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Predicting resistance of clinical Abl mutations to
targeted kinase inhibitors using alchemical
free-energy calculations
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The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or

acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer,

the majority of missense mutations are rare, making it difficult to predict their impact on

inhibitor affinity. We examine the potential for alchemical free-energy calculations to predict

how kinase mutations modulate inhibitor affinities to Abl, a major target in chronic myelo-

genous leukemia (CML). These calculations have useful accuracy in predicting resistance for

eight FDA-approved kinase inhibitors across 144 clinically identified point mutations, with a

root mean square error in binding free-energy changes of 1:11:30:9 kcal mol−1 (95% confidence

interval) and correctly classifying mutations as resistant or susceptible with 889382% accuracy.

This benchmark establishes the potential for physical modeling to collaboratively support

the assessment and anticipation of patient mutations to affect drug potency in clinical

applications.
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T
argeted kinase inhibitors are a major therapeutic class in
the treatment of cancer. A total of 38 selective small-
molecule kinase inhibitors have now been approved by the

FDA1, including 34 approved to treat cancer, and perhaps 50% of
all current drugs in development target kinases2. Despite the
success of selective inhibitors, the emergence of drug resistance
remains a challenge in the treatment of cancer3–10 and has
motivated the development of second- and then third-generation
inhibitors aimed at overcoming recurrent resistance mutations11–15.

While a number of drug resistance mechanisms have been
identified in cancer (e.g., induction of splice variants16, or alle-
viation of feedback17), inherent or acquired missense mutations
in the kinase domain of the target of therapy are a major form of
resistance to tyrosine kinase inhibitors (TKI)10,18,19. Oncology is
entering a new era with major cancer centers now deep sequen-
cing tumors to reveal genetic alterations that may render sub-
clonal populations susceptible or resistant to targeted inhibitors20,
but the use of this information in precision medicine has lagged
behind. It would be of enormous value in clinical practice if an
oncologist could reliably ascertain whether these mutations ren-
der the target of therapy resistant or susceptible to available
inhibitors; such tools would facilitate the enrollment of patients in
mechanism-based basket trials21,22, help prioritize candidate
compounds for clinical trials, and aid the development of next-
generation inhibitors.

While some cancer missense mutations are highly recurrent
and have been characterized clinically or biochemically, a long tail
of rare mutations collectively accounts for the majority of clini-
cally observed missense mutations (Fig. 1a), leaving clinicians and
researchers without knowledge of whether these uncharacterized
mutations might lead to resistance. While rules-based and
machine learning schemes are still being assessed in oncology
contexts, work in predicting drug response to microbial resistance

has shown that rare mutations present a significant challenge to
approaches that seek to predict resistance to therapy23. Clinical
cancer mutations may impact drug response through a variety of
mechanisms by altering kinase activity, ATP affinity, substrate
specificities, and the ability to participate in regulatory interac-
tions, compounding the difficulties associated with limited data-
sets that machine learning approaches face. In parallel with
computational approaches, high-throughput experimental tech-
niques such as MITE-Seq24 have been developed to assess the
impact of point mutations on drug response. However, the
complexity of defining selection schemes that reliably correlate
with in vivo drug effectiveness and long turn-around times might
limit their ability to rapidly and reliably impact clinical decision-
making.

Physics-based approaches could be complementary to
machine-learning and experimental techniques in predicting
changes in TKI affinity due to mutations with few or no prior
clinical observations. Alchemical free-energy methods permit
receptor-ligand binding energies to be computed rigorously,
including all relevant entropic and enthalpic contributions25.
Encouragingly, kinase:inhibitor binding affinities have been pre-
dicted using alchemical free-energy methods with mean unsigned
errors of 1.0 kcal mol−1 for CDK2, JNK1, p38, and Tyk226–33.
Recently, one study has hinted at the potential utility of
alchemical free-energy calculations in oncology by predicting the
impact of a single clinical mutation on the binding free energies
of the TKIs dasatinib and RL4534.

Here, we ask whether physical modeling techniques may be
useful in predicting whether clinically identified kinase mutations
lead to drug resistance or drug sensitivity. We perform state-of-
the-art relative alchemical free-energy calculations using FEP+26,
recently demonstrated to achieve sufficiently good accuracy to
drive the design of small-molecule inhibitors for a broad range of
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Fig. 1 Relative alchemical free-energy calculations can be used to predict affinity changes of FDA-approved selective kinase inhibitors arising from clinically

identified mutations in their targets of therapy. aMissense mutation statistics derived from 10,336 patient samples subjected to Memorial Sloan Kettering-

Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) deep sequencing panel20 show that 68.5% of missense kinase mutations in

cancer patients have never been observed previously, while 87.4% have been observed no more than ten times; the vast majority of clinically observed

missense kinase mutations are unique to each patient. b To compute the impact of a clinical point mutation on inhibitor binding free energy, a

thermodynamic cycle can be used to relate the free energy of the wild-type and mutant kinase in the absence (top) and presence (bottom) of the inhibitor.

c Summary of mutations studied in this work. Frequency of the wild-type (dark green) and mutant (green) residues for the 144 clinically-identified Abl

mutations used in this study (see Table 1 for data sources). Also shown is the frequency of residues within 5 Å (light blue) and 8 Å (blue) of the binding

pocket. The ordering of residues along the x-axis corresponds to the increasing occurrence of residues within 5 Å of the binding pocket. The number of

wild-type Phe residues (n= 45) and mutant Val residues (n= 31) exceeded the limits of the y-axis

ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0075-x

2 COMMUNICATIONS BIOLOGY |  (2018) 1:70 | DOI: 10.1038/s42003-018-0075-x | www.nature.com/commsbio

www.nature.com/commsbio


targets during lead optimization25–27,35, to calculate the effect of
point mutation on the binding free energy between the inhibitor
and the kinase receptor (Fig. 1b, c). We compare this approach
against a fast but approximate physical modeling method
implemented in Prime36 (an MM-GBSA approach) in which an
implicit solvent model is used to assess the change in minimized
interaction energy of the ligand with the mutant and wild-type
kinase. We consider whether these methods can predict a ten-fold
reduction in inhibitor affinity (corresponding to a binding free-
energy change of 1.36 kcal mol−1) to assess baseline utility. As a
benchmark, we compile a set of reliable inhibitor ΔpIC50 data for
144 clinically identified mutants of the human kinase Abl, an
important oncology target dysregulated in cancers like chronic
myelogenous leukemia (CML), for which six1 FDA-approved
TKIs are available. While ΔpIC50 can approximate a dissociation
constant ΔKD, other processes contributing to changes in cell
viability might affect IC50 in ways that are not accounted for by a
traditional binding experiment, motivating a quantitative com-
parison between ΔpIC50 and ΔKD. The results of this benchmark
demonstrate the potential for FEP+ to predict the impact that
mutations in Abl kinase have on drug binding, and a classification
accuracy of 889382% (for all statistical metrics reported in this
paper, the 95% confidence intervals (CI) is shown in the form of
x
upper
lower

� �

), an RMSE of 1:071:260:89 kcal mol−1, and an MUE of
0:790:920:67 kcal mol−1 was achieved.

