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Abstract

Integral membrane proteins constitute 25–30% of genomes and play crucial roles in many biological processes. However,
less than 1% of membrane protein structures are in the Protein Data Bank. In this context, it is important to develop reliable
computational methods for predicting the structures of membrane proteins. Here, we present the first application of
random forest (RF) for residue-residue contact prediction in transmembrane proteins, which we term as TMhhcp. Rigorous
cross-validation tests indicate that the built RF models provide a more favorable prediction performance compared with
two state-of-the-art methods, i.e., TMHcon and MEMPACK. Using a strict leave-one-protein-out jackknifing procedure, they
were capable of reaching the top L/5 prediction accuracies of 49.5% and 48.8% for two different residue contact definitions,
respectively. The predicted residue contacts were further employed to predict interacting helical pairs and achieved the
Matthew’s correlation coefficients of 0.430 and 0.424, according to two different residue contact definitions, respectively. To
facilitate the academic community, the TMhhcp server has been made freely accessible at http://protein.cau.edu.cn/
tmhhcp.
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Introduction

Proteins are the building blocks of life. One fourth to one third

of them are membrane proteins located in the bilayer lipids [1,2].

Membrane proteins play important roles in various life processes

and possess many complex physiological functions, such as signal

transduction, energy generation, metabolic transport and cell

recognition. They are also important drug targets, accounting for

approximately 70% of the known and tested drug targets [3].

Therefore, study of the membrane protein structure and function

is currently a popular topic in the chemistry and biology fields.

Over the past few decades, many protein structures have been

determined. However, most of them are globular proteins, while

only a few membrane proteins have been structurally determined.

In fact, in the Protein Data Bank (PDB), less than 1% of the solved

structures are membrane proteins [4]. This is not because of their

less importance than globular proteins, but is mainly due to the

technical challenges imposed on the expression of membrane

proteins in large quantities, dissolution from the biomembrane,

and crystallization [5].

Considering this situation, it is desirable to predict membrane

protein structures by developing computational methods. For

globular proteins, a plethora of different methods have been

developed to predict their structures [6–8], serving as a useful

reference for membrane protein structure prediction. Previous

work suggests that residue contact prediction with an accuracy

higher than 22% is helpful for ab initio simulation of globular

protein structures [9]. It is likely that this observation might also

apply to membrane protein structure prediction. A recent study

suggests that even if very limited experimental information with

regards to residue-residue contacts is known, a model within 4 Å

of the native structure can still be attained [10]. Thus, the

predicted residue contact pairs and interacting helices in

membrane proteins could act as useful structural constraints in

membrane protein structure simulation and prediction.

With respect to globular proteins, a variety of computational

methods have been developed to predict residue contact pairs [11–

23]. These methods can be further categorized into four types: 1)

correlated mutation-based residue contact identification [13,15–

17]; 2) machine learning methods, including support vector

machines (SVMs), neural networks and Markov models

[11,12,14,18–20]; 3) structural template-based approaches [21–

23]; 4) the combination of the first and second type to predict

residue contact pairs [11,12]. More details about the four types of

computational methods can be found in Wu and Zhang’s work

[9].

In contrast, fewer methods exist to predict residue contacts

particularly in membrane proteins. So far, there are mainly three
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methods to predict residue contact pairs in alpha-helical

transmembrane (TM) proteins, which are TMHcon [24] using

artificial neural network, TMhit [25] using SVM, and MEM-

PACK [26] using SVM. All of the three methods first predict

residue contact pairs between different TM helices and then infer

helix-helix interactions based on the predicted residue contact

pairs.

In this article, we adopted two different definitions of residue

contacts and applied a random forest (RF) algorithm to solve the

challenging task of predicting residue-residue contact and helix-

helix interaction in alpha-helical TM proteins. We termed our

predictor as TMhhcp (TM helix-helix contact predictor). As a

result, our approach achieved the top L/5 residue contact

prediction accuracies of 49.5% and 48.8%, based on the two

different definitions of residue contacts, respectively, providing

better performance than TMHcon and MEMPACK. We further

utilized the predicted residue contacts to identify interacting

helical pairs and attained the Matthew’s correlation coefficients

(MCCs) of 0.430 and 0.424, respectively. Moreover, we also

performed feature selection experiments to evaluate and select

important informative features contributing to performance

improvement.

Methods

Datasets
In this work, we used a well-prepared training set containing 62

TM proteins that were previously used by TMHcon [24]. This

training dataset was compiled from PDBTM [27] (version of

September 17,2007), which contained 677 alpha-helical TM

structures, and the dataset provided by the Stephen White

laboratory (http://blanco.biomol.uci.edu/Membrane_proteins_x-

tal.html; version of September 17, 2007). Briefly, all the solved

protein structures in this dataset have a resolution better than 3.5 Å,

with a pair-wise sequence identity of less than 40%. The topology

data were obtained from TOPDB [28], with the exception of two

protein structures 2UUH (chain: A) and 1ORQ (chain: C). Their

TM positions were extracted from PDBTM [27] and the

corresponding orientations were obtained from OPM [29].

