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ABSTRACT 
 
Tactical missiles within the US Army are regularly subjected to severe stresses such as long term exposure in harsh 
environments and transportation handling. These stresses factor into the ageing, deterioration, and eventual decommissioning 
of some of the Army’s critical warfighting assets. The negative reliability impacts associated with long-term ageing and 
deterioration significantly affect the total lifecycle cost of fielding these weapons in a high state of readiness. 
 
Reliability evaluation of past data has indicated failures in missile structural, energetic, and electronic components associated 
with the long-term exposure to heat, humidity, and transportation shocks. Unlike strategic missiles, tactical missiles undergo a 
very minimum of field checks and non-destructive evaluation on a routine basis. 
 
The Army Aviation and Missile Research, Development, and Engineering Center have been developing a health monitoring 
system called Remote Readiness Asset Prognostics and Diagnostics System (RRAPDS) to assess and improve reliability of 
the missiles during storage and field exposures [1].  RRAPDS will use external and internal sensors to provide data to assess 
missile conditions and predict reliability. 
 
This paper describes the approach to predict reliability of missile components like propellant, nozzles, and thermal batteries 
using sensor data from RRAPDS, and prognostic models for structural integrity and damage mechanisms.  Probabilistic 
models will quantify all the uncertainties present in the health monitoring data and finite element models, to provide a realistic 
reliability evaluation. 
 
 
INTRODUCTION 
 
The US Army fields tactical missiles of various types all over the world.  These missiles are exposed to different environments 
during storage, transportation, and operation.  Typical environments include cyclic exposure to temperature and humidity 
extremes, vibration and shocks, and corrosive atmospheric conditions.  Long-term environmental exposures affect a missile’s 
performance and reliability as component material properties degrade, and this degradation negatively impacts critical 
performance parameters. 

 



 
Recently, there has been a significant shift in how the Army builds and fields its missiles.  This change has had a major impact 
on degradation factors affecting Army missiles as well as considerations needed to manage and assess degradation.  Prior to 
Operation Desert Storm, the Army’s missiles were designed for long-term storage in depots without extensive deployments.  
Additionally, these generations of Army missiles were designed and built to a government-owned specification resulting in 
highly homogeneous configurations. 
 
Since Operation Desert Storm, missile deployments have become more frequent resulting in a greater stratification of aging 
and performance within the stockpile.  The government has also reduced or eliminated control of lower level specifications 
resulting in further reducing stockpile homogeneity.  Due to non-homogeneities in the stockpile, assessments of readiness are 
less certain and can be more costly. 
 
The reliability of the Army’s missile stockpile and individual missile shelf life are monitored through dedicated programs of 
surveillance and testing.  After fielding, the Army collects pertinent reliability data over a missile’s lifecycle utilizing a variety of 
test methodologies both destructive and non-destructive.  This data is analyzed for trends associated with age, manufacturing 
strata, and or unique environmental exposures. 
 
If a missile system continued to perform reliably and safely based on surveillance data, then an extension of shelf life for that 
type of missile is recommended to major decision makers and coordinated with the user and logistics community.  If 
surveillance analysis indicates undesirable trends, then whole missile populations or subsets of populations are suspended for 
use or restricted for special use only.  Obviously, the degradation and ageing of missile populations and their effects on 
readiness of the stockpile can have major economic implications if new procurements are warranted. 
 
 
STOCKPILE SURVEILLANCE FINDINGS 
 
Missile surveillance testing and subsequent failure analysis have identified a number of failure modes induced by extreme 
environmental exposure. These failure modes are divided into three component categories: 1) mechanical/structural 
components; 2) electrical components; and, (3) energetic components.  
 
The mechanical category includes damage to missile storage containers, canisters, and launch tubes during severe 
transportation and handling. 
 
The critical electrical components include guidance and control systems that are susceptible to failures due to corrosion, 
temperature, and humidity effects on sensors, and battery failures. 
 
Components falling into energetic categories include propellant, thermal batteries, gas generators, etc.  Some of the specific 
failure modes that resulted from temperature, humidity, and shock and vibration exposure are:  
 

• Sealant materials that failed due to humidity. 
• Missile cases damaged from handling and transportation. 
• Flight motors ruptured anomaly during flight tests and static firings. 
• Missile gyroscopes that failed due to bearing separator phenolic degradation. 
• Seeker performance degradation in missiles exposed to high temperature storage environments. 
• Corrosion and oxidization found inside deployed missiles. 

