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Predicting rice hybrid performance using univariate and
multivariate GBLUP models based on North Carolina mating
design II

X Wang1,5, L Li2,5, Z Yang1, X Zheng3, S Yu4, C Xu1 and Z Hu3

Genomic selection (GS) is more efficient than traditional phenotype-based methods in hybrid breeding. The present study

investigated the predictive ability of genomic best linear unbiased prediction models for rice hybrids based on the North Carolina

mating design II, in which a total of 115 inbred rice lines were crossed with 5 male sterile lines. Using 8 traits of the 575

(115×5) hybrids from two environments, both univariate (UV) and multivariate (MV) prediction analyses, including additive and

dominance effects, were performed. Using UV models, the prediction results of cross-validation indicated that including

dominance effects could improve the predictive ability for some traits in rice hybrids. Additionally, we could take advantage of

GS even for a low-heritability trait, such as grain yield per plant (GY), because a modest increase in the number of top selection

could generate a higher, more stable mean phenotypic value for rice hybrids. Thus this strategy was used to select superior

potential crosses between the 115 inbred lines and those between the 5 male sterile lines and other genotyped varieties. In our

MV research, an MV model (MV-ADV) was developed utilizing a MV relationship matrix constructed with auxiliary variates. Based

on joint analysis with multi-trait (MT) or with multi-environment, the prediction results confirmed the superiority of MV-ADV over

an UV model, particularly in the MT scenario for a low-heritability target trait (such as GY), with highly correlated auxiliary traits.

For a high-heritability trait (such as thousand-grain weight), MT prediction is unnecessary, and UV prediction is sufficient.
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INTRODUCTION

Genomic selection (GS) has been employed in both animal and

plant breeding and potentially represents a more efficient method

than traditional phenotype-based selection systems (Meuwissen

et al., 2001; VanRaden et al., 2009). With the development

of molecular biology, breeders can accurately understand the

genetic structure of the population and thus greatly improve

the efficiency of selection using whole-genome dense markers.

Estimated breeding values based on the genotypes of individuals

have been remarkably accurate (Resende et al., 2012; Lee et al.,

2014). This accuracy has been verified in empirical studies in maize

and rice (Technow et al., 2014; Onogi et al., 2015; Spindel et al.,

2015). Previous studies have evaluated the efficacy of GS for

breeding inbred lines of rice, and prediction accuracies ranged

from 0.31 and 0.34 for grain yield and plant height to 0.63 for

flowering time (Spindel et al., 2015). In predicting rice hybrid

performance of an immortalized F2 population, the predictability

ranges from 0.13 for yield to 0.68 for thousand-grain weight

(TGW) (Xu et al., 2014).

The development of partial specific hybrid rice is a promising

approach for exploiting the heterosis of rice (Adedze et al., 2016), and

GS can be implemented to predict target traits of future hybrids with

less hybrids identified in the field. In many cases, it is difficult to

perform a complete diallel cross design because of the significant

number of potential crosses or the use of some sterile lines. North

Carolina mating design II (NC II) is a more feasible scheme in hybrid

breeding including more parental species with a certain experimental

scale. However, few GS studies in rice hybrids based on NC II have

been undertaken. The present study aims to evaluate the predictive

ability of GS for hybrid performance in rice based on the NC II

scheme in which a total of 115 inbred rice lines were crossed with

5 male sterile lines and to demonstrate the application of predicting

traits for potential crosses between the 115 inbred lines and those

between the 5 male sterile lines and other genotyped varieties.

Non-additive genetic variation is typically ignored when genome-

wide markers are used to perform genomic prediction of complex traits

in plants or animals. However, dominance effects might have important

roles in the genetic variation of complex traits (Wang et al., 2013).
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Incorporating dominance variances might help determine the total

genetic contribution to a complex trait (Da et al., 2014). One of the

goals of the present study was to investigate the effects of both additive

and dominance variances in the genomic prediction of hybrid

performance in rice based on NC II.

