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Predicting returns with financial ratios 
 

 
 
 
 
 

Abstract 
 

This article provides a new test of the predictive ability of aggregate financial ratios.  Predictive 
regressions are subject to small-sample biases, but the correction in previous studies can 
substantially understate forecasting power.  Dividend yield predicts aggregate market returns from 
1946 – 2000, as well as in various subperiods.  Book-to-market and the earnings-price ratio predict 
returns during the shorter 1963 – 2000 sample.  The evidence remains strong despite the unusual 
price run-up in recent years. 

 
 
 



Predicting returns with financial ratios 
 
1. Introduction 

Nearly fifty years ago, Kendall (1953) observed that stock prices seem to wander randomly over 

time.  Kendall, and the early literature on market efficiency, tested whether price changes could be 

predicted using past returns.  Empirical tests later expanded to other predictive variables, including 

interest rates, default spreads, dividend yield, book-to-market, and the earnings-price ratio (see, e.g., 

Fama and Schwert, 1977; Campbell, 1987; Fama and French, 1988; Campbell and Shiller, 1988; Kothari 

and Shanken, 1997). 

The three financial ratios – DY, B/M, and E/P – share several common features.  First, each ratio 

measures price relative to ‘fundamentals.’  Because price is high when expected returns are low, and vice 

versa, the ratios should be positively related to expected returns.  According to the mispricing view, the 

ratios are low when stocks are overpriced; they predict low future returns as prices return to 

fundamentals.  The rational-pricing story says, instead, that the ratios track time-variation in discount 

rates:  the ratios are low when discount rates are low and high when discount rates are high – they predict 

returns because they capture information about the risk premium.  DY, B/M, and E/P also share similar 

time-series properties.  At a monthly frequency, they have autocorrelations near one and most of their 

movement is caused by price changes in the denominator.  These statistical properties have important 

effects on empirical tests. 

 This paper provides new tests of the forecasting ability of aggregate DY, B/M, and E/P.  I focus 

primarily on DY because it has received the most attention in the literature.  I also focus exclusively on 

short-horizon tests – monthly returns regressed on lagged DY – to avoid the complications arising from 

overlapping returns.  Previous studies provide weak evidence that DY forecasts returns.  Fama and French 

(1988) find that DY predicts monthly NYSE returns from 1941 – 1986, with t-statistics between 2.20 and 

3.21 depending on the definition of returns (equal- vs. value-weighted; real vs. nominal).  However, 

Stambaugh (1986, 1999) and Mankiw and Shapiro (1986) show that predictive regressions can be 

severely biased toward finding predictability.  Nelson and Kim (1993) replicate the Fama and French 
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tests, correcting for bias using bootstrap simulations, and estimate that the p-values are actually between 

0.03 and 0.33.  More recently, Stambaugh (1999) derives the exact small-sample distribution of the slope 

estimate assuming that DY follows an AR1 process.  He reports a one-sided p-value of 0.15 when NYSE 

returns are regressed on lagged DY from 1952 – 1996.1 

 In this paper, I show that Stambaugh’s (1999) small-sample distribution, as well as simulations 

common in the literature, can substantially understate the forecasting ability of the financial ratios.  

Although the small-sample adjustment is generally appropriate, we can sometimes improve upon it by 

incorporating information about DY’s sample autocorrelation.  The sample autocorrelation is strongly 

correlated with the slope estimate in the predictive regression, so any information conveyed by the 

autocorrelation helps produce a more powerful tests of predictability.  Incorporating this information into 

empirical tests has two effects:  (1) the slope coefficient is often larger than Stambaugh’s estimate; and (2) 

the standard error of the estimate is much lower.  In combination, the two effects can substantially raise 

the power of empirical tests. 

 To gain some intuition, consider the model of returns analyzed by Stambaugh (1986, 1999) and 

Mankiw and Shapiro (1986): 

 rt = α + β xt-1 + εt, (1a) 

 xt = φ + ρ xt-1 + µt, (1b) 

where rt is the stock return and xt-1 is the dividend yield (or other financial ratio).  Equation (1a) is the 

predictive regression and eq. (1b) specifies an AR1 process for DY.  The residuals, εt and µt, are 

correlated because positive returns lead to a decrease in DY.  As a consequence, estimation errors in the 

two equations are closely connected:  

 η+ρ−ργ=β−β )ˆ(ˆ , (2) 

where η is a random error with mean zero and γ is a negative constant.  Empirical tests are typically based 

                                                   
1 DY predicts long-horizon returns more strongly, but the statistical significance is sensitive to the time period 

considered and small-sample corrections.  See, for example, Hodrick (1992), Goetzmann and Jorion (1993), Nelson 
and Kim (1993), and Ang and Bekaert (2001). 
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on the marginal distribution of β̂  from eq. (2), integrating over all possible values of ρ−ρ̂  and η.  For 

example, the bias in β̂  is found by taking expectations of both sides; the well-known downward bias in ρ̂  

induces an upward bias in β̂  (since γ is negative).  Notice, however, that this approach implicitly throws 

out any information we have about ρ−ρ̂ .  Specifically, if we are willing to assume that DY is stationary, 

so that ρ is at most one, then a lower bound on the sampling error in ρ is ρ̂  – 1.  In turn, eq. (2) implies 

that the ‘bias’ in β̂  is at most γ ( ρ̂  – 1).  This upper bound is less than the standard bias-adjustment if ρ̂  

is close to one.  When this occurs, empirical tests that ignore the information in ρ̂  will understate DY’s 

predictive power. 

 Empirically, using the information in ρ̂  dramatically strengthens the case for predictability.  When 

NYSE returns are regressed on log DY from 1946 – 2000, the OLS slope estimate is 0.92 with a standard 

error of 0.48.  Stambaugh’s (1999) bias correction yields an estimate of 0.20 with a one-sided p-value of 

0.308.  However, using the information in ρ̂ , the bias-adjusted estimate becomes 0.66 with a t-statistic of 

4.67, significant at the 0.000 level.  (I emphasize that these estimates are conservative, calculated under 

the assumption that ρ ≈ 1; the estimates are biased downward if ρ is actually less than one.)  Predictability 

is also strong in subperiods.  For the first half of the sample, 1946 – 1972, the bias-adjusted estimate is 

0.84 with a p-value less than 0.001.  For the second half of the sample, 1973 – 2000, the bias-adjusted 

estimate is 0.64 with a p-value of 0.000.  In short, by recognizing the upper bound on ρ, we obtain much 

stronger evidence of predictability. 

 As an aside, I also consider how the last few years affect the empirical results.  DY reached a new 

low for the sample in May 1995, predicting that returns going forward should be far below average.  In 

fact, the NYSE index more than doubled over the subsequent six years.  When returns for 1995 – 2000 

are added to the regression, the OLS slope coefficient drops in half, from 2.23 to 0.92, and the statistical 

significance declines from 0.068 to 0.308 using Stambaugh’s small-sample distribution.  Interestingly, the 

tests here are not sensitive to the recent data.  The bias-adjusted slope drops from 0.98 to 0.66 and the p-
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value remains 0.000.  The reason is simple:  the last few years have also lead to a sharp rise in the sample 

autocorrelation of DY, from 0.986 to 0.997.  This rise means that the maximum bias in the predictive 

slope declines from 1.25 to 0.25, offsetting most of the decline in the OLS estimate.  Regressions with the 

equal-weighted index are even more remarkable, finding stronger evidence of predictability after 

observing the recent data. 

 B/M and E/P also have significant predictive power, though the evidence is less reliable.  The tests 

with these variables begin in 1963 when Compustat becomes available.  From 1963 – 1994, B/M and E/P 

forecast both equal- and value-weighted NYSE indices, with p-values less than 0.050.  When more recent 

data is included, however, the ratios seem to predict only the equal-weighted index.  The evidence is 

much stronger than previous studies.  Kothari and Shanken (1997) and Pontiff and Schall (1998) find that 

B/M has little predictive power during this period, and Lamont (1999) finds no evidence that E/P (by 

itself) predicts quarterly returns from 1947 – 1994. 

 The paper proceeds as follows.  Section 2 discusses the properties of predictive regressions and 

formalizes the tests.  Section 3 describes the data and Section 4 presents the main empirical results.  