Results
A benchmark of ΔpIC50s for predicting mutational resistance.
To construct a benchmark evaluation dataset, we compiled a total
of 144 ΔpIC50 measurements of Abl:TKI affinities, summarized in
Table 1 while ensuring all measurements for an individual TKI
were reported in the same study from experiments run under
identical conditions. 131 ΔpIC50 measurements were available
across the six TKIs with available co-crystal structures with wild-
type Abl—26 for axitinib and 21 for bosutinib, dasatinib, imati-
nib, nilotinib, and ponatinib. 13 ΔpIC50 measurements were
available for the two TKIs for which docking was necessary to
generate Abl:TKI structures—7 for erlotinib and 6 for gefitinib.
For added diversity, this set includes TKIs for which Abl is not
the primary target—axitinib, erlotinib, and gefitinib. All muta-
tions in this benchmark dataset have been clinically observed
(Supplementary Table 1). Due to the change in bond topology
required by mutations involving proline, which is not currently
supported by the FEP+ technology for protein residue mutations,

the three mutations H396P (axitinib, gefitinib, erlotinib) were
excluded from our assessment. As single-point mutations were
highly represented in the Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) study analyzed in Fig. 1a, we excluded double muta-
tions from this work. However, the impact of mutations from
multiple sites can potentially be modeled by sequentially mutating
each site and this will be addressed in future work.

Experimental ΔpIC50 measurements for wild-type and mutant
Abl were converted to ΔΔG in order to make direct comparisons
between physics-based models and experiment. However, com-
putation of experimental uncertainties were required to under-
stand the degree to which differences between predictions and
experimental data were significant. Since experimental error
estimates for measured IC50s were not available for the data in
Table 1, we compared that data to other sources that have
published IC50s for the same mutations in the presence of the
same TKIs (Fig. 2a–c). Cross-comparison of 97 experimentally
measured ΔΔGs derived from cell viability assay IC50 data led to
an estimate of experimental variability of 0:320:360:28 kcal mol−1 root
mean square error (RMSE) that described the expected repeat-
ability of the measurements. Because multiple factors influence
the IC50 aside from direct effects on the binding affinity we also
compared ΔΔGs derived from ΔpIC50s with those derived from
binding affinity measurements (ΔKd) for which data for a set of
27 mutations was available (Fig. 2d). The larger computed RMSE
of 0:811:040:59 kcal mol−1 represents an estimate of the lower bound
of the RMSE to the IC50-derived ΔΔGs that we might hope to
achieve with FEP+ or Prime, which were performed using
non-phosphorylated models, when comparing sample statistics
directly. Comparing 31 mutations for which phosphorylated and
non-phosphorylated ΔKds were available, we found a strong
correlation between the ΔΔGs derived from those data (r= 0.94,
Supplementary Figure 1).

Most mutations do not significantly reduce TKI potency. The
majority of mutations do not lead to resistance by our 10-fold
affinity loss threshold: 86.3% of the co-crystal set (n= 113) and
86.8% of the total set (n= 125). Resistance mutations, which are
likely to result in a failure of therapy, constitute 13.7% of the
co-crystal set (n= 18) and 13.2% of the total set of mutations
(n= 19). The ΔpIC50s for all 144 mutations are summarized in
Supplementary Tables 2–7. Two mutations exceeded the dynamic
range of the assays (IC50 > 10,000 nM); as these two mutations

Table 1 Public ΔpIC50 datasets for 144 Abl kinase mutations and eight TKIs with corresponding wild-type co-crystal structures

used in this study

(kcal mol−1) (kcal mol−1)

TKI Nmut R S PDB |ΔGmax−ΔGmin| Source ΔGWT

Axitinib 26 0 26 4wa9 2.05 52 −8.35
Bosutinib 21 4 17 3ue4 2.79 79 −9.81
Dasatinib 21 5 16 4xey 5.08 79 −11.94
Imatinib 21 5 16 1opj 2.16 79 −9.19
Nilotinib 21 4 17 3cs9 3.88 79 −10.74
Ponatinib 21 0 21 3oxz 1.00 79 −11.70
Subtotal 131 18 113
Erlotinib 7 1 6 Dock to 3ue4 1.73 82 −9.77
Gefitinib 6 0 6 Dock to 3ue4 1.79 82 −8.84
Total 144 19 125

Nmut Total number of mutants for which ΔpIC50 data was available
Number of Resistant, Susceptible mutants using 10-fold affinity change threshold
PDB Source PDB ID, or Dock to 3ue4, which used 3ue4 as the receptor for Glide-SP docking inhibitors without co-crystal structure
ΔGWT Binding free energy of inhibitor to wild-type Abl, as estimated from IC50 data
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clearly raise resistance, we excluded them from quantitative
analysis (RMSE and MUE) but included them in truth table
analyses and classification metrics (accuracy, specificity, and
sensitivity).

FEP+ predicts affinity changes for clinical Abl mutants. Fig-
ure 1b depicts the thermodynamic cycle that illustrates how we used
relative free-energy calculations to compute the change in ligand
binding free energy in response to the introduction of a point
mutation in the kinase (Fig. 1c). From prior experience with relative
alchemical free-energy calculations for ligand design, good initial
receptor-ligand geometry was critical to obtaining accurate and
reliable free-energy predictions26, so we first focused on the 131
mutations in Abl kinase across six TKIs for which wild-type Abl:
TKI co-crystal structures were available. Figure 3 summarizes the
performance of predicted binding free-energy changes (ΔΔG) for all
131 mutants in this set for both a fast MM-GBSA physics-based
method that only captures interaction energies for a single structure
(Prime) and rigorous alchemical free-energy calculations (FEP+).
Scatter plots compare experimental and predicted free-energy
changes (ΔΔG) and characterize the ability of these two techniques
to predict experimental measurements. Statistical uncertainty in
the predictions and experiment-to-experiment variability in the
experimental values are shown as ellipse height and widths,
respectively. The value for experimental variability was
0.32 kcal mol−1, which was the standard error computed from the
cross-comparison in Fig. 2. For FEP+, the uncertainty was taken to
be the standard error of the average from three independent runs
for a particular mutation, while Prime results are deterministic and
are not contaminated by statistical uncertainty.

To better assess whether discrepancies between experimental
and computed ΔΔGs simply arise for known forcefield limitations
or might indicate more significant effects, we incorporated an
additional error model in which the forcefield error was taken to
be a random error σFF ≈ 0.9 kcal mol−1, a value established form
previous benchmarks on small molecules absent conformational
sampling or protonation state issues37. Thin error bars in
Fig. 2 represent the overall estimated error due to both this
forcefield error and experimental variability or statistical
uncertainty38,39.

To assess overall quantitative accuracy, we computed both
RMSE—which is rather sensitive to outliers, and mean unsigned
error (MUE). For Prime, the MUE was 1:161:370:96 kcal mol−1 and
the RMSE was 1:722:001:41 kcal mol−1. FEP+, the alchemical free-
energy approach, achieved a significantly higher level of
quantitative accuracy with an MUE of 0:820:950:69 kcal mol−1 and
an RMSE of 1:111:300:91 kcal mol−1. Notably, alchemical free-energy
calculations come substantially closer than MMGBSA approach
to the minimum achievable RMSE of 0:811:040:59 kcal mol−1 (due to
experimental error; Fig. 2) for this dataset.

FEP+ accurately classifies affinity changes for Abl mutants.
While quantitative accuracy (MUE, RMSE) is a principle metric
of model performance, an application of potential interest is the
ability to classify mutations as raising resistance to a specific TKI.
To characterize the accuracy with which Prime and
FEP+ classified mutations in a manner that might be ther-
apeutically relevant, we classified mutations by their experimental
impact on the binding affinity as susceptible (affinity for mutant
is diminished by no more than 10-fold, ΔΔG ≤ 1.36 kcal mol−1)
or as resistant (affinity for mutant is diminished by least 10-fold,
ΔΔG > 1.36 kcal mol−1). Summary statistics of experimental and
computational predictions of these classes are shown in Fig. 2
(bottom) as truth tables (also known as confusion matrices).