 
The current surveillance and periodic test program by US Army is an essential element to maintain reliability of the missile 
stockpile by removing suspect assets before deployment.  The analysis of test data has identified several failure scenarios that 
include manufacturing defects, contamination during manufacturing and, most importantly, the degradation due to aging 
exposure and environmental exposure.  In the case of environmental degradation and aging effects, the failure mechanism 
points towards accumulated damage resulting from exposure to temperature, humidity, and shock and vibration.  It is evident 
from the failure mode analysis that real time monitoring and analysis of data may provide tools to predict the reliability of the 
missiles in storage and determine ways to improve it. 
 
The current surveillance and test program is more of a reactive procedure than a proactive tool.  The surveillance and periodic 
testing for maintaining reliability and shelf life of the missiles can however, be further enhanced by implementing proactive 
tools such as equipment health monitoring and real time evaluation using prognostic models and probabilistic analysis. 
 
Aging and surveillance testing has shown aging degradation in component material properties from exposure to high 
temperature and humidity environments.  The effect of temperature and humidity cycling imposes additional stresses on the 
components and degrades the reliability over time.  The impact of shock and vibration during transportation and handling have 
also caused component damage and reliability degradation.  Another reliability concern is corrosion that degrades component 
life and affects performance. 

 



PROBABILISTIC PROGNOSTICS MODELING 
 
Temperature, humidity, shock, vibration, and corrosion (chemicals) parameters can be measured in real time with an 
integrated health monitoring system.  The data from this system can then be utilized to develop diagnostic and predictive 
models for components’ health and integrity and to determine if a missile will operate successfully when fired. 
 
The US Army has designed a system to monitor missile storage and transportation environments on a real time basis.  The 
system, called the Remote Readiness Asset Prognostics and Diagnostics System (RRAPDS), utilizes temperature, humidity, 
and shock sensors as an integral part of the weapon to monitor and perform diagnostic/prognostics analysis of the stockpiles 
during long-term storage.  RRAPDS is currently being field-tested and it is providing data to be used by probabilistic 
engineering models sufficient to predict the reliability of a weapon system at any point of time.  Prognostic/predictive models 
are being developed to assess the reliability and structural integrity of the weapon system components and they can be used 
as a decision making tool for field deployment. 
 
Diagnostic and prognostic models will be utilized to translate health monitoring data into an assessment of reliability and 
performance of the weapon.  The models are developed to determine if the component has or will degrade to a point where it 
cannot withstand the anticipated operating loads. 
 
The models are developed to compute degradation in material properties as a result of exposure to thermal and humidity 
cycling, shock and vibration, and or a corrosive environment.  The material properties data are determined using sensor 
information [2] that is then correlated with chemical kinetics or age-related relationships to determine change in modulus, 
strain energy, or other similar properties.  Degraded material properties are then used in a finite element method or other 
similar mathematical technique to evaluate induced internal stresses and predict current and future factors of safety.  The 
factor of safety provides criteria for survivability of a component or weapon system in the actual field environment.    
 
The prognostics and diagnostics models based on the deterministic approach stated above may not provide the actual 
quantification of uncertainty and variability presented in the health data and mathematical models.  The real time health 
monitoring data would consist of large variations in parameter values over time and the application of an average or worst-
case value may overlook the occurrence of the failure frequency.  Furthermore modeling uncertainty may not provide high 
confidence in the reliability assessment of the weapon system.  The assumption of deterministic variables is an idealization 
that is not true in the real world.  The extrapolation of the deterministic data to predict failure over time will be suspect and it 
adds another dimension of uncertainty. 
 
A sound approach to modeling for prognostic and diagnostic analysis of the weapon system will be based on probabilistic 
engineering analysis.  The probabilistic approach will attempt to quantify variability in the health monitoring data and modeling 
uncertainties and forecast the true failure frequency. 
 
In this approach, the parameters of the prognostic and diagnostic models are specified as statistical distributions.  These 
distributions are determined using statistical analysis of the health monitoring data.  The model output response that includes 
the induced loads and component capabilities are also output as a statistical distribution.  The synthesis of induced loads and 
component capabilities generate a failure function that can be analyzed to predict current and future reliability of the weapon 
system.  The probabilistic approach will quantify increased variability in the failure function as data are extrapolated for future 
reliability assessment. 
 
Several methods are available to analyze failure modes using the probabilistic engineering approach.  The methods range 
from simple synthesis of material capability (strength) distribution with the applied (induced load) distribution to complex Monte 
Carlo simulation and sensitivity analysis.  All of the analyses require the statistical analysis of all the input data to the failure 
function.  The methods that are being evaluated for the Army tactical systems are classified under three different categories: 1) 
probabilistic engineering evaluation using strength and stress interference; 2) probabilistic evaluation of the cumulative 
damage function; and, 3) prediction of component life based on Weibull analysis. 
 