Section 5 concludes. 

 

2. Predictive regressions 

 Predictive regressions are ubiquitous in the finance literature.  They have been used to test whether 

past prices, financial ratios, interest rates, and a variety of other macroeconomic variables can forecast 

stock and bond returns.  This section reviews the properties of predictive regressions, borrowing liberally 

from Stambaugh (1986, 1999). 

 
2.1. Assumptions 

 The paper focuses on the regression 

 rt = α + β xt-1 + εt, (3a) 

where rt is the return in month t and xt-1 is a predictive variable known at the beginning of the month.  It is 

easy to show that β must be zero if expected returns are constant.  In all the cases discussed here, the 
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alternative hypothesis is that β > 0, so we will be concerned with one-sided tests.  The predictive variable 

is assumed to follow a stationary AR1 process: 

 xt = φ + ρ xt-1 + µt, (3b) 

where ρ < 1.  Since an increase in price leads to a decrease in DY, the residuals in (3a) and (3b) are 

negatively correlated.  It follows that xt is correlated with εt in the predictive regression, violating one of 

the assumptions of OLS (which requires independence at all leads and lags).  For simplicity, I assume the 

variables are normally distributed. 

 Before continuing, I should briefly discuss the stationarity assumption.  The empirical tests depend 

on the assumption that ρ cannot be greater than one.  Statistically, the tests remain valid if ρ = 1 (we just 

need an upper bound on ρ), but I assume that ρ is strictly less than one to be consistent with prior studies.  

It also makes little sense to predict returns with a nonstationary variable.  Economically, xt should be 

stationary unless there is an explosive bubble in stock prices.  Suppose, for example, that xt equals log 

DY.  xt will be stationary if log dividends and log prices are cointegrated, implying that, in the long run, 

dividends and prices must grow at the same rate.  That assumption seems reasonable:  there is a vast 

literature arguing against explosive bubbles and much evidence that DY is mean reverting over long 

sample periods.2 

It is useful to note that DY might exhibit other forms of nonstationarity.  For example, Fama and 

French (2002) suggest that the equity premium dropped sharply between 1951 and 2000.  If the drop is 

permanent, not caused by transitory sentiment or the business cycle, it should lead to a permanent drop in 

DY.  This type of nonstationarity could be modeled as a change in the intercept φ.  The regression in eq. 

(3b) can then be thought of as an restricted version of a model with time-varying parameters (i.e., xt = φt + 

ρ xt-1 + µt).  The empirical tests should be relatively insensitive to this type of nonstationarity as long as ρ 

remains below one. 

                                                   
2 Blanchard and Watson (1982), Tirole (1982, 1985), and Loewenstein and Willard (1999) discuss the theory of 

rational bubbles and Hamilton and Whiteman (1985), Flood and Hodrick (1986, 1990), Diba and Grossman (1988), 
and West (1988) provide empirical evidence. 
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2.2. Properties of OLS 

 Denote the matrix of regressors as X, the coefficient vectors as b = (α, β) and p = (φ, ρ), and the 

residual vectors as ε and µ.  The OLS estimates of eqs. (3a) and (3b) are then 

 ε′′+= − X)XX(bb̂ 1 , (4a) 

 µ′′+= − X)XX(pp̂ 1 . (4b) 

In the usual OLS setting, the estimation errors are expected to be zero.  That is not true here.  

Autocorrelations are biased downward in finite samples, and this bias feeds into the predictive regression 

through the correlation between εt and µt.  Specifically, note that we can write εt = γ µt + νt, where γ = 

cov(ε, µ) / var(µ).  Substituting into eq. (4a) yields 

 bb̂ − η+−γ= )pp̂( , (5) 

where η ≡ (X′X)-1X′ν.  The variable νt is independent of µt, and consequently xt, at all leads and lags.  It 

follows that η has mean zero and variance 12 )XX( −
ν ′σ . 

Equation (5) provides a convenient way to think about predictive regressions.  Consider, first, the 

distribution of β̂  based on repeated sampling of both ρ̂  and η.  This distribution is commonly used for 

empirical tests.  Equation (5) shows that β̂  inherits many properties of autocorrelations.  For example, 

taking expectations yields 

 ]ˆ[E ]ˆ[E ρ−ργ=β−β . (6) 

Sample autocorrelations are biased downward by approximately –(1+3ρ)/T, inducing an upward bias in 

the predictive slope (γ < 0).  Further, autocorrelations are negatively skewed and more variable than 

suggested by OLS.  These properties imply that β̂  is positively skewed and more variable than suggested 

by OLS.  Stambaugh (1999) discusses these results in detail. 

 The empirical tests below will also use the conditional distribution of β̂  given ρ̂ .  Equation (5) 

shows that, although β̂  and ρ̂  are not bivariate normal due to the irregularities in ρ̂ , β̂  is normally 
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distributed conditional on ρ̂ .3  This observation follows from the definition of η in eq. (5).  The 

conditional expectation of β̂  is 

 )ˆ(]ˆ |  ˆ[E ρ−ργ=ρβ−β , (7) 

which I refer to, informally, as the ‘realized bias’ in β̂ .  (The conditional variance of β̂  is given by 

var(η), defined above.)  Equation (7) implies that, if we knew ρ−ρ̂ , an unbiased estimator of β could be 

obtained by subtracting γ( ρ−ρ̂ ) from β̂ . 

 
2.3. Statistical tests 

 The tests in this paper are based on the conditional distribution of β̂ .  The idea is simple.  Even 

though we do not know ρ−ρ̂ , which is required for the conditional distribution, we can put a lower 

bound on it by assuming that ρ ≈ 1.  This assumption, in turn, gives an upper bound on the ‘bias’ in β̂ .  

To be precise, define the bias-adjusted estimator 

 )ˆ(ˆˆ
adj ρ−ργ−β=β . (8) 

Given the true ρ, this estimator is normally distributed with mean β and variance 1
)2,2(

2 )XX( −
ν ′σ .  We do 

not know ρ, of course, but setting ρ ≈ 1 is the most conservative assumption we can make for testing 

predictability:  the bias in eq. (7) is maximized, and the estimator in eq. (8) is minimized, if we assume ρ 

≈ 1.  If β̂ adj is significantly different from zero given this assumption, then it must be even more 

significant given the true value of ρ.4 

There is a second way to think about this test.  The analysis above shows that the sampling errors in 

                                                   
3 Technically, I am conditioning on both ρ̂  and X.  The matrix X is important because of its impact on the 

variance of η (see eq. 5).  If we conditioning only on ρ̂ , the conditional distribution of β is a mixture of normal 
distributions, all with mean zero but different variances. Conditioning on X is similar to standard OLS with 
stochastic regressors. 

4 To implement the tests, we also need to estimate γ and σν from εt = γ µt + νt .  The estimators are the OLS 
estimates using the sample values of εt and µt.  The Appendix describes how estimation error in γ and σv affects the 
statistical tests. 
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β̂  and ρ̂  are closely related:  β̂  is expected to be high only when ρ̂  is very low.  Therefore, it is unlikely 

that we would observe both a high value of β̂  and a high value of ρ̂  (i.e., close to one) if the true 

parameters are β = 0 and ρ < 1.  The empirical tests simply formalize this idea.  They ask:  under the null, 

what is the probability of observing such a high value for β̂  given that ρ̂  is so close to one?  If we reject 

the joint hypothesis that β = 0 and ρ < 1, I interpret it as evidence that β ≠ 0 because there are strong 

reasons, a priori, to believe ρ < 1. 

Previous studies have focused on the unconditional distribution of β̂ .  They implicitly assume we 

have no information about ρ−ρ̂ .  That assumption is fine when ρ̂  is low because the constraint ρ < 1 

provides little information (high values of ρ are unlikely anyway).  But the tests ignore useful information 

when ρ̂  is close to one.  Suppose, for example, that ρ̂  = 0.99 and T = 300.  The unconditional bias in ρ̂  

is approximately E[ ρ−ρ̂ ] = –0.016.  However, given the observed autocorrelation, the minimum possible 

value of ρ−ρ̂  is actually –0.010.  The conditional tests use this information to improve inferences about 

β.  More generally, the conditional approach is useful when ρ̂  – 1 (the minimum value of ρ−ρ̂ ) is 

greater than the expected bias in ρ̂ .  With 25 years of data, this requires a monthly autocorrelation around 

0.98 and an annual autocorrelation around 0.85; with 50 years of data, the values are 0.99 and 0.90, 

respectively.  (The conditional approach might be useful if the autocorrelation is a bit lower, but it 

depends on the underlying parameters.) 