In addition, we created a test set in order to validate the

prediction performance of our method. First, we downloaded the

alpha-helical TM protein chains from a newer version of PDBTM

(October 1, 2010), which contained 1,070 alpha-helical TM

proteins, and selected those having at least three TM helices as

well as sharing less than 40% sequence identity to protein chains in

the training set. We then submitted the PDB IDs of these protein

chains to the PISCES server [30] that returned a non-redundant

PDB ID list. This was used as the test set. Finally, this test set

contained 21 TM protein chains whose structures were all

determined by X-ray diffraction with a resolution less than 3 Å

and had a pair-wise sequence identity less than 40%. The TM

segments of proteins in the test set were derived from PDBTM [27]

and the corresponding orientations were obtained from OPM [29].

Definitions of residue contacts
Existing residue contact predictors for TM proteins have used

different definitions of residue contacts and helix-helix interac-

tions. TMHcon [24] defined that two residues within different TM

helices were in contact, if the minimal distance between the heavy

atoms of the side chain or backbone was less than 5.5 Å. Two TM

helices were interacting with each other if they had at least one

contact residue pair. The definition proposed by TMHcon is

denoted as DEF1 in this study. The second definition was given by

MEMPACK [26]. It required the C-beta atom (C-alpha atom in

the case of glycine) to have a distance ,8 Å for two residues to be

in contact and at least one residue contact pair to be present for

two helices to be interacting. The definition proposed by

MEMPACK is denoted as DEF2. More recently, Duarte et al.

pointed out that a distance cut-off of 9 to 11 Å around the C-beta

atoms could represent the 3D structure most accurately when

applied to the contact maps [31]. In this study, we constructed two

different types of RF predictors and evaluated their prediction

performance based on the two different contact definitions.

Input features
We used the RF algorithm [32] to predict residue contacts

between different TM helices. The schematic overview of our

TMhhcp approach is depicted in Figure 1. The model building

process consists of three major steps: feature extraction and

encoding, feature selection, and model building (Figure 1). In

order to build the RF-based prediction models, several different

types of features were extracted and used as input to train the

Figure 1. Schematic overview of RF-based model building process of the TMhhcp approach.
doi:10.1371/journal.pone.0026767.g001
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models. In the subsequent sections, we will describe in more detail

individual input features, feature selection and model building

procedures.

Evolutionary profile. The evolutionary profile, represented

by a Position-Specific Scoring Matrix (PSSM), was first

constructed by running PSI-BLAST [33] search against the

UNIREF90 database with three iterations and an e-value cut-off

of 1e-10. In a PSSM, each residue was represented by a 20-

dimensional vector, denoting the frequencies of the 20 amino acids

appearing at the corresponding position in the PSSM. For a

residue of interest, a nine-residue sliding window centered on that

residue was used to extract its evolutionary profile. If there were

less than four residues on one side of a residue, each non-existing

position was represented by a 20-dimensional zero-valued vector.

Finally, a residue pair was encoded by a 360-dimensional vector.

Residue coevolution. Three correlated mutation methods,

MIc [16], OMES [34] and McBASC [35] were used to infer the

coevolving residue pairs from multiple sequence alignments

(MSAs). The MSAs were first obtained through the PSI-BLAST

search against UNIREF90 as described above. Then, the MSAs

were filtered based on the following criteria: 1) In an MSA, residue

columns that do not belong to any TM segment were removed. 2)

Any sequence in the MSA containing $25% gaps in any TM

segment was also removed. 3) The MSA was further filtered to

ensure that the sequence identity between any two sequences was

#90% (It should be noted that the sequence identity here was

based merely on all TM segments rather than the whole sequence).

Moreover, the calculated correlated mutation scores by the three

methods were standardized using the formula y~
x{ min

max { min
,

where min and max are the minimal and maximal correlated

mutation values in the query sequence. For a residue pair ij, we

encoded its coevolutionary feature as an input vector: (Si24, j24,

Si23, j23, …, Si+3, j+3, Si+4, j+4), where Si, j represents the correlated

mutation score for residue pair ij. The encoded sequence segment

(i24, …, i+4 and j24, …, j+4) is in the orientation from the

cytoplasm to the extracellular side of the membrane. Thus, a 27-

dimensional vector was obtained from the residue coevolution

encoding scheme.

Residue conservation. The sequence conservation score of

a residue position, generally considered to be closely correlated

with the burial status of the residue [36–39], was calculated

according to the Shannon’s entropy at this position in an MSA.

The conservation scores were also standardized as above.

