p24.3.

Locus of N-Myc14

amp(2p24.3) Amp 15 0.50 � 0.36 0.421 Deletion of chr6q.

Monosomy 614

(N-MYC) Norm 25 �0.37 � 1.53

del(6q) Del 6.2 �0.12 � 0.88 0.047 Deletion of chr16q

(monosomy 6) Norm 33 0.033 � 0.68

del(16q) Del 15 0.95 � 0.24 0.855 Deletion of chr16q23.3

Norm 25 �0.80 � 3.8

del(16q23.3) Del 16 0.83 � 0.26 0.786 Amplification of chr7q21.3

Norm 24 �0.76 � 3.84

amp(7q21.3) Amp 15 0.73 � 0.22 0.63 Amplification of chrq26.32.

Locus of p110a/PI3K

Norm 25 �0.57 � 4.03

amp(3q26.32) Amp 8.3 1.1 � 0.25 0.581

Norm 0.31 �0.45 � 2.05

c1 c2 c3 c4 c5 c6

Subtype-dependent

expression

signatures

mTOR induced High 42 0.44 � 0.11 0.81 � 0.22 0.20 � 0.18 0.47 � 0.22 �0.11 � 0.03 0.69 � 0.22 0.382 Genes upregulated (200)

and downregulated

(200) by mTOR

OPAM v3 mTOR_UP.v1

Low 58 0.59 � 0.22 �0.61 � 0.59 �0.25 � 0.03 �0.22 � 0.23 0.12 � 0.23 �0.22 � 0.38 Genes (25) directly

regulated and induced

by anti-CD44

Majumder et al35

Anti-CD44 regulated High 57 �0.37 � 0.22 �0.05 � 0.16 0.00 � 0.22 �0.22 � 0.23 �0.98 � 1.12 �0.12 � 0.29 0.22 Genes upregulated (20) and

downregulated (7) by

c-MYC

MSigDB v2.5/C2 HOGERKORP_CD44_UP;

Högerkorp et al36

Low 43 0.14 � 0.09 0.12 � 0.06 0.00 � 0.22 0.47 � 0.22 0.81 � 0.05 0.29 � 0.10 Histidine metabolism

genes (25)

MSigDB v2.5/C2 COLLER_MYC

c-MYC activated (v2) High 43 0.10 � 0.08 �0.11 � 0.14 1.20 � 0.10 �0.22 � 0.23 �0.39 � 0.18 0.69 � 0.19 0.441 MSigDB v2.5/C2 Coller et al37

(continued on following page)
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patients (approximately 20%) who are categorized as standard-risk
but do not respond to treatment. Because of these limitations, the
search for better risk stratification schemas based on molecular mark-
ers and genomic abnormalities have become the focus of interest in the
last decade.6,7

Histology has been associated with clinical outcome8-10; how-
ever, because tumors display highly variable degrees of heterogeneity,
subtyping via traditional histopathology is especially difficult. Several
molecular markers and genomic abnormalities have been shown to
correlate with poor clinical outcome, including c-Myc amplification,11

17p loss/i(17)q,12 concomitant expression of LDHB/CCNB1,13 gain of
6q/17q,14 and overexpression of CDK615 and survivin.16 Similarly,
�-catenin mutations and monosomy 617,18 and overexpression of
TrkC19 have been associated with good clinical outcome. However,
statistical association with clinical outcome does not necessarily yield
accurate classification on a case-by-case basis. In addition, many of
these genomic markers suffer from low penetrance and modest sensi-
tivity/specificity. Thus, they are rather limited as prognostic markers
alone and are not routinely used in the clinic to evaluate risk.

We previously introduced an eight-gene molecular signature6

that was effective at separating patients in standard-risk and high-risk
groups (80% v 17% 5-year overall survival, respectively) and outper-
formed the current clinical schema but was less accurate for data sets
beyond the original study (Data Supplement). Moreover, while we
observed a number of molecular subtypes of medulloblastoma in that
study, we had insufficient numbers of samples to assess whether out-
come signatures varied by subtype.