 Figure 1 illustrates these ideas.  Panel A shows the marginal distribution of β̂  and Panel B shows the 

joint distribution of β̂  and ρ̂ .  For the simulations, β = 0, ρ = 0.99, T = 300, and the correlation between 

εt and µt is –0.92.  Panel A clearly shows the strong bias and skewness in β̂ , with more than 85% of the 

estimates being positive.  Panel B shows the strong correlation between the β̂  and ρ̂ .  Comparing the two 

graphs, it is clear that high values of β̂  correspond to samples in which ρ̂  is far below ρ.  Given that ρ̂  is, 

say, no more than 0.01 below its true value, β̂  is rarely greater than 0.40.  That observation is key for the 
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tests in this paper. 

An unfortunate feature of the tests is that we cannot say, ex ante, whether the conditional or 

unconditional approach is better.  The conditional test has greater power if ρ is close to one, but the 

opposite is true once ρ drops below some level (depending on the parameters).  Ideally, we could choose 

between the tests, in advance, based on either economic theory or pre-sample evidence.  In practice, the 

decision will likely depend on the sample autocorrelation, and the significance level should recognize that 

we ‘search’ for the stronger test after looking at the data: 

(i) If, ex ante, the researcher believes that ρ is far from one and uses only the unconditional test, then no 
adjustment is necessary.  The p-value from the unconditional tests is appropriate. 

(ii) If, ex ante, the researcher believes that ρ might be close to one and relies on both tests, then an 
overall p-value (probability of rejecting using either test) is given by twice the smaller p-value.  The 
result is Bonferroni’s upper bound on the true significance level.5 

The p-value in (ii) assumes that we apply both tests regardless of ρ.  The bound is tight if ρ is close to 

one, but otherwise quite conservative:  the conditional test will rarely reject if ρ is low, so doubling the 

smaller (unconditional) p-value is not really necessary.  A better overall p-value would recognize this 

fact.  It is difficult to derive an alternative p-value, but simulations suggest the following gives a tighter 

upper bound: 

(ii′) If a researcher uses both tests, then an upper bound on the overall p-value is given by min(2P, P+D), 
where P is the smaller of the two stand-alone p-values and D is the p-value for ρ = 1 (based on the 
sampling distribution of ρ̂ ).6 

The first part, 2P, is just the Bonferroni upper bound; the second part, P + D, recognizes that doubling P is 

                                                   
5 Suppose we run two tests and reject if either A or B occurs.  Each has probability P under the null.  The overall 

probability of rejecting is Pr(A or B) = Pr(A) + Pr(B) – Pr(A and B) < 2P. 
6 The bound is derived from asking:  what is the probability either test rejects with probability P and the sample 

autocorrelation has p-value D under the null?  Let A, B, and C be the rejection regions for the conditional test, 
unconditional test, and unit root test, respectively.  We have:  Pr((A or B) and C) = Pr((A and C) or (B and C)) < 
Pr(A) + min(Pr(B), Pr(C)) = P + min(P, Pr(C)).  If ρ = 1, the bound obtains because Pr(C) = D.  As ρ drops, Pr(C) 
increases but Pr(A) decreases, and the bound holds as long as the second effect dominates.  When ρ is small, 
min(2P, P + D) converges, appropriately, to the unconditional test’s p-value.  I cannot prove that the bound holds for 
all ρ, but simulations suggest that it does.  I ran simulations calibrated to the DY regressions, allowing ρ to vary 
from 0.9 to 0.9999.  I calculated min(2P, P+D) for each simulation and assumed we reject if the value is below 0.05.  
Under the null, the true rejection rate was less than or equal to 5% for all ρ. 
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too conservative if we reject ρ = 1 (that is, if D is small).  This alternative bound is important because it 

blurs the distinction between (i) and (ii).  In particular, (ii′) says that if, ex post, the autocorrelation 

appears to be far from one (D ≈ 0), we can just use the unconditional test’s p-value as the overall p-value, 

without doubling, even if we also considered the conditional test.  The adjustment for searching becomes 

larger if ρ̂  is close to one, with a maximum provided by Bonferroni. 

 The conditional approach is a natural addition to Stambaugh’s (1999) unconditional test.  It is 

important to emphasize that his analysis gives the better estimate of β unless the autocorrelation is close 

to one.  Also, Stambaugh presents Bayesian tests in which he sometimes assumes that ρ < 1.  He shows 

that this can lead to stronger rejections of the null.  My contribution is to show that the constraint can also 

improve inferences in a frequentist setting.  In fact, the approach here is similar in many ways to 

Stambaugh’s Bayesian analysis, in that both condition on observed data in deriving the distribution of β 

(or β̂  here).  The tests are essentially identical if the Bayesian approach starts with a point prior that ρ = 1 

(and no information about β).  Any other prior that places zero weight on ρ > 1 would produce even 

stronger rejections of the null. 

 

3. Data and descriptive statistics 

 I use the methodology outlined above to test whether DY, B/M, and E/P forecast stock returns.  

Prices and dividends come from the Center for Research in Security Prices (CRSP) database.  Earnings 

and book equity come from Compustat.  The tests focus on NYSE equal- and value-weighted indices to 

be consistent with prior research and to avoid changes in the market composition as AMEX and 

NASDAQ firms enter the database. 

 DY is calculated monthly on the value-weighted NYSE index.  It is defined as dividends paid over 

the prior year divided by the current level of the index.  Thus, DY is based on a rolling window of annual 

dividends.  I use value-weighted DY to predict returns on both the equal- and value-weighted indices.  

The value-weighted DY is likely to be a better measure of aggregate dividend yield (it equals total 
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dividends divided by total market value).  The predictive regressions use the natural log of DY, rather 

than the raw series, because it should have better time-series properties.  Raw DY, measured as a ratio, is 

likely to be positively skewed and its volatility depends mechanically on its level (when DY is two, price 

movements must be twice as big to have the same effect as when DY is four).  Taking logs solves both of 

these problems. 

 The empirical tests with DY extend from January 1946 – December 2000.  I omit the Depression era 

because the properties of returns were much different prior to 1945.  Returns were extremely volatile in 

the 1930s, and this volatility is reflected in both the variance and persistence of DY (see Fama and 

French, 1988).  As a robustness check, I split the sample in half and look at the two subperiods, 1946 – 

1972 and 1973 – 2000.  Further, I investigate the influence of the last few years because recent stock 

returns have been so unusual. 

 The tests with B/M and E/P are restricted to 1963 – 2000 when Compustat data is available.  B/M is 

the ratio of book equity in the previous fiscal year to market equity in the previous month.  E/P is the ratio 

of operating earnings (before depreciation) to market value.  I use operating earnings because Shiller 

(1984) and Fama and French (1988) suggest that net income is a noisy measure of fundamentals; 

preliminary tests suggest that operating earnings are a better measure.7  To ensure that the tests are 

predictive, I do not update accounting numbers until four months after the fiscal year.  Also, to reduce 

possible selection biases, a firm must have three years of accounting data before it is included in the 

sample (see Kothari, Shanken, and Sloan, 1995).  The regressions use log B/M and log E/P, both 

measured on the value-weighted NYSE index. 