The simple minimum-energy scoring method Prime correctly
classified 9 of the 18 resistance mutations in the dataset while
merely 85 of the 113 susceptible mutations were correctly
classified (28 false positives). In comparison, the alchemical free-
energy method FEP+, which includes entropic and enthalpic
contributions as well as explicit representation of solvent, correctly
classified 9 of the 18 resistance mutations while a vast majority,
105, of the susceptible mutations were correctly classified (merely
8 false positives). Prime achieved a classification accuracy of
0:720:790:64, while FEP+ achieved an accuracy that is significantly
higher (both in a statistical sense and in overall magnitude),
achieving an accuracy of 0:870:920:81. Sensitivity (also called true
positive rate) and specificity (true negative rate) are also
informative statistics in assessing the performance of a binary
classification scheme. For Prime, the sensitivity was 0:500:730:25, while
the specificity was 0:750:830:67. To put this in perspective, a CML
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Fig. 2 Cross-comparison of the experimentally measured effects that mutations in Abl kinase have on ligand binding, performed by different labs. ΔΔG was

computed from publicly available ΔpIC50 or ΔpKd measurements and these values of ΔΔG were then plotted and the RMSE between them reported. a

ΔpIC50 measurements (X-axis) from ref. 79 compared with ΔpIC50 measurements (Y-axis) from ref. 81. b ΔpIC50 measurements (X-axis) from ref. 79

compared with ΔpIC50 measurements (Y-axis) from ref. 80. c ΔpIC50 measurements (X-axis) from ref. 81 compared with ΔpIC50 measurements (Y-axis)

from ref. 80. d ΔpIC50 measurements (X-axis) from ref. 79 compared with ΔpKd measurements (Y-axis) from ref. 82 using non-phosphorylated Abl kinase.

Scatter plot error bars in (a–c) are ±standard error (SE) taken from the combined 97 inter-lab ΔΔGs derived from the ΔpIC50 measurements, which was

0:320:360:28; the RMSE was 0:450:510:39 kcal mol−1. Scatter plot error bars in (d) are the ±standard error (SE) of ΔΔGs derived from ΔpIC50 and ΔpKd from a set

of 27 mutations, which is 0:580:74
0:42 kcal mol−1; the RMSE was 0:811:040:59 kcal mol−1
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit

of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points

were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For

MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE

that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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approach, classification accuracy was 0:920:960:87 when an affinity
change cutoff of 20-fold was used while using an affinity
change cutoff of 100-fold further improved the accuracy
to 0:981:000:96.

Bayesian analysis can estimate the true error. The statistical
metrics—MUE, RMSE, accuracy, specificity, and sensitivity—
discussed above are based on analysis of the apparent perfor-
mance of the observed modeling results compared with the
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observed experimental data via sample statistics. However, this
analysis considers a limited number of mutants, and both
measurements and computed values are contaminated with
experimental or statistical error. To obtain an estimate of the
intrinsic performance of our physical modeling approaches,
accounting for known properties of the experimental variability
and statistical uncertainties, we used a hierarchical Bayesian
model to infer posterior predictive distributions from which
expectations and 95% predictive intervals could be obtained.
The results of this analysis are presented in Fig. 3 (central
tables).

FEP+ is significantly better than Prime at predicting the impact
of mutations on TKI binding affinities, as the apparent performance
as well as the intrinsic performance were well-separated outside
their 95% CI in nearly all metrics. Applying the Bayesian model, the
MUE and RMSE for FEP+ was 0:790:920:68 and 0:991:150:85 kcal mol−1,
respectively (N= 129). For the classification metrics accuracy,
specificity, and sensitivity, the model yields 0:890:920:86, 0:91

0:94
0:89, and

0:691:000:46, respectively (N= 131). The intrinsic RMSE and MUE of
Prime was 1:762:011:55 and 1:401:601:24 kcal mol−1 (N= 129), respectively,
and the classification accuracy, specificity, and sensitivity was
0:730:760:70, 0:74

0:77
0:72, and 0:570:770:36, respectively (N= 131). The intrinsic

MUE of Prime obtained by this analysis is larger than the observed
MUE reflecting the non-Gaussian, fat-tailed error distributions of
Prime results.

How transferable is FEP+ across the six TKIs? The impact of
point mutations on drug binding are not equally well predicted for
the six TKIs. Figure 4 expands the results in Fig. 3 on a TKI-by-
TKI basis to dissect the particular mutations in the presence of a
specific TKI. Prime and FEP+ correctly predicted that most
mutations in this dataset (N= 26) do not raise resistance to axi-
tinib, though FEP+ predicted 4 false positives compared with 3
false positives by Prime. The MUE and RMSE of FEP+ was
excellent for this inhibitor, 0:700:930:50 and 0:911:140:64 kcal mol−1,
respectively. While the classification results for bosutinib (N= 21)
were equally well predicted by Prime as by FEP+, FEP+ was still
able to achieve superior, but not significant, predictive perfor-
mance for the quantitative metrics MUE and RMSE, which were
0:961:420:55 and 1:411:970:77 kcal mol−1, respectively (FEP+) and 1:131:830:60
and 1:802:620:92 kcal mol−1, respectively (Prime). For dasatinib, FEP+
achieved an MUE and RMSE of 0:761:130:49 and 1:071:570:59 kcal mol−1,
respectively, whereas the results were, as expected, less quantita-
tively predictive for Prime (N= 20). The results for imatinib were
similar to those of dasatinib above, where the MUE and RMSE for
FEP+ were 0:821:150:53 and 1:09

1:43
0:69 kcal mol−1, respectively (N= 20).

Nilotinib, a derivative of imatinib, led to nearly identical quanti-
tative performance results for FEP+ with an MUE and RMSE of
0:821:120:57 and 1:061:390:69 kcal mol−1, respectively (N= 21). Similar to
axitinib, ponatinib presented an interesting case because there
were no mutations in this dataset that raised resistance to it.
Despite the wide dynamic range in the computed values of ΔΔG
for other inhibitors, FEP+ correctly predicted a narrow range of
ΔΔGs for this drug. This is reflected in the MUE and RMSE of

0:871:160:62 and 1:091:460:70 kcal mol−1, respectively, which are in-line
with the MUEs and RMSEs for the other TKIs.

Understanding the origin of mispredictions. Resistance muta-
tions that are mispredicted as susceptible are particularly critical
because they might mislead the clinician or drug designer into
believing the inhibitor will remain effective against the target.
Which resistance mutations did FEP+ mispredict as susceptible?
Nine mutations were classified by FEP+ to be susceptible when
experimentally measured ΔpIC50 data indicate the mutations
should have increased resistance according to our 10-fold affinity
cutoff for resistance. Notably, the 95% CI for five of these
mutations included the 1.36 kcal mol−1 threshold, indicating
these misclassifications are not statistical significant when the
experimental error and statistical uncertainty in FEP+ are
accounted for: bosutinib/L248R (ΔΔGFEP+= 1:321:940:70 kcal mol−1),
imatinib/E255K (ΔΔGFEP+= 0:433:05�2:19 kcal mol−1), imatinib/
Y253F (ΔΔGFEP+= 0:951:640:26 kcal mol−1), and nilotinib/Y253F
(ΔΔGFEP+= 0:891:690:09 kcal mol−1). The bosutinib/V299L mutation
was also not significant because the experimental
ΔΔG, 1:702:331:08 kcal mol−1, included the 1.36 kcal mol−1 cutoff;
the value of ΔΔG predicted by FEP+ for this mutation was
0:911:020:79 kcal mol−1, the upper bound of the predicted value was
within 0.06 kcal mol−1 of the lower bound of the experimental
value.