Table 1 shows the application of the three methods that are being evaluated in conjunction with the input data from RRAPDS 
to analyze various failure modes identified in the Army tactical missile program.  RRAPDS will provide data with information on 
exposed temperature, humidity, shock, vibration, and chemicals environment.  Each of these three methods is discussed in 
the sections that follow Table 1. 
 
Significant variables and trends can be identified using data mining techniques.  Data collected can be analyzed to update 
design parameters such as failure rate of components, test costs, environmental thresholds, etc., and to predict spare parts 
requirements. 
 
For applications involving newly developed Strategically Tuned Absolutely Resilient Structures (STARS) [3,4], on-line health 
monitoring and smart diagnostics/ prognostics strategies will lead to significant savings in the total life cycle costs by improving 
a structure’s reliability, maintainability, and availability.  RRAPDS will allow for real-time access of source data and, in military 
applications, provide critical information needed for reduced sustainment costs and enhanced readiness.  Sensor data 

 



analyzed by data mining algorithms and predictive trending has the potential to extend life and save millions in maintenance 
costs.  Over time, data collected can be used to refine structural designs and improve reliability, resulting in an improved 
overall life cycle. 
 
 

Stress and Strength 
Interference Cumulative Damage Model Weibull Service Life Predictions

 
Diagnostic: 

• Determine current 
reliability of the structural 
components 

O Propellant 
O Liner 
O Case/canister 
 

 
Prognostics/diagnostics 

• Fatigue related failures 
• Fracture mechanics 

O Crack 
propagation in 
propellant 

O Unbonds in 
liners 

O Thermal and 
humidity cycling 
effects on 
electrical 
components 

• Corrosion related failure 
modes of missile 
components 

 
Prognostics/diagnostics: 

• Age related failures of 
electrical and electronics 
components 

• Service life predictions 
O Thermal 

batteries 
O Gas generators 
O Guidance 

components 
 

 

 
Table 1.  Probabilistic engineering models. 

 
 
1) Stress and Strength Interference Method 
In this approach, the material capability ( C ) and the induced load distributions ( R ) are used to compute the probability of 
failure at a point in time.  If both parameters are normally distributed, the probability of failure is given by [5], 
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where C and R are average capabilities and Sc and SR are standard deviation of the capability and induced loads, 
respectively.  φ is the normal probability function determined from a standard normal table. 
 
Figure 1 shows the probability distributions as the material capability degrades while the induced stress due to long-term 
environmental effects increases [5]. 
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Figure 1.  Component reliability with age. 

 



In the stress and strength model, the capability or material strength (properties) is determined using a degradation mechanism 
resulting from humidity or temperature cycling, or shock and vibration.  Some of the degradation functions include empirical 
Coffin-Manson functions, the Arrhenius law, or Boltzman formula [6].  The induced loads are determined using structural 
engineering models and input distribution from material properties to compute the distribution of R.  Statistics from these 
distributions are applied at any point of time to evaluate Pf. 
 
 
2) Cumulative Damage Function Method 
 
Cumulative damage models evaluate the aggregate of small or microscopic damage within the component due to stress 
induced by environmental conditions over a time period.  The incremental stresses are accumulated over time to determine 
the degradation in the component strength and to make predictions on whether the missile will withstand operational loads 
without failure.  The rationale of the cumulative damage function is that eventually microscopic damage will accumulate and 
lead to failure.  According to this theory, missile component failure will occur if the following is true: 
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The simplest form of the cumulative damage law is described by the Palmgren-Miner rule as [7], 
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where D denotes the fatigue damage and ni are the number of actual applied cycles at time t, and nf is the total number of 
cycles to failure.  At failure, D = 1 and ni (t) = nf. 
 
Equation (2) represents a linear damage function that was originally proposed for the life prediction of metallic components 
undergoing fatigue.  However, the linear damage function was found to give non-conservative results, as it predicts lives 
greater than those observed experimentally.  Its main deficiencies are: 1) load level interdependence; 2) load sequence 
interdependence; and, 3) lack of load interaction accountability. 
 
To make the cumulative damage law more appropriate to the real world, a simple non-linear form of Eq. 2 was presented 
using the definition of the power law as  
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where the power β is the load-dependent variable.   
 
The cumulative damage [(D(t)] resulting from small steps in induced strength due temperature and humidity cycling or shock 
and vibration over a period of time is described by a damage function as [8], 
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where tf  is the time to failure, σ(t) is the induced stress as a function of time, σ0 is the material strength, and  β is the power 
law exponent showing the interaction between stress and strength parameters. 
 
Equation 6 is shown graphically in Fig. 2 [8]. 

 



 

Log F 

Slope - 1/$

Broad statistical
distributions
in practice

F0 intercept

Log Time-to-Failure, tf

 
Figure 2.  Time-to-failure versus damage due to increased stress. 