 Table 1 provides summary statistics for the data.  Volatility is bit lower in the first half of the sample, 

but most of the time-series properties are stable across the two subperiods.  DY averages 3.80% over the 

                                                   
7 Log E/P ratios are highly autocorrelated using either measure:  0.990 for operating earnings and 0.989 for net 

income.  However, the residuals in an AR1 regression are more variable when E/P is calculated from net income 
(standard deviation of 0.062 compared with 0.049 for operating earnings).  In addition, the residuals are less highly 
correlated with returns, –0.66 vs. –0.86.  Net income seems to vary independent of price movements more than 
operating earnings, which might indicate additional noise in the process.  In any case, the predictive power of the 
two series is similar and, for simplicity, I report only the tests using operating earnings (the results for net income 
are marginally weaker). 
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full sample with a standard deviation of 1.20%.  Since DY is a ratio, log DY should better approximate a 

normal distribution.  The table confirms that log DY is more symmetric in the first half of the sample, but 

it is negatively skewed in the second half (primarily due to 1995 – 2000).  The properties of B/M and E/P 

are similar to those of DY.  B/M averages 0.53 and E/P averages 0.20.  The raw series for B/M and E/P 

are positively skewed, while the log series are nearly symmetric.  (The E/P ratio appears high because 

earnings are operating earnings before depreciation.  The E/P ratio based on net income averages 0.07 

over the period.) 

 Table 1 also shows that the financial ratios are extremely persistent.  The first-order autocorrelations 

range from 0.988 to 0.999 for the various series.  The autocorrelations tend to diminish as the lag 

increases, but DY in the second half of the sample is essentially a random walk.  Log DY, B/M, and E/P 

are more highly autocorrelated than the raw series. This is important for the empirical tests since the bias-

adjustment depends on ρ̂  – 1. 

 

4. Empirical results 

 I estimate predictive regressions using DY, B/M, and E/P.  The tests initially focus on DY because it 

has been studied most in the literature.  The last few years of the sample receive special attention because 

they have a large impact on the results. 

 
4.1. Predicting with dividend yield 

 Table 2 explores the predictive power of DY in the full sample, 1946 – 2000.  The table reports 

estimates of the model analyzed in Section 2: 

 rt = α + β xt-1 + εt, (9a) 

 xt = φ + ρ xt-1 + µt, (9b) 

where rt is the stock return and xt-1 is the dividend yield.  I estimate regressions for NYSE equal- and 

value-weighted returns and for nominal and excess returns (measured net of the one-month Tbill rate).  

All of the regressions use DY for the value-weighted NYSE index.   
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The table reports a variety of statistics.  The row labeled ‘OLS’ shows the least-squares slope and 

standard error.  These estimates ignore bias and are reported primarily as a reference point.  The row 

labeled ‘Stambaugh’ shows estimates based on Stambaugh’s (1999) small-sample distribution.  The point 

estimate is bias-adjusted using the unconditional bias and the p-value is based on the unconditional 

distribution, both obtained from Monte Carlo simulations.  The distribution depends on the unknown 

parameters ρ and Σ, for which I substitute the OLS estimates. Stambaugh notes that the distribution is 

insensitive to small changes in the parameters, so this substitution should not be too important. 

 The final row, labeled ‘ρ ≈ 1,’ reports estimates based on the conditional distribution of β̂ .  The 

slope coefficient is the bias-adjusted estimator 

 )ˆ(ˆˆ
adj ρ−ργ−β=β , (10) 

where I assume that ρ is approximately one (operationalized as ρ = 0.9999).  If ρ is truly less than one, 

this estimate is biased downward and the tests understate the predictive power of DY.  The variance of 

β̂ adj is 12 )XX( −
ν ′σ .  To implement the tests, we need to estimate γ and 2

νσ  from εt = γ µt + νt, where ε and 

µ are the residuals in eq. (9).  The Appendix describes how estimation error in these parameters affects 

the results.  Under the null, the resulting t-statistic is truly a t-statistic – that is, it has a Student t 

distribution with T – 3 degrees of freedom.8 

 Table 2 provides strong evidence of predictability.  Consider, first, the nominal return on the value-

weighted index.  The OLS slope is 0.92 with a standard error of 0.48.  The point estimate implies that a 

one-standard-deviation change in DY (equal to 0.33) predicts a 0.30% change in monthly expected return.  

Based on Stambaugh’s (1999) distribution, the bias-adjusted estimate shrinks to 0.20 with a one-sided p-

value of 0.308.  The conditional test, in the third row, gives a much different picture.  Assuming that ρ ≈ 

1, the ‘realized bias’ in the predictive regression is at most 0.25, approximately 65% lower than the 

unconditional bias.  The bias-adjusted slope is 0.66 with a t-statistic of 4.67, significant at the 0.000 level.  

                                                   
8 The tables report raw p-values for each test.  As discussed earlier, an overall test of predictability should 

recognize that we perform multiple tests (see Section 2.3 for details).  Doing so would not affect any of the 
inferences in this paper. 
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Notice that the conditional standard error is much lower than the standard error estimated from 

Stambaugh’s distribution, 0.14 vs. 0.67.9  The strong significance in the conditional test is largely 

attributable to this difference. 

 These results show that the small-sample distribution analyzed by Stambaugh (1986, 1999) and 

Mankiw and Shapiro (1986) can greatly understate the significance of DY.  Their tests ignore the 

information contained in the sample autocorrelation of DY, which lowers the point estimate and raises the 

standard error when ρ̂  is close to one.  Surprisingly, the conditional tests in Table 2 find that DY is more 

significant than suggested by OLS.  The bias-adjusted slope is lower than the OLS estimate, but the 

information conveyed by ρ̂  has a more important effect on the standard error.  As a result, the stochastic 

properties of DY actually strengthen the case for predictability. 

 The regressions for equal-weighted NYSE returns confirm these findings.  The bias-adjusted slope 

for EWNY, 1.12, is larger than the estimate for VWNY and suggests significant time-variation in 

expected returns (p-value of 0.000).  The table shows that nominal and excess returns produce similar 

estimates during this period.  Also, in all regressions, the explanatory power of DY is low as measured by 

the adjusted R2.  Thus, while DY tracks significant variation in expected returns, it only explains a small 

fraction of monthly stock volatility. 

I should point out that conditioning on ρ̂  would not have helped in Stambaugh’s (1999) tests, 

primarily because DY is not as highly autocorrelated in his sample.  There are two reasons:  (1) 

Stambaugh uses raw DY, which is slightly less persistent than log DY, and (2) DY is not as highly 

autocorrelated during his sample periods (e.g., 1926 – 1996).  I have repeated the tests in Table 2 using 

Stambaugh’s post-War sample of 1952 – 1996 and continue to find significant predictability in the 

conditional tests.  The regressions with nominal returns are similar to those in Table 2, while the estimates 

for excess returns drop considerably, in part because the correlation between DY and Tbill rates is 

                                                   
9 The standard error is relevant only for testing a lower bound on the predictive slope (i.e., for testing the null of 

no predictability). The standard error on the upside is higher because we have only a one-sided bound on the DY’s 
autocorrelation.  Thus, β might be substantially larger than suggested by a symmetric confidence interval around the 
conditional estimate. 
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sensitive to the starting date of the sample.10 

 Table 3 reports results for the first and second halves of the sample, 1946 – 1972 and 1973 – 2000.  

Even with a fairly short sample, the tests strongly reject the null in most cases.  For 1946 – 1972, DY 

predicts excess returns on both indices.  Focusing on the value-weighted index, the bias-adjusted 

estimates for nominal and excess returns, 0.84 and 1.16 (p-values of 0.001 and 0.000), are similar to those 

in the full sample.  In the second half of the sample, the estimate for raw returns drops slightly, to 0.64, 

while the slope for excess VWNY falls by nearly 75% (but remains statistically significant).  The 

coefficients are especially large for the equal-weighted index from 1973 – 2000.  The bias-adjusted slope 

for excess EWNY, 1.27, implies that a one-standard-deviation change in DY is associated with a 0.47% 

change in monthly expected return. 

 The subperiod results reveal striking differences between the conditional and unconditional tests.  

Consider the VWNY regressions in the second half of the sample.  The bias-adjusted estimate from the 

unconditional tests is –0.75 with a standard error of 1.25.  In contrast, the estimate from the conditional 

tests is 0.64 with a standard error of 0.17.  The p-values for the two tests are 0.700 and 0.000, 

respectively.  Thus, incorporating the information is ρ̂  can be critical when the autocorrelation is close to 

one and the sample is relatively short.  The AR1 regressions for DY, at the top of the table, show why.  

The expected bias in ρ̂  is approximately –0.016, while the minimum realized value of ρ̂  – ρ is  –0.001.  

As a consequence, the maximum ‘realized bias’ in the predictive slope is more than 90% smaller than the 

unconditional estimate. 