In the ensuing years, there have been a number of advances in
molecular signature analysis. In our own work, we established the
increased strength of using sets of genes rather than individual genes to
distinguish biologic phenotypes.20,21 We extended this method to
evaluate the activity of a set of genes in a single sample and used it
effectively in two recent studies.22,23 Other signature approaches were
also introduced.24-26 More recently, methods integrating clinical data
and genomic features13,14 have been applied to a variety of clinical
prediction problems.27-31

Here, we describe a novel method for predicting response to
therapy (relapse/no relapse) for medulloblastoma and establish its
efficacy on independent test data. We combine clinical data with
molecular subtypes, pathway activation signatures, and copy number

data. Importantly, our method goes beyond establishing association
with these risk factors and instead gives a predictive probability of
relapse within 30 months of treatment. The method is based on a
Bayesian cumulative log-odds model that computes the total evidence
for relapse in each patient from the status of clinical and genomic
features. This approach is general and provides a paradigm for
genomic-based clinical prediction applicable to other tumor types.
We also introduce a novel Bayesian nomogram32 for assessing a pa-
tient’s overall risk on the basis of the positive/negative contribution of
individual risk factors (the model features).

With better classification performance than the current clini-
cal schema in use by the Children’s Oncology Group (COG) and
other cooperatives, the approach presented here shows promise to
improve risk stratification for standard therapeutic protocols. The
deployment of our model will require expression array and single
nucleotide polymorphism–array profiling of each tumor, or alterna-
tively, the development of clinical assays for rapid evaluation of ex-
pression and copy-number alteration in a few hundred genes. The
subtypes identified in this model could also be relevant to future
therapeutic strategies that directly target the molecular mechanisms
of tumorigenesis.

PATIENTS AND METHODS

Patients

Tumor samples were obtained through the COG Tumor Bank (protocol
ACNS02B3) and from Children’s Hospital Boston, University of Washington
Medical Center, Texas Children’s Hospital, and The Johns Hopkins University
Medical Center under approval from the respective institutional review
boards. The training set consisted of 96 samples for which relapse status at 30
months post-treatment was known. Matched normal blood samples were
collected through the COG Tumor Bank (protocol ACNS02B3) and from
Children’s Hospital Boston under institutional review board approval. The
test set included 78 samples: 47 samples from our original study6 not used for
training, 16 samples from Kool et al,33 and 15 samples from the COG Tumor
Bank. All training and test samples correspond to patients at least 3 years old
treated with conventional chemotherapy, surgical resection, and craniospinal
irradiation (Table 1; Data Supplement). For all samples, we generated gene-
expression and copy-number data using Affymetrix HT-HG-U133A2 and
Affymetrix 250k and 6.0 arrays (Affymetrix, Santa Clara, CA), respectively

Table 1. Features or Risk Factors Used by the Bayesian Cumulative Log-Odds Model to Predict Relapse (continued)

c1 c2 c3 c4 c5 c6

Low 57 �0.14 � 0.23 0.05 � 0.06�0.63 � 0.27 0.29 � 0.03 0.34 � 0.22 �0.69 � 1.41 Genes (30) downregulated

by Gli1

OPAM v3 HISTIDINE_METABOLISM

Histidine metabolism High 56 1.3 � 1.00 �0.15 � 0.13 0.00 � 0.22 0.47 � 0.22 0.12 � 0.18 0.29 � 0.10 0.341 KEGG pathway38

Low 44 0.64 � 0.11 �0.12 � 0.06 0.00 � 0.22 �0.92 � 1.88 �0.11 � 0.03 �0.41 � 0.58 Ribavirin/RSV-induced

upregulated (22) and

downregulated (43)

response

MSigDB v2.5/C2 GLI1_UP.v1_DN

Gli1 downregulated High 57 0.08 � 0.04 0.54 � 0.18 0.00 � 0.22 0.11 � 0.08 �0.44 � 0.21 �0.22 � 0.38 0.275 Yoon et al 39