Most previous empirical studies with genome-wide prediction

focused on within-environment predictions based on single-

environment (SE) models, and these models typically target a single

phenotypic trait. Modeling a single trait (ST) individually based on an

SE disregards the fact that multiple traits (MTs) or phenotypes in

multiple environments (MEs) are most likely associated, reflecting a

shared biological basis (Scutari et al., 2014). Simultaneously, modeling

multiple quantitative traits results in better predictive power than

individually targeting traits (Henderson and Quaas, 1976; Hayashi and

Iwata, 2013). In animal breeding, some traits (such as sex-linked traits

or those expressed later in life) are difficult or expensive to measure.

Some plant traits (such as root traits, stress resistance traits and grain

yield per plot) also have similar characteristics. MT prediction

with auxiliary traits that are easier or cheaper to record represents

an effective strategy that avoids the use of genotypic information

(Calus and Veerkamp, 2011). Additionally, recent studies have

illustrated that the use of genetic and residual covariance across

correlated environments might improve cross-environment accuracy

in ME models (Burgueño et al., 2012; Guo et al., 2013; Heslot et al.,

2014). In the present study, an efficient multivariate GS model

(MV-ADV) was developed, utilizing a MV relationship matrix

constructed with auxiliary variates (variates with the exception of

the prediction target). An important objective of the present study was

to investigate the performance of MV-ADV for predicting phenotypes

of rice hybrids benefiting from joint analysis with auxiliary traits or

with the phenotypes observed in other environments.

MATERIALS AND METHODS

Experimental data
The models were fitted to the rice data set from Wuhan University. A total of

115 inbred rice lines were crossed with 5 male sterile lines (including XinanS,

Luohong3A, Y58S, Guangzhan63S and PA64S) via NC II. The 575 (115× 5)

crosses were evaluated in two environments in China, and two replicates were

made in each environment.

Eight traits of rice were used in the present study, including grain yield per

plant (GY), TGW, productive panicle number per plant (PN), plant height

(PH), primary branch number (PB), secondary branch number (SB), grain

number per panicle (GN) and panicle length (PL). Traits for the hybrid

population and the inbred lines were collected during the 2013 rice growing

season from replicated field trials on the experimental farms of Hubei Academy

of Agricultural Sciences and Huazhong Agricultural University. The phenotypes

fitting each model are the average performance of each line from two

environments with the exception of the SE and ME analyses, where the

phenotypes were averaged over two replications in a specific environment.

The inbred parents are genotyped using next-generation sequencing, and

single-nucleotide polymorphisms (SNPs) were called using the Genome

Analysis Toolkit (GATK 3.1). Let A1 and A2 represent two alleles at an SNP

locus. The initial genetic values are subsequently given as − 1, 0 and 1 for

genotypes A1A1, A1A2 and A2A2, respectively. The SNPs were preprocessed after

removing those with minor allele frequencies o5% and those with missing

values in all the male sterile lines. The missing data in the remaining SNPs were

replaced with the mean of the population at each locus. Finally, 3 299 150 high-

density SNP markers were selected for analysis to infer the genotypes of

the hybrids.

Additionally, using the 575 observed individuals as the training set, the

performance of the potential crosses between the 5 male sterile lines and the

3023 rice varieties in the 3000-rice genomes project (Li et al., 2014) was

predicted. The SNP genotyping data from both the 3000-rice genomes project

and the present study were called against the Nipponbare reference genome.

A total of 6 572 189 SNPs in the 3kRG filtered set (Alexandrov et al., 2015)

were compared with the 3 299 150 SNPs, and subsequently the intersection,

including 2 395 866 SNPs, was used to predict potential crosses between the 5

male sterile lines and the 3023 rice varieties.