 I also emphasize that the conditional tests are quite conservative.  If ρ is truly less than one, the 

conditional estimate of β and its t-statistic are both biased downward.  Although it is difficult to justify 

any other value for ρ, it might be useful to explore alternative values.  Consider the results for nominal 

EWNY from 1946 – 1972.  The p-value drops from 0.147 if we assume that ρ ≈ 1 to 0.004 if we assume 

                                                   
10 For example, the correlation is 0.00 for 1946 – 2000 but 0.24 for 1952 – 2000.  Regressions using excess 

returns together with raw DY are especially sensitive to dropping the years 1946 – 1951; raw DY has strong 
predictive power from 1946 – 2000, but not from 1952 – 2000.  The results are more stable using nominal returns or 
if the regressions control directly for Tbill rates (details available on request). 
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that ρ = 0.993 (the sample autocorrelation).  The p-value would be less than 0.050 for any ρ < 0.997.  

While I am not suggesting that DY is truly significant in this regression, the reported p-values do appear 

to be quite conservative. 

Bayesian methods provide a more rigorous way to incorporate uncertainty about ρ.11  In particular, 

suppose an investor begins with no information about β, and consider three different beliefs about ρ.  If 

the investor believes ρ ≈ 1 with certainty, the conditional p-values in Table 3 equal the posterior 

probability that β ≤ 0.  For nominal EWNY, this probability is 0.147.  If, instead, the investor begins with 

a flat prior for ρ ≤ 1, the posterior probability drops to 0.017.  Finally, suppose that we arbitrarily shift the 

investor’s posterior belief about ρ upward by one standard deviation and truncate at one.  This posterior 

represents fairly strong beliefs that ρ is close to one; it is roughly the lower tail of a normal distribution 

with mean one and standard deviation 0.008 (the standard error of ρ̂ ).  In this case, the posterior 

probability for β ≤ 0 equals 0.032.  Once again, the p-values in Table 3 seem quite conservative. 

 
4.2. The influence of 1995 – 2000 

 The tests in Tables 2 and 3 include data for 1995 – 2000.  Returns during these years moved strongly 

opposite the predictions of the model.  DY was extremely low, dropping from 2.9% in January 1995 to 

1.5% in December 2000, while the value-weighted index grew 195%.  Because this period is so unusual, I 

briefly consider its effect on the results. 

 Table 4 shows results for 1946 – 1994 together with corresponding estimates for the full sample (the 

same as Table 2).  I only report regressions with nominal returns for simplicity.  Focusing on the value-

weighted index, the OLS slope coefficient in the truncated sample is more than double its value for the 

full period, 2.23 compared with 0.92.  Using Stambaugh’s (1999) small-sample distribution, the p-value is 

0.068 in the truncated sample, but only 0.308 in the full regression.  Interestingly, however, the 

conditional tests are much less sensitive to the recent data.  The bias-adjusted slope drops from 0.98 to 

                                                   
11 The Bayesian posterior probability can be found by integrating the conditional p-value (conditional on a given 

autocorrelation) over the posterior distribution of ρ.  The analysis here is like that of Stambaugh (1999).  
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0.66 and remains significant at the 0.000 level.  The t-statistic is almost unchanged, declining from 4.80 

to 4.68.  Thus, the statistical significance of DY remains strong even though the model performed terribly 

from 1995 – 2000. 

The relative insensitivity of the conditional tests can be explained by the sample autocorrelation of 

DY.  Table 4 shows that the sample autocorrelation increases from 0.986 to 0.997.  This increase means 

that the sampling error in ρ must have gone up (become less negative or more positive).  The conditional 

tests implicitly recognize that the sampling error in β has correspondingly decreased; the estimated bias in 

the slope, γ( ρ̂  – 1), declines from 1.25 to 0.25.  Although the OLS estimate drops by 1.31, the conditional 

test attributes 76% (1.00 / 1.31) of it to movement in ρ̂ . 

Table 4 reports an even more remarkable result:  for EWNY, the bias-adjusted slope actually 

increases with the addition of 1995 – 2000.  Again, this counterintuitive result can be explained by the 

sharp rise in the sample autocorrelation of DY.  Given the large drop in DY from 1995 – 2000, and the 

associated increase in ρ̂ , we would expect to see contemporaneously high returns and a decrease in the 

predictive slope.  The conditional tests implicitly recognize this fact by adjusting the maximum bias for 

changes in ρ̂  – 1. 

 The truncated sample is interesting for another reason:  the unconditional bias-adjusted slopes are 

higher than the conditional estimates, but their significance is much lower.  Focusing on value-weighted 

returns, the unconditional bias-adjusted slope is 1.53 with a p-value of 0.068; the conditional bias-

adjusted slope is 0.98 with a p-value of 0.000.  This combination is a bit awkward.  The higher 

unconditional slope suggests that the conditional tests are too conservative; the true autocorrelation is 

probably lower than one.  But, without the extreme assumption, we do not reject as strongly.  This finding 

points to an odd property of the tests. 

 
4.3. Predicting with B/M and E/P 

The evidence above shows that DY predicts returns much more strongly than other studies have 

found.  B/M and E/P have also been used with limited success to predict returns.  Tables 5 and 6 explore 
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the predictive power of these variables.  I report regressions both for the full sample, 1963 – 2000, and the 

truncated sample ending in 1994. 

B/M has some power to forecast returns, but the evidence is less reliable than for DY.  In the 

truncated sample, B/M is significant only for nominal returns.  The bias-adjusted slopes are 1.11 and 0.73 

for equal- and value-weighted returns, respectively, with p-values of 0.022 and 0.017.  When returns for 

1995 – 2000 are added, B/M predicts both raw and excess returns on the equal-weighted index, but has 

little predictive power for VWNY.  The estimates for the equal-weighted index are similar to those for the 

truncated sample, 1.03 for raw returns (p-value of 0.005) and 0.68 for excess returns (p-value of 0.047). 

Like the results for DY, Table 5 shows that conditional tests provide much stronger evidence of 

predictability than unconditional tests.  The differences are dramatic for nominal returns in the full 

sample.  Incorporating the information in ρ̂ , the p-value for VWNY drops from 0.515 to 0.142 and the p-

value for EWNY drops from 0.266 to 0.005.  For both indices, the conditional bias is less than half the 

unconditional bias.  The difference between the two tests is also revealed by comparing the full and 

truncated samples.  The regressions for excess EWNY are especially interesting.  The OLS slope estimate 

is 1.79 for the sample ending in 1994 and 1.14 for the sample ending in 2000.  However, the conditional 

bias-adjusted slope actually increases slightly, from 0.57 to 0.68.  That result mirrors the evidence for DY 

in Table 4. 

 Table 6 replicates the tests using E/P.  The results are similar to those for B/M.  E/P appears to 

forecast nominal returns, but there is little evidence that it forecasts excess returns.  The p-values for 

nominal returns range from 0.012 to 0.088 for the different time periods and stock returns.  In the full 

sample, a one-standard-deviation increase in E/P maps into a 0.14% increase in expected return for 

VWNY and a 0.34% increase for EWNY.  Table 6 also confirms the influence of 1995 – 2000 on the 

regressions.  The OLS slopes decline when the recent data are included, but the conditional bias-adjusted 

slopes remain approximately the same.  For both nominal and excess EWNY, the addition of 1995 – 2000 

strengthens the case for predictability. 
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5. Summary 

 The literature on stock return predictability has evolved considerably over the last twenty years.  

Empirical tests initially produced strong evidence that market returns are predictable, especially over long 

horizons.  Later research questioned these findings, suggesting that small-sample biases explain the bulk 

of apparent predictability.  The accumulated evidence suggests that DY, B/M, and E/P have, at best, weak 

power to predict returns.  This paper provides new tests of their predictive ability, emphasizing four main 

points: 

(a) Stambaugh (1999) and Mankiw and Shapiro (1986) consider the ‘unconditional’ distribution of β̂ .  

This distribution is generally appropriate for making inferences about predictability, but it ignores useful 

information when the predictive variable’s autocorrelation is close to one.  It can substantially understate 

the significance of variables like DY, B/M, and E/P. 