Low 43 0.14 � 0.08 �0.98 � 2.22 0.00 � 0.22 �0.22 � 0.23 0.81 � 0.05 0.69 � 0.19 RIBAVIRIN_RSV_UP(DN)

Ribavirin/RSV-

induced response

High 56 0.23 � 0.23 0.22 � 0.02 0.00 � 0.22 �0.54 � 0.56 �0.17 � 0.06 0.29 � 0.11 0.25 Zhang et al 40

Low 44 0.55 � 0.12 �0.18 � 0.18 0.00 � 0.22 0.65 � 0.18 0.12 � 0.18 �0.41 � 0.58

Abbreviations: Desmo, desmoplastic; LCA, large-cell/anaplastic; MSigDB, Molecular Signatures Database; Amp, amplified; Norm, normal; Del, deletion; RSV,
respiratory syncytial virus.
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(see Appendix), and we assigned risk categories according to current
clinical criteria.2,7

Determining Molecular Subtype

To predict the relapse status of a new sample (in the test set) its disease
subtype (c) must first be determined. Six molecular subtypes {c1, … ,c6} of the
samples in the training set were defined by clustering in a separate study (see
Appendix) on a larger collection of about 200 medulloblastoma samples.41

These disease subtypes are linked to molecular mechanisms of tumorigenesis
(see Appendix) and are consistent with the findings of several independent
studies.17,33 We then used these labels to train a disease-subtype prediction
model for new samples.

To build the subtype prediction model, we used a collection of 2,599
gene sets drawn from our Molecular Signatures Database (MSigDB)21 and
manually curated gene sets derived from data in the Gene Expression
Omnibus (GEO; see Appendix). We estimated the activation score (degree

of upregulation) of these sets in each training set sample by using a
single-sample version of Gene Set Enrichment Analysis (ssGSEA).21,22 We
dichotomized the activation scores as low or high (see Appendix). Using
this gene set view of the data, for each disease subtype, we chose six
expression signatures that best discriminate its previously assigned subtype
label within the training set according to the area under receiver operating
characteristic (au-ROC) curve (Data Supplement).

Bayesian Predictive Model

Our model predicts relapse status, r � {yes, no}, by accumulating the
relevant log-odds evidence implied by the molecular subtype and the values of
clinical and genomic features for a specific patient sample. We start from the
prior, which can be thought of as the probability of relapse/no relapse based on
the proportion of patients in the training set who relapse/do not relapse.
Formally, we use the log-odds prior, Ev(r). We then define four nested

• Histology
• Metastasis 

• c-Myc activated (v1) poor 

• amp (8q24.21) C-MYC
• amp (2p24.3) N-MYC
• del (6q) Monosomy 6
• del (16q)
• del (16q23.3)
• amp (7q21.3)
• amp (3q26.32)

Clinical attributes 

Disease subtype independent expression signature  

DNA copy number gains or losses  

MODEL  A 

MODEL  B 

MODEL  C 

MODEL  D 

Relapse 

Disease
subtype

Disease subtype dependent expression signatures 

36 Expression signatures that
discriminate disease subtype
(6 per disease subtype, see 
Table S2)

• mTOR induced c1 (poor)
• Anti-CD44 regulated c2 (good)
• c-Myc activated (v2) c3 (poor)
• Histidine metabolism c4 (poor)
• Gli1 downregulated c5 (good)
• Ribavirin/RSV-induced response c6 (poor)

Fig 1. Bayesian cumulative log-odds
model (probabilistic network) that integrates
clinical and high-level genomic information
to predict the probability of relapse. The
submodel of model C corresponding to sub-
type determination is shown in a different
color because it is applied separately and in
advance for any unlabeled sample. RSV,
respiratory syncytial virus.