Four mutations, however, were misclassified to a degree that is
statistically significant: dasatinib/T315A, bosutinib/T315I, imati-
nib/E255V, and nilotinib/E255V. For dasatinib/T315A, although
the T315A mutations for bosutinib, imatinib, nilotinib, and
ponatinib were correctly classified as susceptible, the predicted
free-energy changes for these four TKIs were consistently more
negative than the corresponding experimental measurements, like
dasatinib/T315A, indicating there might be a generic driving
force contributing to the errors in T315A mutations for these five
TKIs. Abl is known to be able to adopt many different
conformations (including DFG-in and DFG-out), and it is very
likely that the T315A mutation induces conformational changes
in the apo protein41, the inadequate sampling of which may have
led to the errors for the T315A mutation. By comparison, the
T315I mutations for axitinib, bosutinib, imatinib, nilotinib, and
ponatinib were all accurately predicted with the exception of
bosutinib/T315I being the only misprediction, suggesting an issue
specific to bosutinib. The interactions between the 2,4-dichloro-5-
methoxyphenyl ring in bosutinib and the positively charged
amine of the catalytic Lys271 may not be accurately captured by
the fixed-charge OPLS3 force field, possibly leading to the
misprediction for bosutinib/T315I mutation.

Insufficient sampling might also belie the imatinib/E255V and
nilotinib/E255V mispredictions because they reside in the highly
flexible P-loop. Since E255V was a charge change mutation, we
utilized a workflow that included a transmutable explicit ion (see
Methods). The distribution of these ions in the simulation box
around the solute might not have converged to their equilibrium
state on the relatively short timescale of our simulations (5 ns),

Fig. 4 Physical modeling accuracy in computing the impact of clinical Abl mutations on selective inhibitor binding. Ligand interaction diagrams for six

selective FDA-approved TKIs for which co-crystal structures with Abl were available (left). Comparisons for clinically observed mutations are shown for

FEP+ (right) and Prime (left). For each ligand, computed vs. experimental binding free energies (ΔΔG) are plotted with MUE and RMSE (units of kcal mol
−1) depicted below. Truth tables are shown to the right. Rows denote true susceptible (S, ΔΔG≤ 1.36 kcal mol−1) or resistant (R, ΔΔG > kcal mol−1)

experimental classes using a 1.36 kcal mol−1 (10-fold change) threshold; columns denote predicted susceptible (s, ΔΔG≤ kcal mol−1) or resistant

(r, ΔΔG > kcal mol−1). Correct predictions populate diagonal elements (orange text), incorrect predictions populate off-diagonals. Accuracy, specificity,

and sensitivity for two-class classification are shown below the truth table. Elliptical point sizes and error bars in the scatter plots depict estimated

uncertainty/variability and error, respectively, (±σ) of FEP+ values (vertical size) and experimental values (horizontal size). Note: The sensitivity for

axitinib and ponatinib is NA, because there is no resistant mutation for these two drugs
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and the insufficient sampling of ion distributions coupled with
P-loop motions might lead to misprediction of these two
mutations.

How strongly is accuracy affected for docked TKIs? To assess
the potential for utilizing physics-based approaches in the
absence of a high-resolution experimental structure, we generated
models of Abl bound to two TKIs—erlotinib and gefinitib—for
which co-crystal structures with wild-type kinase are not cur-
rently available. In Fig. 5, we show the Abl:erlotinib and Abl:
gefitinib complexes that were generated using a docking approach
(Glide-SP, see Methods). These two structures were aligned
against the co-crystal structures of EGFR:erlotinib and EGFR:
gefinitib to highlight the structural similarities between the
binding pockets of Abl and EGFR and the TKI binding mode in
Abl versus EGFR. As an additional test of the sensitivity of FEP+
to system preparation, a second set of Abl:erlotinib and Abl:
gefitinib complexes was generated in which crystallographic water
coordinates were transferred to the docked inhibitor structures
(see Methods).

Alchemical free-energy simulations were performed on 13
mutations between the two complexes; 7 mutations for erlotinib
and 6 mutations for gefitinib. The quantitative accuracy of FEP+
in predicting the value of ΔΔG was excellent—MUE and RMSE of
0:580:860:33 and 0:801:090:44 kcal mol−1, respectively, if crystal waters are
omitted, and 0:500:780:26 kcal mol−1 and 0:690:970:35 kcal mol−1 if crystal
waters were restored after docking. Encouragingly, these results
indicate that our initial models of Abl bound to erlotinib and
gefitinib were reliable because the accuracy and dependability of
our FEP+ calculations were not sensitive to crystallographic
waters. Our secondary concern was the accuracy with which the
approach classified mutations as resistant or susceptible.

While the results presented in (Fig. 5) indicate that FEP+ is
capable of achieving good quantitative accuracy when a co-crystal

structure is unavailable, it is important to understand why a
mutation was predicted to be susceptible but was determined
experimentally to be resistant. F317I was the one mutation that
increased resistance to erlotinib (or gefitinib) because it
destabilized binding by more than 1.36 kcal mol−1—1:351:671:03 kcal
mol−1 (gefitinib) and 1:581:901:26 kcal mol−1 (erlotinib), but the
magnitude of the experimental uncertainty means we are unable
to confidently discern whether this mutation induces more than
10-fold resistance to either TKI. Therefore, the one misclassifica-
tion by FEP+ in Fig. 5 is not statistically significant and the
classification metrics presented there underestimate the nominal
performance of this alchemical free-energy method.

Discussion
The results presented in this work are summarized in Table 2.
The performance metrics summarized in Table 2 indicates that
the set of 131 mutations for the six TKIs in which co-crystal
structures were available is on par with the complete set (144
mutations), which included results based on Abl:TKI complexes
generated from docking models. The performance results for the
13 mutations for the two TKIs (erlotinib and gefitinib) in which
co-crystal structures were unavailable exhibited good quantitative
accuracy (MUE and RMSE) and good classification power.

Overall (N= 144), the MM-GBSA approach Prime classified
mutations with good accuracy 0:730:800:66

� �

and specificity 0:760:840:69

� �

while the alchemical approach FEP+ was a significant improve-
ment in classification accuracy 0:880:930:82

� �

and specificity
0:940:980:89

� �

. The quantitative accuracy with which Prime was able
to predict the experimentally measured change in Abl:TKI
binding (N= 142) characterized by RMSE and MUE was 1:701:981:40
and 1:141:350:93 kcal mol−1, respectively. In stark contrast, the
quantitative accuracy of FEP+ was statistically superior to Prime
with an RMSE and an MUE of 1:071:260:89 and 0:790:920:67 kcal mol−1,
respectively.
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Fig. 5 Predicting resistance mutations using FEP+ for inhibitors for which co-crystal structures with wild-type kinase are not available. The docked pose of

Abl:erlotinib is superimposed on the co-crystal structure of EGFR:erlotinib; erlotinib docked to Abl (light gray) is depicted in green and erlotinib bound to

EGFR (dark gray) is depicted in blue. The docked pose of Abl:gefitinib is superimposed on the co-crystal structure of EGFR:gefitinib; gefitinib docked to Abl

(light gray) is depicted in green and gefitinib bound to EGFR (dark gray) is depicted in blue. The locations of clinical mutants for each inhibitor are

highlighted (red spheres). The overall RMSEs and MUEs for Prime (center) and FEP+ (right) and two-class accuracies are also shown in the figure.

Computed free-energy changes due to the F317I mutation for erlotinib (−e) and gefitinib (−g) are highlighted in the scatter plot. FEP+ results are based on

the docked models prepared with crystal waters added back while the Prime (an implicit solvent model) results are based on models without

crystallographic water
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From the perspective of a clinician, classification rate would be
an important metric to measure the predictive power of tech-
nologies such as Prime and FEP+. To test the hypothesis that
reducing the large spread in Prime predictions could improve its
classification rate, we scaled the computed relative free energies
and recalculated the performance metrics (Supplementary Table 8).
As expected, the MUE and RMSE were improved but the specifi-
city of Prime was drastically diminished. Scaling FEP+ eliminated
its sensitivity and a naive model (all ΔΔGs= 0.00 kcal mol−1) had
zero sensitivity. Lastly, we constructed a consensus model in
which free energies were a weighted average of scaled Prime and
FEP+. This model also had zero sensitivity.