(b) The conditional tests in this paper are intuitive.  If we knew ρ, the best estimate of β is the bias-

adjusted estimator )ˆ(ˆˆ
adj ρ−ργ−β=β .  This estimator is normally distributed with mean β and variance 

12 )XX( −
ν ′σ .  Although we do not know true autocorrelation, ρ ≈ 1 is the most conservative assumption 

we can make because it yields the lowest estimate of β.  The conditional tests are also easy to apply:  the 

necessary statistics can be estimated from OLS and, under the null, the test statistic has a Student t 

distribution.  When ρ̂  is close to one, the conditional bias-adjusted slope will be higher than the 

unconditional estimate.  Further, when β̂  and ρ̂  are highly correlated, the conditional variance will be 

much lower than the unconditional variance.  Both of these effects help produce stronger tests of 

predictability. 

(c) Empirically, incorporating the information ρ̂  can be quite important.  I find strong evidence that DY 

predicts returns.  The tests examine NYSE equal- and value-weighted indices from 1946 – 2000.  In both 

the full sample and various subsamples, DY is typically significant at the 0.001 level, with many t-

statistics greater than 3.0 or 4.0.  The evidence for B/M and E/P ratios is weaker than for DY, but stronger 
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than previous studies.  Overall, B/M and E/P appear to have limited forecasting ability.  Even when the 

statistics cannot reject the null, the conditional bias-adjusted slopes look much different than the 

unconditional estimates. 

(d) The last few years of the sample have a large impact on the results.  For the value-weighted index, 

adding 1995 – 2000 to the regressions reduces the OLS slope on DY by 59%, the slope on B/M by 61%, 

and the slope on E/P by 28%.  However, the bias-adjusted estimates are less sensitive to the recent data.  

The estimates for equal-weighted returns actually increase with the addition of 1995 – 2000.  This finding 

is explained by the sharp increase in the ratios’ sample autocorrelations, which lowers the bias-adjustment 

needed in the conditional tests. 

The conditional tests are based on a frequentist approach, but the methodology is similar to the 

Bayesian tests of Stambaugh (1999).  Both approaches condition on the observed sample when deriving 

the distribution of β (in Bayesian tests) or β̂  (in frequentist tests).  The main advantage of the conditional 

test is that it assumes only that ρ is less than one; the Bayesian approach requires additional assumptions 

about investors’ beliefs.  The trade-off is that the conditional approach is useful only if the autocorrelation 

is close to one, while Bayesian tests are more general. 

The evidence shows that information about ρ can be important.  The only information used here is 

the stationarity of the predictive variable, but additional information about ρ could be incorporated into 

the tests.  For example, suppose we have a sample beginning prior to the period in which we want to test 

for predictability.  If DY’s autocorrelation is constant over the entire history, we can use the earlier data to 

help us infer whether the within-sample autocorrelation is above or below the true value.  Also, the 

methodology could be generalized for tests with many predictive variables.  The generalization should be 

straightforward when the stochastic nature of only one variable is a concern (for example, regressions 

with DY and Tbill rates).  It is likely to be more difficult when all of the variables are correlated with 

returns. 
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Appendix 

 Section 2 shows that )ˆ(ˆˆ
adj ρ−ργ−β=β  is normally distributed with mean β and variance 

1
)2,2(

2 )XX( −
ν ′σ .  To implement the tests, we need to estimate γ and 2

νσ  in εt = γ µt + νt.  The estimates are 

the OLS estimates using the sample values of ε and µ from the predictive regression, rt = α + β xt-1 + εt, 

and AR1 model for DY, xt = φ + ρ xt-1 + µt.  This appendix describes how sampling error in γ and 2
νσ  

affects the tests. 

To analyze the problem, it is useful to think about estimating β somewhat differently than described 

in the text.  Re-write the predictive regression using εt = γ µt + νt: 

rt = α + β xt-1 + γ µt + νt. (A.1) 

Given ρ, this equation can be estimated since µt = xt – ρ xt-1 is observable.12  Moreover, νt is independent 

of xt and µt at all leads and lags.  It follows that (A.1) satisfies OLS, so the estimate of β has all the usual 

properties.  I now show that the estimate of β from (A.1) is identical to adjβ̂ , thus providing the sampling 

distribution of adjβ̂ . 

From regression analysis, the estimate of β from (A.1), denoted Mβ̂ , and the simple-regression 

estimate from the predictive regression are related by the formula: 

Mβ̂ = β̂  – γ̂  λ, (A.2) 

where λ is the slope coefficient in an auxiliary regression of µt on xt-1: 

µt = c + λ xt-1 + ωt. (A.3) 

λ is the second element of (X′X)-1X′µ.  Comparing this to eq. (4b) in the paper, we see that λ = ρ̂  – ρ.  

Substituting into (A.2) yields Mβ̂ = β̂  – γ̂ ( ρ̂  – ρ).  Also, the estimate of γ from (A.1) is the same as the 

estimate from a regression of tε̂  on tµ̂  (the sample residuals from the predictive regression and AR1 

                                                   
12 More precisely, if we know ρ, then we observe xt – ρ xt-1 = µt + φ.  The value of φ does not affect the estimate 

of β or γ (it affects only the intercept), and I ignore it in the remainder of the discussion. 
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model).  Therefore, Mβ̂  is identical to adjβ̂ .  These results imply that, when γ and σν are unknown, 

inference should be based on the t-statistic from (A.1).  Under the null, it has a t-distribution with T – 3 

degrees of freedom. 

 Using (A.1), we can formally show that ρ ≈ 1 is the most conservative assumption possible, in the 

sense that it minimizes the t-statistic for β = 0.  The variable µt in (A.1) can be written as a function of the 

assumed ρ:  µt = xt – ρ xt-1.  Substituting yields 

rt = α + β xt-1 + γ (xt – ρ xt-1) + νt. (A.4) 

As we change ρ, we simply add or subtract xt-1 from the second explanatory variable.  Doing so affects 

only the estimate of β, not the residuals νt or the estimate of γ.  Since adjβ̂  is a linear function of ρ, with 

slope γ̂  < 0, it is minimized at ρ ≈ 1.  If we ignore sampling error in γ, then we can stop here; the 

standard error of adjβ̂  does not depend on ρ, so the t-statistic is also minimized at ρ ≈ 1.13  However, with 

sampling error in γ, the standard error does depend somewhat on the assumed ρ.  The standard error 

equals )T/(ˆ s
2/1 σσν , where T is time-series length and 2

sσ  is the residual variance when xt-1 is regressed 

on the other explanatory variables: 

xt-1 = c + δ µt + st. (A.5) 

Re-write µt = tµ̂ + ( ρ̂  – ρ) xt-1, where ρ̂  and tµ̂  are the OLS estimates from the AR1 regression.  The 

variance of st is: 

2
sσ  = 222

x µσδ−σ  = 2
x

22
OLS,

22
x2

x )ˆ(
])ˆ[(
σρ−ρ+σ

σρ−ρ
−σ

µ

. (A.6) 

In this equation, all of the variances are sample statistics, not adjusted for degrees of freedom.  The 

second equality uses the fact that tµ̂  and xt-1 are uncorrelated by construction.  Re-arranging yields 

                                                   
13 If γ is known, the standard error of βadj is [ 1

)2,2(
2 )XX(s −
ν ′ ]1/2, where 2sν  is the sample variance of νt (with T – 2 

degrees of freedom).  Neither νt nor X depends on the assumed ρ.  Empirically, γ can be estimated very precisely 
and estimation error in γ has almost no affect on the tests.  For example, in full-sample regressions with the value-
weighted index, γ̂  is –90.4 with a standard error of 1.1. 
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2
sσ  = 













σρ−ρ+σ

σ
σ

µ

µ
2
x

22
OLS,

2
OLS,2

x )ˆ(
. (A.7) 

This equation shows that 2
sσ  decreases as ( ρ−ρ̂ )2 gets larger.  For reasonably values of ρ, this effect is 

small and the t-statistic is approximately linear in ρ (it is dominated by the changes in the numerator and 

minimized at ρ ≈ 1).  More formally, let k = T1/2 σx σµ,OLS / νσ̂ .  The t-statistic from (A.1) is 

tβ=0 = [ ] 2/1 2
x

22
OLS, )ˆ(

)ˆ(ˆˆ
k

σρ−ρ+σ

ρ−ργ−β

µ

. (A.8) 

The numerator is decreasing in ρ, while the denominator is increasing in ( ρ−ρ̂ )2.  This function has a 

unique local extremum at ρ = ρ̂  + ( γ̂ 2
OLS,µσ  / β̂ 2

xσ ).  Assuming β̂  > 0, this is a global maximum and 

occurs at some ρ < ρ̂ .  Thus, to show that the t-statistic is minimized at ρ = 1, we just need to show that it 

is higher at ρ = –1 than at ρ = 1.  If the global maximum occurs at ρ < –1, the proof is trivial because the 

derivative of (A.8) is everywhere negative between –1 and 1.  Suppose the maximum occurs at ρ > –1.  