Similarly, for a residue of interest, a nine-residue sliding window

centered on that residue was employed to extract its conservation

profile. For a residue pair of interest, the residue conservation

encoding scheme resulted in an 18-dimensional feature vector.

Relative distance of two residues within TM

helices. Suppose that there are two residues residing at

positions p1 and p2 in two different TM helices with lengths l1
and l2, respectively. Their relative distance from each other within

TM helices can be calculated as |p1/l12p2/l2|. It should be noted

that the residue position p ranges from 1 to l within a TM helix

that has l residues from the cytoplasm to the extracellular side of

the membrane. This feature stands for the distance of two residues

perpendicular to the surface of the membrane.

Other types of features. Other features collected for each

residue pair and used by TMhhcp predictors include the residue

distance in the primary sequence and the number of TM helices.

Feature selection
The aforementioned feature construction resulted in a 408-

dimensional feature vector. In order to create a more condensed

model with less noisy and uninformative features, we need to

perform feature selection experiments to select the most

meaningful features. For this purpose, we used the correlation-

based feature selection (CFS) [40] to select a subset of features that,

individually, have a higher ability of predicting the class but have

little inter-correlation. The correlation between features X and Y

can be measured using the following function:

R(X ,Y )~2|
H(X )zH(Y ){H(X ,Y )

H(X )zH(Y )
ð1Þ

where H is the Shannon’s entropy of the feature. The

appropriateness of a set of features is determined using

X
j

R(Xj ,C)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

R(Xi,Xj)

s
ð2Þ

where C is the class and the indices i and j iterate over all features

of the set. In order to avoid exhaustive search of all feature subsets,

a confined search method called BestFirst [41] was used. In our

work, we randomly selected 10 sets of samples with equal numbers

of positive and negative samples. 10 feature subsets were then

obtained and integrated into a feature set that was used to train the

RF classifier. The feature selection process was performed using

the Weka package [42]. The final selected features and their scores

are listed in the supplementary material.

Model building
According to the residue contact definitions, residue pairs in the

training set are classified into contacts (positive samples) and non-

contacts (negative samples). In principle, the training set should

include as many residue pairs as possible. For a membrane protein

structure, however, the number of non-contact residue pairs is

considerably higher than that of contact pairs, leading to the

problem of imbalance [43]. Including all the non-contact residue

pairs into the training set would end up with a long training time

and fewer correct predictions of contact residue pairs. To

overcome this issue, we included all the contact residue pairs

and randomly selected non-contact residue pairs with the ratio of

1:4 contact pairs in the training set, as suggested previously [9].

The RF algorithm [32] is a popular machine learning method

that has been used in diverse bioinformatics studies with excellent

performances [44–46]. It grows many classification trees and

chooses the classification with the most votes from all the trees.

Each tree is grown as follows: for a training set of N cases and m

variables, sample N cases with replacement from the original data

to grow the tree. A number m%M is specified such that at each

node m variables are selected randomly to best split the nodes.

Each tree is grown as large as possible. The error of RF depends

on the strength of each individual tree and the correlation between

them.

In our work, we built RF models based on all the features and the

selected features through CFS respectively to examine the

effectiveness of the feature selection. We generated 100 trees for

each model and set m to the default value of
ffiffiffiffiffiffi
M
p

, because we found

that there was no significant difference in the resultant prediction

performances at different adjusted m values. The RF algorithm was

implemented using the randomForest R package [47].

Evaluation measures
In order to assess the performance of the RF-based predictors,

we performed strict jackknife cross-validation tests, i.e. all residue

pairs in a singled-out sequence were predicted and tested using the

Predicting Residue Contacts and Helix Interactions
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model trained using all the other residue pairs of the remaining

sequences in the training set. In addition, we also tested our

method on an independent test set. It is noteworthy that the

performance was assessed at the whole protein chain level and as a

result, the overall performance was obtained by averaging the

individual prediction results of all the tested protein chains.

For prediction of residue contact pairs, the top L/5 predictions

were ranked as the residue contact pairs, where L is the sum of

lengths for all TM segments of a protein chain. The accuracy,

defined as the number of correctly predicted residue contacts

divided by the number of predicted residue contacts (i.e. L/5), was

used to assess the prediction performance. The top L/5 prediction

accuracy has been consistently used to evaluate the prediction

performance of the developed predictors [26]. Moreover, we also

presented the accuracies for the top L/2 and L predictions in this

study in order to comprehensively evaluate the performance of the

RF-based predictors. The coverage (percentage of correctly

predicted contacts out of the observed contacts) was also

computed. We used ‘‘d-analysis’’ to investigate the fraction of

correctly predicted contacts within an interval of d around the

observed contacts [24,25]. We set d= 4 to determine the

percentage of predicted contacts about one turn around the

observed contacts. We also drew the precision-recall curves to

show the precision (i.e. the accuracy in this study) as the coverage

increases. For helix-helix interaction prediction, accuracy (per-

centage of correctly predicted interactions out of predicted

interactions), sensitivity, specificity and MCC [48] were calculated.