Univariate models
Genomic best linear unbiased prediction (GBLUP) is an efficient method using

whole-genome markers to predict genetic values and phenotypes of interest

(Wang et al., 2015; Zhang et al., 2015). GBLUP includes a genomic relationship

matrix in place of the traditional numerator relationship matrix A based on

pedigree (VanRaden, 2008). The model can be described as:

y ¼ Xbþ Zaþ Zd þ ϵ;

where y is the vector of observations, b is the vector of non-genetic fixed effects,

a is the vector of additive genetic effects, d is the vector of dominance effects

and ε is the vector of random residuals. X is an incident matrix for the fixed

effects and Z is an m×n incident matrix for random genetic effects (m is the

number of phenotypic observations and n is the number of individuals).

A univariate (UV) GBLUP model including only additive effects is called UV-A,

whereas a UV GBLUP model including additive and dominance effects is called

UV-AD.

It is assumed that a~Nð0;Gas
2
aÞ, d~Nð0;Gds

2
dÞ, e~Nð0; Ims

2
e Þ, where s

2
a is

the additive genetic variance; s2d is the dominance variance; s2e is the residual

variance; Im is an m×m identity matrix; Ga and Gd are the additive and

dominance genetic relationship matrices, respectively, constructed using

information from genome-wide dense SNP markers.

The additive genomic relationship matrix Ga can be obtained by

Ga ¼
MaMa

0

ka
;

where Ma is the n× q matrix (q is the number of markers). The element of

Ma for the ith individual at the jth marker is calculated as (Da et al., 2014;

Nishio and Satoh, 2014):

Mai;j ¼

�2pjðA1A1Þ
1� 2pjðA1A2Þ
2� 2pjðA2A2Þ

;

8

<

:

where pj is the minor allele frequency at locus j. To avoid the inflation of

variance components, a relationship matrix should be scaled to have average

diagonal elements of 1 (Forni et al., 2011). In the present study, to obtain

normalized matrices, ka was calculated as trace MaMa
0ð Þ=n.

The dominance genomic relationship matrix Gd can be obtained by

Gd ¼
MdMd

0

trace MdMd
0ð Þ=n

;

where Md is an n× q matrix and the element of Md for the ith individual at the

jth marker is calculated as (Da et al., 2014; Nishio and Satoh, 2014):

Mdi;j ¼

�2p2j ðA1A1Þ
2pjð1� pjÞðA1A2Þ

�2ð1� pjÞ
2ðA2A2Þ

:

8

<

:

The estimated additive effects (â) are obtained using the equation:

â ¼ GaZ
0 ZGaZ

0 þ ZGaZ
0 s

2
d

s
2
a

� �

þ Im
s
2
ε

s
2
a

� �� ��1

ðy � Xb̂Þ

The inversion can be obtained because Im is full rank, and thus the sum

within the square brackets can also be full rank. The estimated dominance

effects (d̂) are obtained using equations as indicated above. The proportions of

the variances (s2a , s
2
d , s

2
e ) to the total variance (s2 ¼ s

2
a þ s

2
d þ s

2
e ) were

defined as h2a ¼ s
2
a=s

2, h2d ¼ s
2
d=s

2 and h2e ¼ s
2
e=s

2, respectively. The variance

components and their proportions were estimated using restricted maximum

likelihood (REML).

MV model
GS models were originally developed for an ST evaluated in an SE, and most

analyses published thus far are based on UV models. Several studies have
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recently proposed using MV models for MEs or MTs (Jia and Jannink, 2012;

Lopez-Cruz et al., 2015; Schulthess et al., 2016).

In the present study, a MV GS model MV-ADV was developed, which

improved predictive performance through the use of a MV relationship matrix.

For s traits or s environments, the MV-ADV model can be described as

y ¼ Xbþ Zaþ Zd þ Zv þ ϵ;

where y is an m×1 vector of the target variate and v is the vector of effects that

can be reflected by the other variates. It is assumed that a~Nð0;Gas
2
aÞ,

d~Nð0;Gds
2
dÞ, ε~Nð0; Ims

2
ε
Þ and v~Nð0;Gvs

2
vÞ. Gv is the MV relationship

matrix calculated as:

Gv ¼
MvMv

0

traceðMvMv
0Þ=n

;

where Mv is the scaled MV matrix;Mv ¼ ½y1;y2;:::;ys�1�. yi is an n×1 vector of

observed phenotypic values of the ith trait or the ith environment, centred and

standardized to unit variance. The phenotypes of the s-1 traits or environments

were not the prediction targets and are called auxiliary variates. s2v is the

variance component of v, which can be estimated using REML.