To address the impact of picking a cutoff to classify predicted
free energies as resistant or sensitizing, we computed ROC curves
for the various predicted datasets: Prime, FEP+, naive model, and
consensus model (Supplementary Figure 3). ROC-AUC for FEP+
was 0:750:900:61 (n= 144); ROC-AUC for Prime was 0:660:810:52 (n=
144); ROC-AUCs for the naive model and consensus model were
0:500:500:50 (n= 144) and 0:780:900:67 (n= 144), respectively. These
results show that Prime has poor discriminatory power (ROC-
AUC in [0.6,0.7]) while FEP+ has fair discriminatory power
(ROC-AUC in [0.7,0.8]).

A hierarchical Bayesian approach was developed to estimate
the intrinsic accuracy of the models when the noise in the
experimental and predicted values of ΔΔG was accounted for.
Utilizing this approach, the MUE and RMSE for Prime was found
to be 1:391:581:23 and 1:751:981:55 kcal mol−1 (N= 142), respectively. The
accuracy, specificity, and sensitivity of Prime was found using this
method to be 0:740:760:71, 0:75

0:77
0:73, and 0:590:780:40 (N= 144) respec-

tively. The MUE and RMSE of FEP+ was found to be 0:760:870:66 and
0:951:090:82 kcal mol−1 (N= 142), respectively, which is significantly
better than Prime. Likewise, a clearer picture of the true classi-
fication accuracy, specificity, and sensitivity of FEP+ was found—
0:900:930:86, 0:92

0:95
0:90, and 0:681:000:46, respectively.

The high accuracy of FEP+ is very encouraging, and the
accuracy can be further improved with more accurate modeling of
a number of physical chemical effects not currently considered by
the method. While highly optimized, the fixed-charged OPLS337

force field can be further improved by explicit consideration of

polarizability effects42, as hinted by some small-scale bench-
marks43. These features could be especially important for bosuti-
nib, whose 2,4-dichloro-5-methoxyphenyl ring is adjacent to the
positively charged amine of the catalytic Lys271. Many simulation
programs also utilize a long-range isotropic analytical dispersion
correction intended to correct for the truncation of dispersion
interactions at finite cutoff, which can induce an error in
protein–ligand binding free energies that depends on the number
of ligand heavy atoms being modified;44 recently, efficient
Lennard–Jones PME methods45,46 and perturbation schemes44

have been developed that can eliminate the errors associated with
this truncation. While the currently employed methodology for
alchemical transformations involving a change in system charge
reduces artifacts that depend on the simulation box size and
periodic boundary conditions, the explicit ions that were included
in these simulations may not have sufficiently converged to their
equilibrium distributions in these relatively short simulations.
Kinases and their inhibitors are known to possess multiple titra-
table sites with either intrinsic or effective pKas near physiological
pH, while the simulations here treat protonation states and proton
tautomers fixed throughout the bound and unbound states; the
accuracy of the model can be further improved with the proto-
nation states or tautomers shift upon binding or mutation con-
sidered47,48. Similarly, some systems display significant salt
concentration dependence49, while the simulations for some sys-
tems reported here did not rigorously mimic all aspects of the
experimental conditions of the cell viability assays.

While we have shown that predicting the direct impact of
mutations on the binding affinity of ATP-competitive TKIs for a
single kinase conformation has useful predictive capacity, many
additional physical effects that can contribute to cell viability are
not currently captured by examining only the predicted change in
inhibitor binding affinity. For example, kinase missense muta-
tions can also shift the populations of kinase conformations
(which may affect ATP and inhibitor affinities differentially),
modulate ATP affinity, modulate affinity for protein substrate, or
modulate the ability of the kinase to be regulated or bounded by
scaffolding proteins. While many of these effects are in principle
tractable by physical modeling in general it is valuable to examine

Table 2 Summary of FEP+ and Prime statistics in predicting mutational resistance or sensitivity to FDA-approved TKIs

Dataset Method Nquant MUE (kcal mol−1) RMSE (kcal mol−1) Nclass Accuracy Specificity Sensitivity

all FEP+ 142 0:790:92
0:67 1:071:260:89 144 0:880:930:82 0:940:98

0:89 0:470:690:25

all Prime 142 1:141:35
0:93 1:701:98

1:40 144 0:730:800:66 0:760:840:69 0:530:760:30

xtals FEP+ 129 0:820:950:69 1:111:300:91 131 0:870:920:81 0:930:970:88 0:500:74
0:29

xtals Prime 129 1:161:370:96 1:722:001:41 131 0:720:790:64 0:750:830:67 0:500:73
0:25

axitinib FEP+ 26 0:700:93
0:50 0:911:140:64 26 0:850:960:69 0:850:960:69 NA

axitinib Prime 26 1:051:710:53 1:852:610:96 26 0:881:000:73 0:881:000:73 NA
bosutinib FEP+ 21 0:961:420:55 1:411:970:77 21 0:760:950:57 0:881:000:71 0:251:000:00

bosutinib Prime 21 1:131:830:60 1:802:62
0:92 21 0:810:950:62 0:821:000:62 0:751:000:00

dasatinib FEP+ 20 0:761:13
0:49 1:071:570:59 21 0:901:00

0:76 0:941:00
0:79 0:801:00

0:33

dasatinib Prime 20 1:051:540:61 1:481:920:95 21 0:861:000:71 0:881:000:69 0:801:00
0:33

imatinib FEP+ 20 0:821:150:53 1:091:430:69 21 0:861:000:71 1:001:00
1:00 0:400:83

0:00

imatinib Prime 20 1:321:810:91 1:692:261:15 21 0:430:670:24 0:500:75
0:25 0:200:67

0:00

nilotinib FEP+ 21 0:821:120:57 1:061:390:69 21 0:861:000:67 0:941:00
0:80 0:501:00

0:00

nilotinib Prime 21 1:501:97
1:06 1:862:251:43 21 0:480:670:24 0:530:750:29 0:251:000:00

ponatinib FEP+ 21 0:871:160:62 1:091:460:70 21 1:001:00
1:00 1:001:00

1:00 NA

ponatinib Prime 21 0:941:54
0:50 1:572:440:69 21 0:810:950:62 0:810:950:62 NA

Glide FEP+ 13 0:500:78
0:26 0:690:970:35 13 0:921:000:77 1:001:00

1:00 0:000:00
0:00

Glide Prime 13 0:911:560:39 1:452:220:54 13 0:851:000:62 0:831:000:58 1:001:00
0:00

Accuracy, specificity, and sensitivity were computed to assess two-class prediction performance:
resistant (ΔΔG > 1.36 kcal mol−1) or susceptible (ΔΔG≤ 1.36 kcal mol−1)
95% CIs (sub-/superscripts) were estimated from 1000 bootstrap replicates. The sensitivity for axitinib and ponatinib is NA, because there is no resistant mutation for these two drugs
Nquant Number of mutations for which quantitative metrics were evaluated, Nclass number mutations for which classification metrics were evaluated, All all mutations, xtals all mutations for which
co-crystal structures were available, Glide erlotinib and gefitinib
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our mispredictions and outliers to identify whether any of these
cases are likely to induce resistance (as observed by ΔpIC50 shifts)
by one of these alternative mechanisms.