As ρ → –∞, the t-statistic asymptotes to – k γ̂ / σx from above.  Substituting for k, this implies that the t-

statistic at ρ = –1 must be greater than – γ̂  T1/2 σµ,OLS / νσ̂ .  This expression is just the t-statistic for 

testing whether – γ̂  equals zero (i.e., for testing whether shocks to returns and shocks to DY are related).  

For applications of interest, this t-statistic will be very large and much greater than tβ=0 assuming ρ = 1 

(e.g., it is 82.1 in the full-sample VWNY regressions). 
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Panel B: Joint distribution of β̂  and ρ̂  
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Figure 1 
Sampling distribution of β̂  and ρ̂  
 
The figure shows the distribution of the OLS slope estimates from rt = α + β xt-1 + εt and xt = φ + ρ xt-1 + µt.  
Panel A shows the marginal, or unconditional, distribution of β̂  and Panel B shows the joint distribution of β̂  
and ρ̂ .  The plots are based on Monte Carlo simulations (20,000 in Panel A and 2,000 in Panel B).  The true 
slope coefficients are β = 0 and ρ = 0.99, cor(ε, µ) = –0.92, σε = 0.04, σµ = 0.002, and T = 300. 
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Table 1 
Summary statistics, 1946 – 2000 
 
The table reports summary statistics for stock returns, dividend yield, book-to-market, and the earnings-price 
ratio.  Observations are monthly and the variables are expressed in percent; log(x) equals the natural logarithm 
of x expressed in percent.  Prices and dividends come from CRSP and accounting data come from Compustat.  
EWNY and VWNY are returns on equal- and value-weighted NYSE indexes, respectively.  The financial 
ratios are all calculated for the value-weighted index.  DY equals dividends paid over the prior year divided by 
the current level of the index; B/M is the ratio of book equity to market equity; E/P is the ratio of operating 
earnings defore depreciation to market equity. 
 

    Autocorrelation 

Variable Mean S.D. Skew. ρ1 ρ12 ρ24 

Returns and dividend yield 
Full sample: 1946 – 2000 
VWNY 1.04 4.08 -0.38 0.032 0.042 0.014 
EWNY 1.11 4.80 -0.16 0.136 0.065 0.027 
DY 3.80 1.20 0.37 0.992 0.889 0.812 
Log(DY) 1.28 0.33 -0.53 0.997 0.948 0.912 

1st half: 1946 – 1972 
VWNY 0.98 3.67 -0.39 0.079 0.026 0.066 
EWNY 1.04 4.38 -0.26 0.150 0.024 0.021 
DY 4.02 1.21 0.84 0.992 0.879 0.774 
Log(DY) 1.35 0.28 0.56 0.993 0.876 0.785 

2nd half: 1973 – 2000 
VWNY 1.10 4.44 -0.39 0.001 0.065 -0.013 
EWNY 1.18 5.18 -0.11 0.125 0.113 0.030 
DY 3.59 1.15 -0.19 0.991 0.899 0.914 
Log(DY) 1.22 0.37 -0.81 0.999 0.996 1.062 

Book-to-market and earnings-price ratio 
Compustat: 1963 – 2000 
B/M 53.13 18.28 0.39 0.990 0.891 0.837 
Log(B/M) 3.91 0.36 -0.19 0.995 0.951 0.923 
E/P 20.02 7.01 0.55 0.988 0.864 0.770 
Log(E/P) 2.94 0.35 0.14 0.990 0.891 0.785 

 
 



Table 2 
Dividend yield and expected returns, 1946 – 2000 
 
The table reports an AR1 regression for dividend yield and predictive regressions for stock returns for the 
period Jan. 1946 – Dec. 2000 (660 months).  Observations are monthly.  DY is the dividend yield on the value-
weighted NYSE index and Log(DY) is the natural logarithm of DY.  EWNY and VWNY are returns on equal- 
and value-weighted NYSE indexes, respectively.  Excess returns are calculated as EWNY and VWNY minus 
the one-month Tbill rate.  All data come from CRSP; returns are expressed in percent.  For the predictive 
regressions, ‘OLS’ reports the standard OLS estimates, ‘Stambaugh’ reports the bias-adjusted estimate and p-
value based on Stambaugh (1999), and ‘ρ ≈ 1’ reports the bias-adjusted estimate and p-value assuming that ρ 
is approximately one. 
 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

AR(1) OLS 0.997 0.005 -0.008 -0.006 0.984 0.043 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε, µ) 

VWNY OLS 0.917 0.476 0.027 0.004 4.068 -0.955 
 Stambaugh 0.196 0.670 0.308    
 ρ ≈ 1 0.663 0.142 0.000    
        
EWNY OLS 1.388 0.558 0.007 0.008 4.773 -0.878 
 Stambaugh 0.615 0.758 0.183    
 ρ ≈ 1 1.115 0.268 0.000    
        
Excess VWNY OLS 0.915 0.478 0.028 0.004 4.087 -0.953 
 Stambaugh 0.192 0.673 0.311    
 ρ ≈ 1 0.661 0.145 0.000    
        
Excess EWNY OLS 1.387 0.560 0.007 0.008 4.788 -0.878 
 Stambaugh 0.611 0.760 0.184    
 ρ ≈ 1 1.112 0.268 0.000    
 
 



Table 3 
Dividend yield and expected returns, 1946 – 1972 and 1973 – 2000 
 
The table reports AR1 regressions for dividend yield and predictive regressions for stock returns for two periods, Jan. 1946 – Dec. 1972 and Jan. 1973 – 
Dec. 2000 (324 and 336 months, respectively).  Observations are monthly.  DY is the dividend yield on the value-weighted NYSE index and Log(DY) is 
the natural logarithm of DY.  EWNY and VWNY are returns on equal- and value-weighted NYSE indexes, respectively.  Excess returns are calculated as 
EWNY and VWNY minus the one-month Tbill rate.  All data come from CRSP; returns are expressed in percent. For the predictive regressions, ‘OLS’ 
reports the standard OLS estimates, ‘Stambaugh’ reports the bias-adjusted estimate and p-value based on Stambaugh (1999), and ‘ρ ≈ 1’ reports the bias-
adjusted estimate and p-value assuming that ρ is approximately one. 
 