Table 2. Summary of Performance for the Current Clinical Schema (and model C inside the standard and high-risk groups) and Our Bayesian Cumulative
Log-Odds Models A to D

Model Description

Training Set Test Set

au-ROC
Curve P

Error
Rate KM P

au-ROC
Curve 95% CI P Error Rate KM P

S Clinical schema 0.62 .075 0.368 .0012 0.68 0.55 to 0.79 .0044 0.288 .045
A Clinical features (histology and

metastasis)
0.58 .101 0.406 .0767 0.73 0.61 to 0.85 .000601 0.321 .186

B A � disease subtype–independent
pathway: c-Myc

0.66 .00321 0.365 .0254 0.75 0.64 to 0.85 .000177 0.346 .000441

C B � disease subtype–dependent
pathways

0.87 5.2 � 10�10 0.219 7.62 � 10�9 0.80 0.7 to 0.89 1.07 � 10�6 0.256 1.96 � 10�8

D C � DNA copy number gains or
losses

0.84 4.94 � 10�9 0.281 5.61 � 10�6 0.78 0.67 to 0.88 5.56 � 10�6 0.256 2.14 � 10�8

C Inside standard-risk group 0.88 2.8 � 10�7 0.207 .0047 0.72 0.56 to 0.87 .0066 0.255 7 � 10�4

C Inside high-risk group 0.95 2.9 � 10�6 0.138 .00038 0.83 0.56 to 0.86 .0085 0.273 .0076

Abbreviations: au-ROC, area under the receiver operating characteristic curve; KM, Kaplan-Meier.
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submodels (A to D; Fig 1 and Table 1). Each model incrementally incorporates
additional evidence associated with relapse from a different type of genomic
feature: model A adds clinical attributes, ai, including histology (classic,
desmoplastic, and large-cell/anaplastic) and metastasis status (M0 v M1-4).
Model B adds disease subtype–independent gene-expression signatures, ei,
that is, those associated with relapse across all tumor samples without dividing
the cohort into molecular subtypes. Model C adds disease subtype–dependent
gene-expression signatures, sei, that are specific to the sample’s molecular
subtype {c1, … ,c6}. Model D adds disease subtype–independent DNA
copy-number gains and losses (genomic abnormalities), gi. This incremental
approach allows us to compare what we gain in accuracy with each addition of
new evidence.

Model Feature Selection

We chose model features in two ways: by their association with clinical
outcome in past studies and by their strong correlation with the relapse/no
relapse phenotype in the training data.

For gene-expression signatures, ei and sei, we used the 2,599 gene sets and
the gene set view of the data as described above. We chose one disease subtype–

independent expression signature representing c-Myc activation34 because
c-Myc overexpression has been shown to be associated with poor outcome in
medulloblastomas.42 In addition, we confirmed that the signature was in the
top 20 pathway discriminators of relapse in the training set according to the
au-ROC curve (Data Supplement). For the disease subtype–dependent ex-
pression signatures, we selected one of the top 20 discriminators of relapse
inside each disease subtype within the training set according to the au-ROC
curve (Data Supplement). In all these selections, we favored signatures with a
clear biologic interpretation and/or those obtained from published activation
and repression experiments.

For genomic abnormalities, we selected DNA copy number gains or
losses by using single nucleotide polymorphism array data that we generated in
our separate study41 (see Appendix) and from which we identified statistically
significant focal amplifications and deletions using Genomic Identification of
Significant Targets in Cancer (GISTIC).43 We then selected loci in two ways:
(1) high association with relapse in the training data set [del(16q),
del(16q23.3), amp(7q21.3), and amp(3q26.32); see Appendix] and (2)
association with outcome in past studies [amp(8q24.21/c-Myc),

BA

0

Model D au−ROC = 0.84
Model C au−ROC = 0.87
Model B au−ROC = 0.66
Model A au−ROC = 0.58
Current clinical schema, 0.59

Model D au−ROC = 0.78 (95% CI, 0.68 to 0.88)
Model C au−ROC = 0.8 (95% CI, 0.7 to 0.9)
Model B au−ROC = 0.75 (95% CI, 0.64 to 0.86)
Model A au−ROC = 0.73 (95% CI, 0.6 to 0.84)
Current clinical schema, 0.68 (95% CI, 0.55 to 0.8)