A simple threshold of 10-fold TKI affinity change is a crude
metric for classifying resistance or susceptibility due to the
myriad biological factors that contribute to the efficacy of a drug
in a person. In addition to affecting the binding affinity of
inhibitors, missense mutations can also cause drug resistance
through other physical mechanisms including induction of splice
variants or alleviation of feedback. While the current study only
focused on the effect of mutation on drug binding affinity,
resistance from these other physical mechanisms could be
similarly computed using physical modeling. For example, some
mutations are known to activate the kinase by increasing affinity
to ATP, which could be computed using free-energy methods
like FEP.

In this communication, we tested the hypothesis that FEP+, a
fully automated relative-alchemical free-energy workflow, had
reached the point where it can accurately and reliably predict how
clinically observed mutations in Abl kinase alter the binding
affinity of eight FDA-approved TKIs. To establish the potential
predictive impact of current-generation alchemical free-energy
calculations—which incorporate entropic and enthalpic effects
and the discrete nature of aqueous solvation—compared to a
simpler physics-based approach that also uses modern forcefields
but scores a single minimized conformation, we employed a
second physics-based approach (Prime). This simpler physics-
based model was able to capture a useful amount of information
to achieve substantial predictiveness with an MUE of 1:141:350:93 kcal
mol−1 (N= 142), RMSE of 1:701:981:40 kcal mol−1, respectively
(N= 142), and classification accuracy of 0:730:800:66 (N= 144).
Surpassing these good results, we went on to demonstrate that
FEP+ is able to achieve superior predictive performance—MUE
of 0:790:920:67 kcal mol−1 (N= 142), RMSE of 1:071:260:89 kcal mol−1

(N= 142), and classification accuracy of 0:880:930:82 (N= 144).
While future enhancements to the workflows for Prime and FEP
+ to account for additional physical and chemical effects are
likely to improve predictive performance further, the present
results are of sufficient quality and achievable on a sufficiently
rapid timescale (with turn-around times ~6 h/calculation) to
impact research projects in drug discovery and the life sciences.
This work illustrates how the domain of applicability for
alchemical free-energy methods is much larger than previously
appreciated, and might further be found to include new areas as
research progresses: aiding clinical decision-making in the selec-
tion of first- or second-line therapeutics guided by knowledge of
likely subclonal resistance; identifying other selective kinase
inhibitors (or combination therapies) to which the mutant kinase
is susceptible; supporting the selection of candidate molecules to
advance to clinical trials based on anticipated activity against
likely mutations; facilitating the enrollments of patients in
mechanism-based basket trials; and generally augmenting the
armamentarium of precision oncology.

Methods
System preparation. All system preparation utilized the Maestro Suite (Schrö-
dinger) version 2016-4. Comparative modeling to add missing residues using a
homologous template made use of the Splicer tool, while missing loops modeled
without a template used Prime. All tools employed default settings unless otherwise
noted. The Abl wild-type sequence used in building all Abl kinase domain models
utilized the ABL1_HUMAN Isoform IA (P00519-1) UniProt gene sequence
spanning S229–K512. Models were prepared in
non-phosphorylated form. We used a residue indexing convention that places the
Thr gatekeeper residue at position 315 to match common usage; an alternate
indexing convention utilized in experimental X-ray structures for Abl:imatinib
(PDB: 1OPJ)50 and Abl:dasatinib (PDB: 4XEY)51 was adjusted to match our
convention.

Complexes with co-crystal structures. Chain B of the experimental structure of
Abl:axitinib (PDB: 4WA9)52 was used, and four missing residues at the N and C
termini were added using homology modeling with PDB 3IK353 as the template
following alignment of the respective termini of the kinase domain. Chain B was
selected because chain A was missing an additional 3 and 4 residues at the N and C
termini, respectively, in addition to 3- and 20-residue loops, both of which were
resolved in chain B. All missing side chains were added with Prime. The co-crystal
structure of Abl:bosutinib (PDB: 3UE4)54 was missing 4 and 10 N- and C-terminal
residues, respectively, in chain A that were built using homology modeling with
3IK3 as the template. All loops were resolved in chain A (chain B was missing two
residues in the P-loop, Q252 and Y253). All missing side chains were added with
Prime. The co-crystal structure of Abl:dasatinib (PDB: 4XEY)51 was missing 2 and
9 N- and C-terminal residues, respectively, that were built via homology modeling
using 3IK3 as the template. A 3 residue loop was absent in chain B but present in
chain A; chain A was chosen. The co-crystal structure of Abl:imatinib (PDB: 1OPJ)50

had no missing loops. Chain B was used because chain A was missing two
C-terminal residues that were resolved in chain B. A serine was present at position
336 (index 355 in the PDB file) and was mutated to asparagine using Prime to
match the human wild-type reference sequence (P00519-1). The co-crystal struc-
ture of Abl:nilotinib (PDB: 3CS9)55 contained four chains in the asymmetric unit
all of which were missing at least one loop. Chain A was selected because its one
missing loop involved the fewest number of residues of the four chains; chain A
was missing 4 and 12 N- and C-terminal residues, respectively, that were built
using homology modeling with 3IK3 as the template. A 4-residue loop was missing
in chain A (chain B and C were missing two loops, chain D was missing a five
residue loop) that was built using Prime. The co-crystal structure of Abl:ponatinib
(PDB: 3OXZ)56 contained only one chain in the asymmetric unit. It had two
missing loops, one 4 residues (built using Prime) and one 12 residues (built using
homology modeling with 3OY356 as the template). Serine was present at position
336 and was mutated to Asn using Prime to match the human wild-type reference
sequence (P00519-1). Once the residue composition of the six Abl:TKI complexes
were normalized to have the same sequence, the models were prepared using
Protein Preparation Wizard. Bond orders were assigned using the Chemical
Components Dictionary and hydrogen atoms were added. Missing side chain
atoms were built using Prime. Termini were capped with N-acetyl (N terminus)
and N-methyl amide (C terminus). If present, crystallographic water molecules
were retained. Residue protonation states (e.g., Asp381 and Asp421) were deter-
mined using PROPKA57 with a pH range of 5–9. Ligand protonation state was
assigned using PROPKA with pH equal to the experimental assay. Hydrogen bonds
were assigned by sampling the orientation of crystallographic water, Asn and Gln
flips, and His protonation state. The positions of hydrogen atoms were minimized
while constraining heavy atoms coordinates. Finally, restrained minimization of all
atoms was performed in which a harmonic positional restraint (25.0 kcalmol−1Å−2)
was applied only to heavy atoms. Supplementary Table 9 summarizes the com-
position of the final models used for FEP.

Complexes without co-crystal structures. Co-crystal structures of Abl bound to
erlotinib or gefitinib were not publicly available. To generate models of these
complexes, Glide-SP58 was utilized to dock these two compounds into an Abl
receptor structure. Co-crystal structures of these two compounds bound to EGFR
were publicly available and this information was used to obtain initial ligand
geometries and to establish a reference binding mode against which our docking
results could be structurally scored. The Abl receptor structure bound to bosutinib
was used for docking because its structure was structurally similar to that of EGFR
in the erlotinib- (PDB: 4HJO)59 and gefitinib-bound (PDB: 4WKQ)60 co-crystal
structures. Abl was prepared for docking by using the Protein Preparation Wizard
(PPW) with default parameters. Crystallographic waters were removed but their
coordinates retained for a subsequent step in which they were optionally reintro-
duced. Erlotinib and gefitinib protonation states at pH 7 ± 2 were determined using
Epik61. Docking was performed using the Glide-SP workflow. The receptor grid
was centered on bosutinib. The backbone NH of Met318 was chosen to participate
in a hydrogen bonding constraint with any hydrogen bond donor on the ligand.
The hydroxyl of T315 was allowed to rotate in an otherwise rigid receptor. Ligand
docking was performed with enhanced sampling; otherwise default settings were
used. Epik state penalties were included in the scoring. The 16 highest ranked
(Glide-SP score) poses were retained for subsequent scoring. To determine the
docked pose that would be subsequently used for free-energy calculations, the
ligand heavy-atom RMSD between the 16 poses and the EGFR co-crystal structures
(PDB IDs 4HJO and 4WKQ) was determined. The pose in which erlotinib or
gefitinib most structurally resembled the EGFR co-crystal structure (lowest heavy-
atom RMSD) was chosen as the pose for subsequent FEP+. Two sets of complex
structures were subjected to free-energy calculations to determine the effect of
crystal waters: In the first set, without crystallographic waters, the complexes were
prepared using Protein Prep Wizard as above. In the second set, the crystal-
lographic waters removed prior to docking were added back, and waters in the
binding pocket that clashed with the ligand were removed.