Log(DYt) = φ + ρ Log(DYt-1) + µt 
  1946 – 1972 1973 – 2000 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

AR(1) OLS 0.993 0.008 -0.016 -0.012 0.981 0.039 0.999 0.007 -0.016 -0.012 0.984 0.046 
              

rt = α + β Log(DYt-1) + εt 
  1946 – 1972 1973 – 2000 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

VWNY OLS 1.421 0.723 0.025 0.009 3.649 -0.935 0.732 0.665 0.136 0.001 4.441 -0.968 
 Stambaugh 0.013 1.400 0.405    -0.751 1.254 0.700    
 ρ ≈ 1 0.844 0.257 0.001    0.641 0.167 0.000    
              
EWNY OLS 1.077 0.863 0.107 0.002 4.359 -0.884 1.703 0.770 0.014 0.012 5.142 -0.875 
 Stambaugh -0.511 1.637 0.551    0.152 1.397 0.367    
 ρ ≈ 1 0.425 0.405 0.152    1.608 0.373 0.000    
              
Exc.VWNY OLS 1.733 0.724 0.009 0.014 3.656 -0.933 0.395 0.669 0.278 -0.002 4.467 -0.968 
 Stambaugh 0.325 1.402 0.327    -1.096 1.261 0.835    
 ρ ≈ 1 1.156 0.261 0.000    0.304 0.169 0.041    
              
Exc.EWNY OLS 1.388 0.864 0.055 0.005 4.364 -0.883 1.366 0.774 0.039 0.006 5.174 -0.875 
 Stambaugh -0.199 1.639 0.460    -0.194 1.406 0.474    
 ρ ≈ 1 0.736 0.407 0.037    1.271 0.376 0.000    

 



Table 4 
Influence of 1995 – 2000 
 
The table reports AR1 regressions for dividend yield and predictive regressions for stock returns for two 
periods, Jan. 1946 – Dec. 1994 (588 months) and Jan. 1946 – Dec. 2000 (660 months).  Observations are 
monthly.  DY is the dividend yield on the value-weighted NYSE index and Log(DY) is the natural logarithm 
of DY.  EWNY and VWNY are returns on equal- and value-weighted NYSE indexes, respectively.  All data 
come from CRSP; returns are expressed in percent.  For the predictive regressions, ‘OLS’ reports the standard 
OLS estimates, ‘Stambaugh’ reports the bias-adjusted estimate and p-value based on Stambaugh (1999), and 
‘ρ ≈ 1’ reports the bias-adjusted estimate and p-value assuming that ρ is approximately one. 
 

Jan. 1946 – Dec. 1994 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

AR(1) OLS 0.986 0.007 -0.008 -0.007 0.971 0.043 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

VWNY OLS 2.230 0.670 0.000 0.017 4.056 -0.952 
 Stambaugh 1.532 0.939 0.068    
 ρ ≈ 1 0.980 0.205 0.000    
        
EWNY OLS 2.422 0.805 0.001 0.014 4.874 -0.882 
 Stambaugh 1.645 1.117 0.081    
 ρ ≈ 1 1.031 0.381 0.004    

Jan. 1946 – Dec. 2000 
Log(DYt) = φ + ρ Log(DYt-1) + µt 

  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

AR(1) OLS 0.997 0.005 -0.008 -0.006 0.984 0.043 
        

rt = α + β Log(DYt-1) + εt 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

VWNY OLS 0.917 0.476 0.027 0.004 4.068 -0.955 
 Stambaugh 0.196 0.670 0.308    
 ρ ≈ 1 0.663 0.142 0.000    
        
EWNY OLS 1.388 0.558 0.007 0.008 4.773 -0.878 
 Stambaugh 0.615 0.758 0.183    
 ρ ≈ 1 1.115 0.268 0.000    

 



Table 5 
Book-to-market and expected returns, 1963 – 1994 and 1963 – 2000 
 
The table reports AR1 regressions for the book-to-market ratio and predictive regressions for stock returns for two periods, June 1963 – Dec. 1994 (379 
months) and June 1963 – Dec. 2000 (451 months).  Observations are monthly.  B/M is the ratio of book equity to market equity on the value-weighted 
NYSE index. Log(B/M) is the natural logarithm of B/M.  EWNY and VWNY are returns on equal- and value-weighted NYSE indexes, respectively.  
Excess returns equal EWNY and VWNY minus the one-month Tbill rate.  Prices and returns come from CRSP, book equity comes Compustat, and 
returns are expressed in percent.  For the predictive regressions, ‘OLS’ reports standard OLS estimates, ‘Stambaugh’ reports the bias-adjusted estimate 
and p-value based on Stambaugh (1999), and ‘ρ ≈ 1’ reports the bias-adjusted estimate and p-value assuming that ρ is approximately one. 
 
Log(B/Mt) = φ + ρ Log(B/Mt-1) + µt 
  1963 – 1994 1963 – 2000 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

AR(1) OLS 0.987 0.009 -0.013 -0.010 0.972 0.047 0.995 0.006 -0.011 -0.009 0.983 0.047 
              

rt = α + β Log(B/Mt-1) + εt 
  1963 – 1994 1963 – 2000 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

VWNY OLS 1.801 0.784 0.011 0.011 4.265 -0.901 0.698 0.594 0.108 0.001 4.237 -0.890 
 Stambaugh 0.772 1.240 0.220    -0.222 0.945 0.515    
 ρ ≈ 1 0.731 0.341 0.017    0.276 0.258 0.149    
              
EWNY OLS 2.312 0.963 0.008 0.012 5.239 -0.826 1.484 0.670 0.014 0.009 5.032 -0.802 
 Stambaugh 1.150 1.493 0.189    0.501 1.089 0.266    
 ρ ≈ 1 1.107 0.545 0.022    1.032 0.400 0.005    
              
Exc.VWNY OLS 1.275 0.790 0.054 0.004 4.298 -0.902 0.351 0.567 0.268 -0.001 4.260 -0.892 
 Stambaugh 0.236 1.250 0.352    -0.576 0.950 0.698    
 ρ ≈ 1 0.196 0.342 0.291    -0.075 0.257 0.626    
              
Exc.EWNY OLS 1.786 0.969 0.033 0.006 5.274 -0.827 1.136 0.674 0.046 0.004 5.060 -0.803 
 Stambaugh 0.615 1.503 0.287    0.147 1.096 0.367    
 ρ ≈ 1 0.571 0.547 0.151    0.681 0.402 0.047    

 



Table 6 
Earnings-price ratio and expected returns, 1963 – 1994 and 1963 – 2000 
 
The table reports AR1 regressions for the earnings-price ratio and predictive regressions for stock returns for two periods, June 1963 – Dec. 1994 (379 
months) and June 1963 – Dec. 2000 (451 months).  Observations are monthly.  E/P is the ratio of operating earnings to market equity on the value-
weighted NYSE index.  Log(E/P) is the natural logarithm of E/P.  EWNY and VWNY are returns on equal- and value-weighted NYSE indexes, 
respectively.  Excess returns equal EWNY and VWNY minus the one-month Tbill rate.  Prices and returns come from CRSP, earnings come Compustat, 
and returns are expressed in percent. For the predictive regressions, ‘OLS’ reports standard OLS estimates, ‘Stambaugh’ reports the bias-adjusted 
estimate and p-value based on Stambaugh (1999), and ‘ρ ≈ 1’ reports the bias-adjusted estimate and p-value assuming that ρ is approximately one. 
 
Log(E/Pt) = φ + ρ Log(E/Pt-1) + µt 
  1963 – 1994 1963 – 2000 
  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ)  ρ S.E.(ρ) Bias -(1+3ρ)/T Adj. R2 S.D.(µ) 

 AR(1) OLS 0.987 0.008 -0.011 -0.010 0.978 0.049 0.990 0.007 -0.010 -0.009 0.980 0.049 
              

rt = α + β Log(E/Pt-1) + εt 
  1963 – 1994 1963 – 2000 
  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ)  β S.E.(β) p-value Adj. R2 S.D.(ε) cor(ε,µ) 

VWNY OLS 1.566 0.660 0.009 0.012 4.263 -0.866 1.121 0.576 0.026 0.006 4.226 -0.861 
 Stambaugh 0.495 1.071 0.213    0.205 0.916 0.275    
 ρ ≈ 1 0.566 0.332 0.046    0.403 0.294 0.088    
              
EWNY OLS 1.950 0.811 0.008 0.012 5.239 -0.796 1.753 0.685 0.005 0.012 5.023 -0.778 
 Stambaugh 0.655 1.295 0.194    0.691 1.062 0.159    
 ρ ≈ 1 0.820 0.493 0.049    0.983 0.432 0.012    
              
Exc.VWNY OLS 1.119 0.665 0.047 0.005 4.296 -0.868 0.725 0.580 0.106 0.001 4.255 -0.863 
 Stambaugh 0.039 1.079 0.332    -0.198 0.923 0.424    
 ρ ≈ 1 0.108 0.332 0.380    0.000 0.294 0.510    
              
Exc.EWNY OLS 1.503 0.817 0.033 0.005 5.275 -0.798 1.358 0.689 0.025 0.006 5.054 -0.780 
 Stambaugh 0.198 1.305 0.282    0.288 1.069 0.247    
 ρ ≈ 1 0.363 0.495 0.236    0.580 0.433 0.093    

 