Cross-validation
Cross-validation was used to evaluate the performance of each previously

described model. This statistical technique divides data into training and

validation sets and uses the validation set to evaluate the predictive ability of the

trained model. In each prediction, we randomly partitioned the data set into 5

parts of equal size and repeated the partitioning 20 times to obtain the average

prediction results of 20 replicates from fivefold cross-validation. In the MV

prediction, the cross-validation scheme mimicked a situation in which missing

phenotypes of lines were predicted with auxiliary traits or the same trait

recorded in a different environment. For example, in the two-environment

scenario, the mean differences between two environments might produce

inflated estimates of predictive ability, thus cross-validation with validation sets

spanning different environments was prevented in the present study. In each

cycle of prediction, the phenotypes of 115 hybrids in a certain environment

were predicted based on the observed phenotypes of the other 460 hybrids in

the same environment and 575 hybrids in the other environment.

Predictive ability was measured as the correlation coefficient between the

observed phenotypes and estimated phenotypes of individuals in the validation

set, adopted to evaluate the differences between models. Because the stochastic

fivefold cross-validations were repeated 20 times for prediction, pairwise

comparisons were used to test the differences in the predictive ability of

different models. All analyses in the present study were performed using the R

language, and the R program is provided in Supplementary Data set S1.

Inference of variance components
In the present study, the variance components and their proportions were

estimated using REML. For the 20 stochastic fivefold cross-validations, the

variance components should be efficiently estimated in each prediction iteration

based on a specified training set. In the MV prediction, genetic or residual

effects are often highly correlated between different traits or environments.

Thus the estimation of the variance components might be close to singular,

making the convergence slow. Therefore, the AI-REML algorithm (Lee and Van

Der Werf, 2006) and the EM algorithm (Da et al., 2014) were implemented in

the present study. The AI-REML algorithm has a rapid convergence rate

(Ashida and Iwaisaki, 1999) and was the first choice in the analysis as

implemented using R language. However, the AI-REML algorithm is not as

robust as the EM algorithm and might be sensitive to the initial values of

variance components (Wang et al., 2013). Thus the variance components were

estimated using a combination of the AI-REML algorithm and the EM

algorithm. Convergence was assumed when changes in the variance ratios

between two successive rounds were o10− 6.

RESULTS

Prediction with UV models drawn from cross-validation

The prediction results of UV models drawn from cross-validation are

summarized in Table 1. Using UV-A, GY showed the lowest predictive

ability (0.3973); TGW and PH showed the highest predictive ability

(0.8807 and 0.8603, respectively). This analysis shows that GS might

be effective for all the traits of rice, particularly for TGW and PH.

Because the individuals for prediction in the present study were

hybrids based on NC II, not only the additive but also the dominance

effects were considered in the UV models. The variance proportions

estimated using REML showed that each trait is primarily controlled

through additive variance. However, pairwise comparisons illustrated

that predictive ability of UV-AD was significantly higher than that of

UV-A for PH, PB, SB and GN, showing that, for these traits, including

dominance effects could improve the predictive ability. For GY, TGW,

PN and PL, there were no significant differences between the

predictive ability of UV-A and UV-AD, showing that it is safe to

include dominance variances in the model, even when a trait is only

controlled through additive variance. In the MV model, to optimize

the prediction and facilitate the comparison, both additive and

dominance effects were included. Additionally, prediction for the

115 inbred rice lines was conducted using UV-A in the present study.

Reflecting a smaller training set size or a different relationship

structure, the prediction results for the inbred lines were substantially

lower than those for the hybrids with the exception of trait PN

(Figure 1).