Results and Discussion

Model building
The RF approach has been used in previous studies and has

demonstrated excellent prediction performance. In this study, we

describe its first application to predict residue-residue contacts and

helix-helix interactions in TM proteins. Our approach was termed

as TMhhcp and four different TMhhcp predictors were

constructed. TMhhcp1 and TMhhcp2 are two RF predictors

according to DEF1 and DEF2, respectively. These were built

based on the training dataset with all features, while TMhhcp_cfs1

and TMhhcp_cfs2 are another two RF predictors based on the

selected features using the CFS approach according to DEF1 and

DEF2, respectively.

Prediction performance evaluated based on the jackknife
cross-validation tests

We performed leave-one-protein-out jackknife cross-validation

tests to assess the prediction performance of our method. The

prediction performances are presented in Table 1. We can see that

the prediction accuracies obtained by the models based on all

features (TMhhcp1 and TMhhcp2 predictors) are higher than

those of the models based on the selected features (TMhhcp_cfs1

and TMhhcp_cfs2 predictors). However, for the d-analysis, the

two types of RF models provide comparable performances. This

suggests that they have similar abilities in predicting residue

contacts localized within a sequence separation of one helix turn of

observed contacts.

Since we used the same dataset of protein chains and evaluation

measures as TMHcon, we directly compared our prediction results

with TMHcon. As shown in Table 1, TMhhcp1 achieved a much

higher accuracy than TMHcon. A possible reason might be that

we have included more instances of non-contact residue pairs into

the training set. Even using a 1:1 ratio of contacts to non-contacts,

the accuracy of our method still reached 43.3%. Thus, the

favorable performance of our method may be attributed to the

application of the RF method and the different features we used to

build the predictors.

We calculated the top L/5 predictions of our method and

compared the results with TMHcon. In addition, we also

calculated the top L/2 and L predictions of our method

(Table 2), as these two values were frequently used by other

researchers in this field. It could be seen that for the top L/2

predictions, TMhhcp1 and TMhhcp2’s accuracies were 42.8%

and 43.0% respectively, while for the top L predictions, TMhhcp1

and TMhhcp2’s accuracies were 34.6% and 35.1%, respectively.

To assess the average performance of the TMhhcp models on

the 62 transmembrane protein chains, we referred to Algorithm 3

of Tom Fawcett’s work [49] to draw the corresponding precision-

recall curves (Figure 2). Note that the precision-recall curve

analysis was conducted at the whole protein chain level. Firstly, the

precision-recall curve of each tested protein chain was prepared.

Then, the average precision-recall curve (Figure 2) was generated

by plotting the average precision values of the 62 tested proteins at

Table 1. Prediction performance comparison of different
methods based on the jackknife cross-validation test.

Predictor Accuracy (%) Coverage (%) Accuracy (d = 4) (%)

TMhhcp1a 49.5 8.2 83.9

TMhhcp_cfs1a 45.8 7.4 83.8

TMhhcp2b 48.8 8.4 83.7

TMhhcp_cfs2b 46.6 8.0 82.4

TMHcona 25.9 3.5 78.5

aResidue contact definition 1 (i.e. DEF1).
bResidue contact definition 2 (i.e. DEF2).
doi:10.1371/journal.pone.0026767.t001

Table 2. Jackknife cross-validation performance of different TMhhcp models in terms of the top L/2 and L predictions.

Top L/2 predictions Top L predictions

Predictor Accuracy (%) Coverage (%) Accuracy (d = 4) (%) Accuracy (%) Coverage (%) Accuracy (d = 4) (%)

TMhhcp1a 42.8 17.4 81.8 34.6 27.6 77.9

TMhhcp_cfs1a 37.5 15.0 79.3 30.2 24.0 76.4

TMhhcp2b 43.0 18.3 80.9 35.1 29.1 76.8

TMhhcp_cfs2b 40.1 17.0 79.5 32.3 26.8 75.9

aResidue contact definition 1 (i.e. DEF1).
bResidue contact definition 2 (i.e. DEF2).
doi:10.1371/journal.pone.0026767.t002
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different recall controls. The area under the precision-recall curve

(AUPRC) was further used to quantify the performance.

Generally, a higher AUPRC value corresponds to a better

performance. According to DEF1, the AUPRC values for

TMhhcp and TMhhcp_cfs were 0.300 and 0.254, respectively.

According to DEF2, the AUPRC values for TMhhcp and

TMhhcp_cfs were 0.314 and 0.283, respectively.

Prediction performance evaluated on the independent
test set

In order to further validate our method, we also performed an

independent test to compare the prediction performance of our

method with two other methods (TMHcon and MEMPACK). As

shown in Table 3, the results obtained by our method were as

accurate as those in the jackknife cross-validation tests (Table 1).