)68.0 ot 65.0 ,IC %59( 38.0 = COR-ua)78.0 ot 65.0 ,IC %59( 27.0 = COR-ua
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Relapse
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N

Y

N

32

4

Y

9

6
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Y

N

5

1

Y

5
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Fig 2. (A) Receiver operating characteristic (ROC) plots (empirical, dashed line; binormal, solid line) and area under the ROC (au-ROC) curve performance of the current
clinical schema and models A to D in the training set. (B) ROC plot and au-ROC curve performance of the current clinical schema and models A to D in the independent
test set. (C) ROC plots and au-ROC curve performance for model C in the independent test set for the standard-risk and (D) high-risk patient groups as defined by the
current clinical schema. Note that only 73 of the test samples had corresponding clinical annotation that allowed categorization as standard risk or high risk. The model
will still make a predictive call based on the genomic data. The 95% CIs in Figures 2B and 2C are estimates based on bootstrap sampling and are affected by small
sample size. N, no; Y, yes.
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amp(2p24.3/N-Myc) and del(6q/monosomy 6)]. Table 1 gives the log-
odds association of each amplification or deletion with relapse. We used
disease subtype–independent features because of the small number of
samples with copy number data in the training set (38 of 96).

Training the Model

To set the parameters of the models, we evaluated the log-odds ratio,
or conditional evidence, Ev(r � x), for relapse, r, conditional on each
feature x. We compute the contingency tables of feature versus relapse
status in the training set where the value of r is known for each sample. This
yields the probability of relapse of the training samples conditional on the
value of that feature, P(r � x), from which Ev(r � x) can be computed
(see Appendix).

Model Evaluation: Predicting Relapse

To predict relapse for a patient sample, we combine all of the evidence
via a Bayesian cumulative log-odds model given by equation (1) with the
value of each Ev(r � x) determined by the value of each feature for the
given sample.

Ev�r � � xi�	

� Ev�r	 � �
i � 1

Na

Ev�r � ai	 � �
i � 1

Ne

Ev�r � ei	 � Ev�r � c	 � �
i � 1

Nse

Ev�r � sei,c	 � �
i � 1

Ng

Ev�r � gi	

Model A: prior plus
clinical attributes ai

Model B: A plus expression signatures ei

Model C: B plus disease subtype c and subtype-dependent
expression signatures sei

Model D: C plus genomic abnormalities gi

(1)

To facilitate the interpretation of each prediction, we represent the
individual log-odds evidence from each feature value graphically as arms in
a Bayesian nomogram.32 Note that the nomogram is not the standard type
used in regression models and that to predict the relapse status of a new
(test) sample, its disease subtype c must first be determined separately as
described above.

Probability of RELAPSE

Sum Log-Odds
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Fig 3. Bayesian nomogram showing the amount
of evidence that each feature (risk factor) provides
in the context of a specific patient’s feature values.
The arms of the nomogram represent the values of
the posterior log odds ratio evidence, Ev(r � x), for
each feature’s values. The actual values taken by
each feature are shown in blue or red according to
the sign of Ev(r � x): positive magnitude to the right
side is evidence for relapse (red) and negative
magnitude to the left is evidence for no relapse
(blue). The final sum of Ev(r � x) provides the final
probability of relapse, which is 0.89 (95% CI, 0.65 to
0.97). OR, odds ratio; Lods, log-odds; Prob, probabil-
ity; RSV, respiratory syncytial virus; H, high; L, low;
DESMO, desmoplastic; LCA, large-cell/anaplastic
(lymphoma); N, no; Y, yes.

Tamayo et al

1420 © 2011 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



RESULTS

To validate models A to D, we assessed how well each model recapit-
ulated the relapse end points of the 96 training samples. Next we used
the independent set of 78 test patient samples to evaluate how well
each model generalized to new data and how well it predicted patient
relapse. To make a predictive call, we estimated the probability of
relapse using the feature values of each patient sample in equation (1).