 
 
Equation (6) can be evaluated using calculated stress values induced by temperature, humidity cycling, or shock and 
vibrations over time t.  The value of the damage function at time (t) must be less than 1.0 to ensure the structural integrity of 
the component.  Stress values are determined using finite element modeling or similar techniques. 
 
The damage function D(t) evaluated in Eq. (6) represents a precise value and does not show any variability in D(t).  It is 
calculated using specified values of temperature, humidity, or shock. 
 
The data from the health monitoring systems will show a large variation in the measured parameters and the incorporation of 
average values to calculate stress will not provide an appropriate failure scenario.  Since the damage function D(t) is very 
sensitive to applied stress, any variation in mechanical properties or other data could provide uncertainties in the results.   
 
A probabilistic approach will be more appropriate to forecast the true failure frequency.  Figure 3 shows the comparison of 
mean damage (deterministic value) versus the failure probability. 
 
According to Fig. 3, the probability of failure as defined by the damage model is defined as [9], 
 
 
   Pf  = P (D ≥ 1.0)       (7) 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Failure probability distribution due to cumulative damage. 
 
 
The probabilistic approach suggests that the damage model be developed as a failure distribution using statistical information 
on the input parameters such as temperature, humidity, and shock as measured by the health monitoring systems.  The 
variability in the input parameters could provide distribution of the damage function that can be evaluated for failure probability 
and reliability of the component. 
 
When the damage function is normally distributed as shown in Fig. 1, the probability Pf is determined by the standard normal 
deviation as [10], 
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where σD(t) is the standard deviation of the damage function. 
 
The probability of failure, Pf , is given by Z from the standard normal table.  The statistical variation of damage equation input, 
for example, includes: 
 
   T= Tavg + st d1 (t) 
   H = Havg + sh d2 (t) 
   E = Eavg + se d1 (t)         
 
where E is the modulus, H is the humidity, T is the temperature, di are random deviations, and si is the standard deviation. 
 
With this kind of prognostic models, the missile and components health and aging degradation are monitored on a real time 
basis. 
 
 
3) Weibull Service Life Prediction Method 
 
Weibull analysis is widely used in reliability work to predict component service life and long-term aging degradation due to 
induced stress [11]. Accelerated aging data are generally analyzed using Weibull distribution to determine component 
characteristic life and probability of failure as a function of time [12].  The distribution is combined with Arrhenius or Boltzman 
principles to determine the effect of humidity and temperature on failure rates or reliability.  The analysis provides estimates 
about the expected longevity of components in terms of probability and avoids data extrapolation with uncertainty. 
 
The analysis is based on a Weibull probability distribution function that consists of a shaping factor, which allows it to be used 
in a many forms of data analysis.  The Weibull distribution is used to determine degradation in both the electronic and 
mechanical parts under long-term exposure to the environment.   
 
The Weibull distribution is a good tool for diagnostic and prognostics analysis of missile components such as mechanical and 
electrical components in the guidance system as well as degradation of sealant, adhesives and lube materials used in various 
missile subsystems.  These materials degrade due to long-term exposure to temperature and humidity and have been the 
cause of missile failures.   
 
The Weibull lifetime distribution is defined by the cumulative density function as [13], 
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where F(t) is the probability of failure at time t under stress s, β is the shape factor, η (s) is a scale factor that is a function of 
the stress (S) on the component.   The latter is also defined as the component characteristic life, i.e., the stress at which 
66.33% of the failures occur. 

 
The reliability function R(t,S) from Eq. (9) is, 
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Combining Eqn. (10) with the cumulative damage model represented by Eq. (4) and Eq. (5), the combined Weibull/cumulative 
damage reliability function becomes, 
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In Eq. (12), σ(t) is a function of temperature, humidity, and vibration. 
 
Equation (12) may require Monte Carlo simulations to predict and forecast component reliability, R[t,σ(t)] over time.  The 
Weibull parameters η, and β are evaluated using data from the induced stress calculated from finite element analysis and 
sensor data from the health monitoring network. 
 
 
CONCLUSION 
 
This paper addresses the application of an integrated health monitoring system to monitor health and perform prognostics and 
diagnostics analysis of Army missile systems in storage and field deployment.  The US Army has been field testing an 
integrated health monitoring system called RRAPDS that include diagnostic and prognostic models to assess the reliability of 
the weapons. 
 
The application of probabilistic engineering methods to analyze RRAPDS data and predict component reliability during the life 
cycle of the weapon systems was discussed.  Probabilistic methods in the diagnostic and prognostic analysis provide a 
realistic reliability assessment for decision making purposes.  The limitations of deterministic methods to predict component 
survivability were discussed.  Probabilistic methodologies based on stress and strength approach, cumulative damage 
functions, and Weibull analysis were presented for use with data from health monitoring systems. 
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