The accuracies for TMhhcp1, TMhhcp_cfs1, TMhhcp2 and

TMhhcp_cfs2 were 48.1%, 48.6%, 47.3% and 46.5%, respec-

tively. In the case of the d-analysis, the accuracies reached 84.4%,

81.8%, 82.8% and 79.5%, respectively. Moreover, TMhhcp

models consistently provided relatively good performance for the

top L/2 and L predictions on the independent test set (Table 4).

To benchmark the performance of TMHcon and MEMPACK

on the independent test set, the corresponding stand-alone versions

of TMHcon and MEMPACK were downloaded and installed in

our local machine and the independent test set was processed. As

can be seen from Table 3, our method still outperformed TMHcon

when evaluated on this independent test set.

In contrast, MEMPACK, another helix-helix interaction

predictor, used a different class decision mode by directly

predicting residue contacts based on the score generated by an

SVM predictor. We found that the classification mode used by

MEMPACK led to biased prediction results, possibly due to the

small ratio of contacts to non-contacts in proteins. In particular,

there were four protein chains in the independent test set for which

MEMPACK failed to predict any residue contact. The precision

values for the four protein chains were set to 0. Moreover, there is

a possibility that the independent test set we used might have

contained homologous sequences that had higher sequence

identity with those in the training set of MEMPACK. However,

despite this possibility, our TMhhcp predictors outperformed

MEMPACK on the independent test set and achieved higher

accuracies of 48.1% and 47.3%, compared to 36.2% and 34.6% of

MEMPACK based on two different definitions DEF1 and DEF2,

respectively. In addition, we compared the performance of

TMhhcp and MEMPACK, when the four protein chains were

excluded, as shown in Table S1. TMhhcp achieved the accuracies

of 53.1% and 51.1%, while MEMPACK achieved the accuracies

of 44.7% and 42.7%, based on the two definitions of DEF1 and

DEF2, respectively. The performance of TMhhcp for the four

protein chains is given in Table S2. It should be noted that the

Figure 2. The precision-recall curves based on the jackknife cross-validation tests. Panels A and B were generated based on DEF1 and
DEF2, respectively. The precision-recall curve analysis was conducted at the whole protein chain level, and the precision-recall curves in panels A and
B reflected the average precision-recall curves for the 62 tested protein chains. The average ratios of contact residue pairs to the total residue pairs
were 0.028 and 0.027, according to DEF1 and DEF2, respectively. Therefore, the corresponding random prediction precision-recall curves in panel A
and B were horizontal lines with the precision value of 0.028 and 0.027, respectively.
doi:10.1371/journal.pone.0026767.g002

Table 3. Prediction performance of different methods
evaluated on the independent test set.

Predictor Accuracy (%) Coverage (%) Accuracy (d = 4) (%)

TMhhcp1a 48.1 6.1 84.4

TMhhcp_cfs1a 48.6 6.1 81.8

TMhhcp2b 47.3 5.9 82.8

TMhhcp_cfs2b 46.5 5.9 79.5

TMHcona 23.6 3.0 83.4

MEMPACK1a 36.2 10.4 63.0

MEMPACK2b 34.6 17.4 61.0

aResidue contact definition 1 (i.e. DEF1).
bResidue contact definition 2 (i.e. DEF2).
doi:10.1371/journal.pone.0026767.t003

Predicting Residue Contacts and Helix Interactions

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e26767



average coverage of MEMPACK was much larger than that of

TMhhcp. This is because MEMPACK predicted many more

residue contacts for some proteins, possibly due to its different

classification mode. As a result, the average coverage of

MEMPACK was comparatively large. Nevertheless, for the top

L/5 classification mode, the number of predicted residue contacts

was fixed.

A fair and better way to evaluate and compare the performance

of different predictors might be the precision-recall curves. Similar

to the generation of precision-recall curves for the jackknife cross-

validation test, the precision-recall curves of different predictors

based on this independent test set were given in Figure 3. The

corresponding AUPRC values for TMhhcp, TMhhcp_cfs and

MEMPACK were 0.268, 0.249 and 0.107, respectively, according

to DEF1. The AUPRC values for TMhhcp, TMhhcp_cfs and

MEMPACK were 0.265, 0.242 and 0.156, respectively, according

to DEF2. However, as TMHcon and MEMPACK were

developed for specific purposes, the plotted precision-recall curves

could not reflect their performance across a wide range of varying

thresholds. For instance, TMHcon was developed to provide the

scores for the top L/5 predicted contacts. Thus, only a portion of

its curve under lower recall values could be plotted and its

corresponding AUPRC value under the complete curve could not

be calculated. In the case of MEMPACK, it predicted residue

contacts on the residue level rather than the protein level and its

output scores for predicted non-contacts were simply set as zero.