Model Fit on Training Data

Training performance improves as the models incorporate more
feature types (Table 2, Fig 2A; Data Supplement). For example, the
au-ROC curve values for models A to D are 0.58, 0.66, 0.87, and 0.84,
respectively. The differences between models C and D are small, pre-
sumably because of the limited number of samples with known
genomic abnormality status (see Discussion).

Performance on Test Data Sets

On the independent test set of 78 samples, the performance of
models A to C increases overall (Table 2, Fig 2B) as more information
is made available, with a small decrease in model D (see Discussion),
demonstrating the benefits of cumulative integration of several
sources of information including disease subtypes. For example, the
au-ROC curve values for models A to D in the test set are 0.73, 0.75,
0.80, and 0.78, respectively. The corresponding Kaplan-Meier log-
rank P values show a similar trend (Data Supplement) as do the
relative utility curves44 (Appendix and Data Supplement). Models C
and D outperform the current clinical schema (au-ROC curve, 0.68;
Fig 2B and Data Supplement), model A on the basis of clinical features
alone (au-ROC curve, 0.73; Fig 2B and Data Supplement), and our
previously published eight-gene outcome signature (au-ROC curve,
0.71; Data Supplement). Importantly, the largest increase in perfor-
mance occurs in model C, which incorporates markers of outcome
within molecular subtypes.

Improved Risk Stratification Using Molecular Markers

Figure 2C shows the breakdown of standard-risk and high-risk
test set patients for model C (best-performing model). Fifteen patients
categorized as standard-risk by the current clinical schema actually
relapsed. Of those, model C correctly predicts that six (true-positive
rate, 0.40; 97.5% CI, 0.14 to 0.71; false-positive rate, 0.11; 97.5% CI,
0.025 to 0.28) will relapse. Despite the large CIs, the difference between
the clinical schema and model C remained significant using both
DeLong et al45 (P � .04) and Integrated Discriminant Improvement
(IDI) criteria46 (see Appendix). These preliminary results show poten-
tial practical value for identifying standard-risk patients who may
benefit from treatment more suitable for high-risk patients.

DISCUSSION

Our model is one of the first medulloblastoma risk models that main-
tains good performance on an independent multi-institutional test
set, suggesting its generalizability for use in future medulloblastoma
clinical trials. Models C and D appear to outperform other state-of-
the-art models reported in the literature, such as those of Pfister et al14

and de Haas et al.13 The similarity of our training and test results
indicates that our strategy of selecting high-level features and our

model architecture control for overtraining. The significant improve-
ment of model C over the current clinical schema and model A (based
on clinical features) and our previously published eight-gene outcome
signature can be attributed to the use of highly informative expression
signatures, specifically those conditional on disease subtype. Models
that do not take into account disease subtype (eg, model B) are inher-
ently less accurate. The use of disease subtype–specific features effec-
tively addresses this problem.

To establish the method’s effectiveness on independently ac-
quired data and other acquisition platforms, we applied a simple
normalization procedure based on a 0-to-1/min-max rescaling of the
expression signatures’ activation scores (see Appendix). For eventual
clinical deployment, in which a single patient sample must be evalu-
ated, a central laboratory and single platform would eliminate this
step, subject to final validation of the model.

Three genomic abnormalities were associated with medulloblas-
toma outcome in past studies: c-Myc and N-Myc amplification and
monosomy 6 correlate with relapse status but have low penetrance in
our training set (8%, 36%, and 16%, respectively). This low pen-
etrance combined with the asymmetry of their corresponding nomo-
gram arms in Figure 3 (indicating low predictive value when absent)
limits their value as overall predictors of outcome. In contrast, the
overexpression of the c-Myc expression signature (third row of Fig 4A)
is a significant predictor of relapse with higher penetrance (43%) and
has higher predictive value when absent, making it a better predictor
of relapse. Our results suggest that in medulloblastomas, multiple
mechanisms of Myc activation might be at play and would show the
advantage of considering catch-all functional readouts of oncogene
activation rather than relying solely on the status of known genomic
abnormalities. The relevance of c-Myc activation as a marker of poor
outcome in our study is consistent with its previously implicated role
as a significant risk factor12,13,42 and a general regulator of poor-
prognosis metastatic state.23