Force field parameter assignment. The OPLS3 forcefield37 version that shipped
with Schrödinger Suite release 2016-4 was used to parameterize the protein and
ligand. Torsion parameter coverage was checked for all ligand fragments using
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Force Field Builder. The two ligands that contained a fragment with a torsion
parameter not covered by OPLS3 were axitinib and bosutinib; Force Field Builder
was used to obtain these parameters. SPC parameters62 were used for water. For
mutations that change the net change of the system, counterions were included to
neutralize the system with additional Na+ and Cl− ions added to achieve 0.15 M
excess to mimic the solution conditions of the experimental assay.

Prime (MM-GBSA). Prime was used to predict the geometry of mutant side chains
and to calculate relative changes in free energy using MM-GBSA single-point
estimates36. VSGB63 was used as the implicit solvent model to calculate the sol-
vation free energies for the four states (complex/wild-type, complex/mutant, apo
protein/wild-type, and apo protein/mutant) and ΔΔG calculated using the ther-
modynamic cycle depicted in Fig. 1b. Unlike FEP (see below), which simulates the
horizontal legs of the thermodynamic cycle, MM-GBSA models the vertical legs by
computing the interaction energy between the ligand and protein in both wild-type
and mutant states, subtracting these to obtain the ΔΔG of mutation on the binding
free energy.

Alchemical free-energy perturbation calculations using FEP+. Alchemical
free-energy calculations were performed using the FEP+ tool in the Schrödinger
Suite version 2016-4, which offers a fully automated workflow requiring only an
input structure (wild-type complex) and specification of the desired mutation. The
default protocol was used throughout: It assigns protein and ligand force field
parameters (as above), generates a dual-topology64 alchemical system for trans-
forming wild-type into mutant protein (whose initial structure is modeled using
Prime), generates the solvent-leg endpoints (wild-type and mutant apo protein),
and constructs intermediate windows spanning wild-type and mutant states.
Simulations of the apo protein were setup by removing the ligand from the pre-
pared complex (see System Preparation) followed by an identical simulation pro-
tocol as that used for the complex. Charge-conserving mutations utilized 12 λ
windows (24 systems) while charge-changing mutations utilized 24 λ windows
(48 systems). Each system was solvated in an orthogonal box of explicit solvent
(SPC water62) with box size determined to ensure that solute atoms were no less
than 5 Å (complex leg) or 10 Å (solvent leg) from an edge of the box. For mutations
that change the net charge of the system, counterions were included to neutralize
the charge of the system, and additional Na+ and Cl− ions added to achieve 0.15
M excess NaCl to mimic the solution conditions of the experimental assay. The
artifact in electrostatic interactions for charge change perturbations due to periodic
boundary conditions in MD simulations are corrected based on the method pro-
posed by Rocklin et al.65, where the difference in solvation free energy of the solute
under non-periodic boundary condition and that under periodic boundary con-
dition is approximated by Poisson–Boltzmann method and serves as the correction
term for each system.

System equilibration was automated. It followed the default 5-stage Desmond
protocol: (i) 100 ps with 1 fs time steps of Brownian dynamics with positional
restraints of solute heavy atoms to their initial geometry using a restraint force
constant of 50 kcal mol−1 Å−2; this Brownian dynamics integrator corresponds to
a Langevin integrator in the limit when τ → 0, modified to stabilize equilibration of
starting configurations with high potential energies; particle and piston velocities
were clipped so that particle displacements were limited to 0.1 Å, in any direction.
(ii) 12 ps MD simulations with 1 fs time step using Langevin thermostat at 10 K
with constant volume, using the same restraints; (iii) 12 ps MD simulations with 1
fs time step using Langevin thermostat and barostat66 at 10 K and constant
pressure of 1 atmosphere, using the same restraints; (iv) 12 ps MD simulations with
1 fs time step using Langevin thermostat and barostat at 300 K and constant
pressure of 1 atmosphere, using the same restraints; (v) a final unrestrained
equilibration MD simulation of 240 ps with 2 fs time step using Langevin
thermostat and barostat at 300 K and constant pressure of 1 atmosphere.
Electrostatic interactions were computed with particle-mesh Ewald (PME)45 and a
9 Å cutoff distance was used for van der Waals interactions. The production MD
simulation was performed in the NPT ensemble using the MTK method67 with
integration time steps of 4, 4, and 8 fs, respectively, for the bonded, near, and far
interactions following the RESPA method68 through hydrogen mass
repartitioning69. Production FEP+ calculations utilized Hamiltonian replica
exchange with solute tempering (REST)70, with automated definition of the REST
region. Dynamics were performed with constant pressure of 1 atmosphere and
constant temperature of 300 K for 5 ns in which exchanges between windows was
attempted every 1.2 ps.

Because cycle closure could not be used to reduce statistical errors via path
redundancy70, we instead performed mutational free-energy calculations in
triplicate by initializing dynamics with different random seeds. The relative free
energies for each mutation in each independent run were calculated using
BAR71,72. The reported ΔΔG was computed as the mean of the computed ΔΔG
from three independent simulations. Triplicate simulations were performed in
parallel using four NIVIDA Pascal Architecture GPUs per alchemical free-energy
simulation (12 GPUs in total), requiring ~6 h in total to compute ΔΔG.

Obtaining ΔΔG from ΔpIC50 benchmark set data. Reference relative free
energies were obtained from three publicly available sources of ΔpIC50 data

(Table 1). Under the assumption of Michaelis–Menten binding kinetics (pseudo
first-order, but relative free energies are likely consistent), the inhibitor is com-
petitive with ATP (eq:ic50). This assumption has been successfully used to estimate
relative free energies34,73–75 using the relationship between IC50 and competitive
inhibitor affinity Ki,

IC50 ¼
Ki

1þ S0½ �
KM

: ð1Þ

If the Michaelis constant for ATP (KM) is much larger than the initial ATP
concentration S0, the relation in eq:ic50 will tend towards the equality IC50= Ki.
The relative change in binding free energy of Abl:TKI binding due to protein
mutation is simply,

ΔΔG ¼ �RT ln
IC50;WT

IC50;mut
ð2Þ

where IC50,WT is the IC50 value for the TKI binding to the wild-type protein and
IC50,mut is the IC50 value for the mutant protein. R is the ideal gas constant and T is
taken to be room temperature (300 K).

As alluded to above, relating ΔpIC50s to ΔΔGs assumes that the Michaelis
constant for ATP is much larger than the initial concentration of ATP, and that the
experimentally observed ΔpIC50 change is solely from changes in kinase:TKI
binding affinity. In practice, not all of these assumptions may hold. For example,
the experimentally observed ΔpIC50 might depend on the metabolism of drugs, and
for drugs with different mechanisms of action than directly binding to the kinase
binding pocket (e.g., binding to the transition structures of kinases, target gene
amplification, up/downregulation of positive-/negative-feedback effectors,
diminished synergism of pro-apoptotic machinery, decoupling of the target from
cell survival circuits)76,77, their inhibition ability might not correlate well with
binding affinity. However, the comparison between ΔpIC50 and ΔKD is presented
in Fig. 2d, and this comparison indicates the assumptions we used to relate ΔpIC50

to ΔΔG are reasonable for the dataset we studied.