As a result, when drawing the curve, residue contacts that scored

as zero were ranked randomly and the precision-recall curve of

MEMPACK at higher recall values was close to a random

prediction (Figure 3). From a practical perspective, more attention

should be paid to the performance at higher precision values.

Although the complete precision-recall curves of TMHcon and

MEMPACK were not plotted, the performance comparison

among TMhhcp, TMHcon and MEMPACK at higher precision

values can be fairly benchmarked. From Figure 3, we can see that

TMhhcp models achieved higher recall values than TMHcon and

MEMPACK at a precision control of 40%. In addition, when only

considering protein chains for which MEMPACK predicted at

Table 4. Performance comparison of different TMhhcp models for the top L/2 and L predictions evaluated on the independent
test set.

Top L/2 predictions Top L predictions

Predictor Accuracy (%) Coverage (%) Accuracy (d = 4) (%) Accuracy (%) Coverage (%) Accuracy (d = 4) (%)

TMhhcp1a 40.4 12.8 81.8 35.0 22.3 78.5

TMhhcp_cfs1a 39.6 12.4 79.3 32.5 20.3 77.4

TMhhcp2b 40.7 12.9 79.8 35.1 22.5 77.9

TMhhcp_cfs2b 39.0 12.3 79.4 31.9 20.2 76.2

aResidue contact definition 1 (i.e. DEF1).
bResidue contact definition 2 (i.e. DEF2).
doi:10.1371/journal.pone.0026767.t004

Figure 3. The precision-recall curves based on the independent test set. Panels A and B were generated based on DEF1 and DEF2,
respectively. The precision-recall curve analysis was conducted at the whole protein chain level, and the precision-recall curves in panels A and B
reflected the average precision-recall curves for the 21 tested protein chains. According to DEF1 or DEF2, the average ratio of contact residue pairs to
the total residue pairs on the independent test set was 0.025. Therefore, the corresponding random prediction precision-recall curve in panel A or B
was a horizontal line with the precision value of 0.025.
doi:10.1371/journal.pone.0026767.g003
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Figure 4. The ratio of contacts to non-contacts according to sequence distance. This figure describes the ratio of contacts to non-contacts
according to the grouping of their sequence distance based on DEF1.
doi:10.1371/journal.pone.0026767.g004

Figure 5. The average prediction accuracy of five covariance algorithms. This figure gives the average prediction accuracy of five different
covariance algorithms to predict residue contacts on the training set using DEF1. L is the sum of lengths of all TM segments of a protein chain.
doi:10.1371/journal.pone.0026767.g005
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least one residue contact, the corresponding precision-recall curves

of TMhhcp and MEMPACK are given in Figure S1. Again,

Figure S1 shows that TMhhcp outperformed TMhhcp. In

summary, the precision-recall curves suggest that our method

has outperformed TMHcon and MEMPACK for residue-residue

contact prediction based on this independent test set.

Important informative features
We further carried out feature selection experiments in order

to select the most meaningful features and obtain a concise

model. As a result, three significant features with the highest

scores were obtained: relative distance of two residues within

two TM helices, residue separation in the primary sequence and

the correlated mutation score calculated by the MIc method

[16]. It is reasonable to think that two residues separated within

a small degree on the Z-axis tend to contact with each other.

Therefore, the relative distance of two residues within two

helices is reasonably an important feature for performance

improvement.

In addition, residue separation in the primary sequence is

another important feature. To assess the impact of sequence

separation distance on residue contact prediction, we compared

the ratio of contacts to non-contacts, which was grouped according

to the grouping of their sequence separation distance based on

DEF1 (Figure 4). With the increase of sequence separation

distance, the ratio of contacts to non-contacts decreases. This

suggests that in the folding process of TM proteins, residue

contacts prefer to occur among those separated by short sequence

distances. We also calculated the ratio of contacts to non-contacts

based on DEF2 and observed similar trends.

Correlated mutations have been previously used to predict

residue contacts [50] based on the observation that interacting

residues have tendency to coevolve [51]. Recently, a new

correlated mutation algorithm called MIp [15] that removes the

influence of phylogeny or entropy can significantly improve the

prediction accuracy of residue contacts. Following the idea of MIp,

an improved measure called MIc [16] was further proposed to

calculate the covariance of two residues, with demonstrated

performance better than the MIp score. In our work, we found

that both MIp and MIc scores produced similar results in

predicting residue contacts for TM proteins, but MIc achieved

slightly better prediction accuracy. We then incorporated the MIc

score along with the coevolutionary scores generated by another

two commonly used algorithms, i.e. OMES [34] and McBASC

[35], into our feature set. Among them, the MIc score was retained

as one of the three most important features after feature selection.