We found that the addition of genomic amplifications and dele-
tions (model D) does not improve accuracy, possibly because we had
such data for only about 40% of training and test samples or that the
information these loci carry is already subsumed in the expression
signatures. For example, the expression of the �-catenin pathway, one
of our disease subtype signatures, follows closely the status of del(6q).

Fig 4. Heat map of 38 samples showing the Genomic Identification of
Significant Targets in Cancer (GISTIC) amp(8q24.21/c-Myc) status, the GISTIC
amp(2p24.3/N-Myc) status, the expression of the disease-independent c-Myc
pathway, the del(6q/monosomy 6) GISTIC status, and the expression of the
beta-catenin pathway.
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Unfortunately, we have too few samples with copy-number data to
address this issue conclusively. Moreover, there were insufficient
copy-number data within each subtype to evaluate whether subtype-
dependent amplification or deletion has higher predictive value.

One of the four amplifications and deletions we identified as
associated with outcome, amp(3q26.32/p110a/PI3K locus) has been
associated with poor outcome in endometrial cancer.47 A detailed
biologic interpretation of the disease subtype–dependent pathways
will require a follow-up study. In particular, the mTOR pathway,
highly upregulated in the disease subtype c1, is a central integrator of
signals and AKT phosphorylation and has been demonstrated to be
involved in medulloblastoma.48

We introduced a Bayesian nomogram similar to those based on
regression models49,50 but containing additional elements to represent
disease subtype–dependent pathways. For example, the patient
shown in Figure 3 has the standard-risk profile, and the current clini-
cal schema incorrectly predicts no relapse. In contrast, models C and D
correctly predict relapse because of the cumulative log-odds evidence
derived from the genomic features, including c-Myc activation. This
nomogram shows only the relevant disease subtype (c1) arms; the full
nomogram including all the disease subtype–dependent arms is
shown in the Data Supplement.

In summary, we developed a model that predicts relapse in
medulloblastoma, retaining high accuracy when applied to an
independent multi-institutional validation test cohort. A key fea-
ture of the model is the combination of clinical parameters with
molecular markers representing gene-expression signatures of
mechanisms and pathways that are specific to disease subtypes. The
model relies on variable relapse-associated levels of expression
signatures within disease subtypes. Considered from the perspec-
tive of individual tumor samples, the model allows for outcome
predictions along with a measure of the contribution of each indi-
vidual risk factor. This goes well beyond methods that simply
establish association of marker expression levels with disease out-
come and gives a clear sense of the possible value of the method in
a clinical setting. For example, the model correctly reclassified six
of 15 patients who were standard-risk by clinical criteria as high-
risk. These six patients represent 
 10% of the standard-risk
patients in our validation cohort who, up-front, should have
been offered more aggressive therapy and a better chance of

progression-free survival than what stratification based on clinical
risk criteria offered.

The model described here represents a first step in obtaining a
more accurate, quantitative risk stratification for medulloblastoma
patients by taking advantage of multiple sources of information: clin-
ical, molecular, and genetic. While not yet ready for clinical use, with
further refinement it might lead to a real-time Clinical Laboratory
Improvement Amendments (CLIA) –certified test that clinicians can
use to help guide their treatment decisions (see Appendix). Precedent
has already been established in breast cancer risk stratification by the
Oncotype DX51 and MammaPrint52 tests currently in prospective
clinical trials. Breast cancer has heterogeneity similar to that of medul-
loblastomas and thus serves as a good metric. These tests have shown
that a gene expression–based assay can be performed with rapid
turnaround and high sensitivity/specificity. Thus efforts to refine,
transfer, and apply our proposed model to medulloblastomas should
be a priority.
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