Quantitative accuracy metrics. MUE was calculated by taking the average
absolute difference between predicted and experimental estimates of ΔΔG. RMSE
was calculated by taking the square root of the average squared difference between
predicted and experimental estimates of ΔΔG. MUE depends linearly on errors
such that large and small errors contribute equally to the average value, while
RMSE depends quadratically on errors, magnifying their effect on the average
value.

Truth tables. Two-class truth tables were constructed to characterize the ability of
Prime and FEP+ to correctly classify mutations as susceptible (ΔΔG ≤ 1.36 kcal mol−1)
or resistant (ΔΔG > 1.36 kcal mol−1), where the 1.36 kcal mol−1 threshold repre-
sents a 10-fold change in affinity. Accuracy was calculated as the fraction of all
predictions that were correctly classified as sensitizing, neutral, or resistant. Sen-
sitivity and specificity were calculated using a binary classification of resistant
(ΔΔG > 1.36 kcal mol−1) or susceptible (ΔΔG ≤ 1.36 kcal mol−1). Specificity was
calculated as the fraction of correctly predicted non-resistant mutations out of all
truly susceptible mutations S. Sensitivity was calculated as the fraction of correctly
predicted resistant mutations out of all truly resistant mutations, R. The number of
susceptible mutations was 113 for axitinib, bosutinib, dasatinib, imatinib, nilotinib
and ponatinib, and 12 for erlotinib and gefitinib; the number of resistant mutations
R was 18 for axitinib, bosutinib, dasatinib, imatinib, nilotinib, and ponatinib, and 1
for erlotinib and gefitinib.

Consensus model. First, Prime and FEP+ (n= 142) were scaled by minimizing
their RMSE to experiment by optimizing slope using linear regression. The
resulting (minimum) RMSE was used in a subsequent step to combine the scaled
FEP+ and scaled Prime free energies with inverse-variance weighted averaging.

ROC. A ROC curve was generated by computing the true positive rate (sensitivity)
and the true negative rate (specificity) when the classification cutoff differentiating
resistant from sensitizing mutations is changed for (only) the predicted values of
ΔΔG. Cutoffs were chosen by taking the minimum and maximum value of ΔΔG for
a dataset (Prime or FEP+), and iteratively computing specificity and sensitivity in
steps of 0.001 kcal mol−1, which by this definition will be in the range [0,1].
Experimental positives and negatives were classified with the 1.36 kcal mol−1

cutoff. ROC-AUC was computed using the trapezoidal rule.

Estimating uncertainties of physical-modeling results. 95% symmetric CI (95%)
for all performance metrics were calculated using bootstrap by resampling all
datasets with replacement, with 1000 resampling events. Confidence intervals were
estimated for all performance metrics and reported as x

xhigh
xlow where x is the mean

statistic calculated from the complete dataset (e.g., RMSE), and xlow and xhigh are
the values of the statistic at the 2.5th and 97.5th percentiles of the value-sorted list
of the bootstrap samples. Uncertainty for ΔΔGs was computed by the standard

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0075-x ARTICLE

COMMUNICATIONS BIOLOGY |  (2018) 1:70 | DOI: 10.1038/s42003-018-0075-x | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


deviation between three independent runs (using different random seeds to set
initial velocities), where the 95% CI was [ΔΔG− 1.96 × σFEP+, ΔΔG+
1.96 × σFEP+] kcal mol−1. 1σ used in plots for FEP+ and experiment; 0σ for Prime.

Bayesian hierarchical model to estimate intrinsic error. We used Bayesian
inference to estimate the true underlying prediction error of Prime and FEP+ by
making use of known properties of the experimental variability (characterized in
Fig. 2) and statistical uncertainty estimates generated by our calculations under
weak assumptions about the character of the error.

We presume the true free-energy differences of mutation i, ΔΔGtrue
i , comes from

a normal background distribution of unknown mean and variance,

ΔΔGtrue
i � μmut; σ

2
mut

� �

i ¼ 1; ¼ ;M ð3Þ

where there are M mutations in our dataset. We assign weak priors to the mean
and variance

μmut � U �6;þ6ð Þ ð4Þ

σmut / 1 ð5Þ

where we limit σ > 0.
We presume the true computational predictions (absent statistical error) differ

from the (unknown) true free-energy difference of mutation ΔΔGtrue
i by normally

distributed errors with zero bias but standard deviation equal to the RMSE for
either Prime or FEP+, the quantity we are focused on
estimating:

ΔΔGtrue
i;Prime � ΔΔGtrue

i ;RMSE2Prime

� �

ð6Þ

ΔΔGtrue
i;FEPþ � ΔΔGtrue

i ;RMSE2FEPþ
� �

ð7Þ

In the case of Prime, since the computation is deterministic, we actually
calculate ΔΔGtrue

Prime for each mutant. For FEP+, however, the computed free-energy
changes are corrupted by statistical error, which we also presume to be normally
distributed with standard deviation σcalc,i,

ΔΔGi;FEPþ � ΔΔGi;FEPþ; σ
2
i;FEPþ

� �

ð8Þ

where ΔΔGi,FEP+ is the free energy computed for mutant i by FEP+, and σi,FEP+ is
the corresponding statistical error estimate.

The experimental data we observe is also corrupted by error, which we presume
to be normally distributed with standard deviation σexp:

ΔΔGi;exp � ΔΔGi; σ
2
exp

� �

ð9Þ

Here, we used an estimate of Kd− and IC50-derived ΔΔG variation derived from
the empirical RMSE of 0.81 kcal mol−1, where we took σexp � 0:81=

ffiffiffi

2
p

¼ 0:57
kcal mol−1 to ensure the difference between two random measurements of the
same mutant would have an empirical RMSE of 0.81 kcal mol−1.

Under the assumption that the true ΔΔG is normally distributed and the
calculated value differs from the true value via a normal error model, it can easily
be shown that the MUE is related to the RMSE via

MUE ¼
R

dxtrue p xtrueð Þ
R

dxcalc p xcalcjxtrueð Þ xcalc � xtruej j ð10Þ

¼
R

dxtrue
1
ffiffiffiffiffiffiffiffiffiffi

2πσ2true
p e

� xtrue�μtrueð Þ2
2σ2true

R

dxcalc
1
ffiffiffiffiffiffiffiffiffiffi

2πσ2calc
p e

� xcalc�μtrueð Þ2
2σ2

calc xcalc � xtruej j ð11Þ

¼
ffiffi

2
π

q

RMSE ð12Þ

The model was implemented using PyMC378, observable quantities were set to
their computed or experimental values, and 5000 samples drawn from the posterior
(after discarding an initial 500 samples to burn-in) using the default NUTS
sampler. Expectations and posterior predictive intervals were computed from the
marginal distributions obtained from the resulting
traces.

Code availability. Scripts used for statistics analysis (including the Bayesian
inference model) can be found at the following URL: https://github.com/kehauser/
Predicting-resistance-of-clinical-Abl-mutations-to-targeted-kinase-inhibitors-
using-FEP.

Data availability. All relevant data are publicly available: compiled experimental
datasets, input files for Prime and FEP+, and computational results that support
our findings can be found at GitHub by following the URL: https://github.com/
kehauser/Predicting-resistance-of-clinical-Abl-mutations-to-targeted-kinase-
inhibitors-using-FEP.
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