To provide a comprehensive assessment of different covariance

algorithms, we tested the performances of McBASC, OMES, MI

[17], MIp and MIc on the training set using DEF1 (Figure 5).

When the number of predicted contacts was fixed at different

ratios to the protein chain’s length, the accuracy for each

algorithm increased in the order: MI,OMES,McBASC,-

MIp,MIc. Because MI performed worst in residue contact

prediction, we did not incorporate it into the feature set of

TMhhcp. Similarly, using DEF2, the above five covariance

algorithms led to the same conclusion. When ranking the L/5

highest scoring residue pairs as the predicted contact pairs, it is

worth mentioning that the average accuracy of MIc was 29.3%,

which is even higher than that of TMHcon (25.9%) (see Figure 5

and Table 1).

In addition, the evolutionary profile in the form of PSSM is also

an important feature, because it represents the evolutionary

information of a protein sequence and constitutes the majority of

the selected features. Table S3 and S4 in the Supporting

Information list the selected features based on two different

residue contact definitions DEF1 and DEF 2, respectively.

Table 5. Prediction performance of helix-helix interaction on
the independent test set.

Predictor Accuracy (%) Sensitivity (%) Specificity (%) MCC

TMhhcp1a 79.1 54.5 86.2 0.430

TMhhcp_cfs1a 80.4 53.7 88.9 0.435

TMhhcp2b 77.5 50.8 88.0 0.424

TMhhcp_cfs2b 79.3 45.2 90.4 0.407

TMHcona 76.7 39.5 88.5 0.322

MEMPACK1a 80.4 27.0 93.7 0.278

MEMPACK2b 76.1 29.2 92.6 0.287

aResidue contact definition 1 (i.e. DEF1).
bResidue contact definition 2 (i.e. DEF2).
doi:10.1371/journal.pone.0026767.t005

Figure 6. Two Venn diagrams for the predicted residue contacts and helix-helix interactions by three predictors. The two Venn
diagrams display the complementation between the three predictors, TMHcon, MEMPACK and TMhhcp, to predict residue contacts and helix-helix
interactions. The corresponding residue contact definition is based on DEF1. ‘Contact’ in panel A represents the observed residue contacts of protein
chains in the test set, while ‘Interaction’ in panel B denotes the observed helix-helix interactions in the test set.
doi:10.1371/journal.pone.0026767.g006
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Application to helix-helix interaction prediction
An important application of residue contact prediction for TM

proteins is to predict helix-helix interactions, namely, the

interacting helical pairs. According to the prediction rules of

TMHcon and MEMPACK, two TM helices were predicted to be

interacting if they have at least one predicted residue contact pair.

Based on this definition, we used the top L/5 predicted residue

contacts by our TMhhcp predictors to predict helix-helix

interactions and compared the prediction performance with

other methods based on the independent test set. Initially, the

prediction models of TMhhcp were built by using all features to

make the prediction of interacting helical pairs. However, it

turned out that the prediction accuracy in this way was lower

than the TMhhcp models that were built using the selected

features only. The prediction performance of these two types of

TMhhcp models is displayed in Table 5. It can be seen that using

DEF1, both TMhhcp_cfs1 and MEMPACK1 achieved the

highest accuracy of 80.4%. Nevertheless, TMhhcp_cfs1 correctly

predicted more interacting helical pairs than TMHcon and

MEMPACK1 with higher sensitivity values. On the other hand,

using DEF2, TMhhcp_cfs2 attained the highest accuracy, and

predicted more interacting helical pairs than MEMPACK2 with

higher sensitivity (Table 5). We also calculated the MCC

measures of all the TMhhcp models, which were all higher than

0.4 (Table 5). As a comparison, the MCC values of TMHcon,

MEMPACK1 and MEMPACK2 were 0.322, 0.278 and 0.287,

respectively, which are much lower than TMhhcp models.

Altogether, these results suggest that our TMhhcp models clearly

outperformed the other two methods in the task of predicting

interacting helical pairs.

Figure 7. Case studies. This figure displays the performance of TMhhcp on two recently structure solved TM proteins, the Spinach minor light-
harvesting complex CP29 (PDB ID: 3PL9, chain: A) and the human adenosine A2A receptor bound with agonist (UK-432097) (PDB ID: 3QAK, chain: A).
Panels A and B plot the observed and predicted residue contacts of 3PL9_A and 3QAK_A, respectively. Each grid contains the residue contacts of the
corresponding two TM segments. The edges of a grid represent the lengths of the corresponding two TM segments. Panels C and D give the
observed and predicted interacting helical pairs of 3PL9_A and 3QAK_A, respectively, where the two boxes connected by a line represent an
interacting helical pair.
doi:10.1371/journal.pone.0026767.g007
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Overlap of the predictions of different tools represented
by Venn diagrams

In order to analyze the overlap of the predictions of the three

predictors TMHcon, MEMPACK and TMhhcp based on DEF1,

we generated the Venn diagrams based on their prediction results

(See Figure 6A and 6B for the predicted residue contacts and

interacting helical pairs, respectively). From the Venn diagrams,

accuracies and sensitivities, listed in Table 3 and Table 5, can be

easily calculated. For residue contact prediction, the overlap of the

predicted residue contacts for every two predictors accounted for

less than 11% of their own predictions (Figure 6A). This suggests

that the three prediction methods are strongly complementary

with each other. For helix-helix interaction prediction, the overlap

of the predicted interacting helical pairs for every two predictors

accounted for less than 66% of their own predicted interacting

helical pairs (Figure 6B), suggesting that the three prediction

methods are complementary with each other to some extent.

Case studies
In order to test the performance of TMhhcp under ‘‘real-life’’

conditions, we applied TMhhcp using DEF1 to two recently

solved TM proteins: the Spinach minor light-harvesting complex

CP29 (PDB ID: 3PL9, chain: A) [52] and the human adenosine

A2A receptor bound with agonist (UK-432097) (PDB ID: 3QAK,

chain: A) [53]. The maximal sequence identities of the two protein

chains to those used in the training set are 41.2% and 27.0%,

respectively. Regarding the top L/5 predictions, TMhhcp

achieved the residue contact accuracies of 90.9% and 41.4% for

the two protein chains, respectively. The accuracies for d-analysis

are 100% and 96.6%, respectively, when the top L/5 predictions

were predicted as residue contacts. These satisfying results suggest

that TMhhcp is a powerful tool in predicting residue contacts in

TM proteins and performs extremely well at predicting residue

contacts within one helix turn of the observed contacts (Figure 7 A

and 7B). Furthermore, for helix-helix interaction prediction that

requires at least one predicted residue contact pair, the predicted

helix-helix interaction pattern formed by the predicted interacting

helical pairs clearly resembled the corresponding observed pattern

(Figure 7C and 7D). For instance, seven out of the twelve observed

interacting helical pairs in 3QAK_A were correctly predicted

(Figure 7D).

The TMhhcp web server
In order to provide a public service of TM protein residue

contact and helix-helix interaction prediction, a web server called

TMhhcp has been developed and made freely available at http://

protein.cau.edu.cn/tmhhcp. At the prediction webpage, the user is

required to input the query sequence and its topology. We

provided two models to predict residue contacts of TM proteins

according to the two different residue contact definitions. The

topology of the query sequence should be described as a sequence

consisting of ‘‘H’’, ‘‘I’’, ‘‘O’’ and ‘‘U’’ that represent TM segment,

inside position, outside position and unknown topology, respec-

tively. To obtain the topology information, the users may need to

employ some well-established TM topology predictors such as

TMHMM [54] and HMMTOP [55]. To facilitate the method

developers, the training data and test data used in this work are

also downloadable at the help webpage of TMhhcp. Currently, a

four-CPU DELL Linux system with 16 GB of main memory hosts

the TMhhcp web server. The computational time is mainly

decided by the PSI-BLAST search and the covariance algorithm

McBASC. For instance, it costs approximately five minutes to

finish the prediction of 3QAK_A that contains 488 residues and 7

TM helices.

Conclusions
In this study, we applied the RF algorithm to predict residue-

residue contacts in TM proteins and achieved better performance

than two state-of-the-art methods TMHcon and MEMPACK. We

performed feature selection to select the most meaningful features

and analyzed the selected features that contribute to the improved

performance for predicting residue contacts. We found that

prediction of residue contacts can be significantly improved using

the descriptors of the relative distance of two residues of interest

and their sequence separation in the primary sequence. In

addition, the correlated mutation score, as a third important

feature, has important impact on residue contact prediction. It has

also been established that our method outperformed two existing

methods TMHcon and MEMPACK for predicting helix-helix

interactions of TM proteins. We hope our method will become a

valuable tool for predicting the structural properties of TM

proteins and can help to gain useful insights into their structure

and function.

Supporting Information

Figure S1 The precision-recall curves of MEMPACK
and TMhhcp based on 17 tested protein chains in the
independent test. Panels A and B were generated based on

DEF1 and DEF2, respectively. The precision-recall curves

reflected the average precision-recall curves for the 17 tested

protein chains for which MEMPACK predicted at least one

residue contact. predicted at least one residue contact.

(TIF)

Table S1 Prediction performance of MEMPACK and
TMhhcp on the 17 tested protein chains for which
MEMPACK predicted at least one residue contact.

(DOC)

Table S2 Prediction performance of TMhhcp on the 4
protein chains for which MEMPACK failed to predict
any residue contact.

(DOC)

Table S3 The selected features based on the residue
contact definition DEF1.

(DOC)

Table S4 The selected features based on the residue
contact definition DEF2.

(DOC)
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