Predictive ability was adopted to evaluate the above prediction

results. However, breeders are concerned with the phenotypic values

of the selected crosses. In each cycle of the cross-validation, we sorted

the predicted phenotypic values in descending order and selected

different number of top crosses to observe the benefits of prediction.

Figure 2 shows the mean percentage increase in the true phenotypic

Table 1 Average predictive ability, variance proportion of UV models for the hybrids and their s.e. (in parentheses)

Trait UV-A UV-AD

h2
a Predictive ability h2

a h2
d Predictive ability

GY 0.3674 (0.0038) 0.3973 (0.0071) 0.3672 (0.0039) 0.0204 (0.0015) 0.3947 (0.0072)

TGW 0.8249 (0.0016) 0.8807 (0.0052) 0.8234 (0.0016) 0.0087 (0.0006) 0.8800 (0.0032)

PN 0.4148 (0.0042) 0.4118 (0.0072) 0.4141 (0.0042) 0.0041 (0.0007) 0.4087 (0.0070)

PH 0.8689 (0.0013) 0.8603 (0.0036) 0.8650 (0.0012) 0.0280 (0.0010) 0.8637 (0.0036)

PB 0.6682 (0.0023) 0.6636 (0.0063) 0.6646 (0.0024) 0.0789 (0.0016) 0.6827 (0.0060)

SB 0.7213 (0.0015) 0.7104 (0.0051) 0.7148 (0.0016) 0.0454 (0.0014) 0.7197 (0.0048)

GN 0.6670 (0.0018) 0.6407 (0.0058) 0.6658 (0.0018) 0.0268 (0.0011) 0.6444 (0.0057)

PL 0.6639 (0.0037) 0.7967 (0.0061) 0.6540 (0.0038) 0.0435 (0.0043) 0.7939 (0.0061)

Abbrevitions: GN, grain number per panicle; GY, grain yield per plant; PB, primary branch number; PH, plant height; PL, panicle length; PN, productive panicle number per plant; SB, secondary

branch number; TGW, thousand-grain weight; UV, univariate; UV-A, UV GBLUP model including only additive effects; UV-AD, UV GBLUP model including additive and dominance effects.
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values of top crosses relative to the mean of each validation set plotted

against the number of top crosses being selected for each trait. With

100 predictions (from 20 stochastic fivefold cross-validations) per-

formed and top 10 crosses being selected for GY, although the mean

percentage increase was 16.1%, the s.d. of the percentage increase

reached 7.8%. For a high-heritability trait, such as TGW or PH, the s.

d. was consistently at a low level, though the mean percentage increase

was not as high as we expected. Obviously, the trouble of predicting a

low-heritability trait, such as GY, is not the small mean of phenotypic

values but the significant s.d.. With top 30 crosses being selected, the

percentage increase was 10.6% and the s.d. was reduced to 3.1%,

showing that a modest increase in the number of top selection could

generate a stable higher mean phenotypic value for rice hybrids. In a

word, it is exciting that we can take advantage of GS even for a trait

with low predictive ability.

Prediction for potential crosses

With the 575 observed individuals as a training set, performance of the

potential crosses between the 115 inbred lines was predicted. Using

UV-A, the predicted phenotypic values of GY for the 6555 crosses are

given in Supplementary Data set S2. The predicted GY were sorted in

descending order; thus the top 100 crosses were selected. The mean

predicted GY of the top 100 crosses is 51.78± 1.38, which is much

higher than the average predicted GY of the entire hybrid population

(38.94). Furthermore, we noticed that 42 of the top 100 shared the

same parent Huangxiuzhan and 39 of the top 100 were the progeny of

R238, indicating that Huangxiuzhan and R238 are more likely to be

utilized to produce high-performing hybrids for GY.

Additionally, with the 575 hybrids as a training set, performance of

the potential crosses between the 5 male sterile lines and the 3023 rice

varieties in the 3000-rice genomes project was predicted. Using UV-A,

the predicted phenotypic values of GY for the 15 115 crosses are given

in Supplementary Data set S3. The top 100 crosses for GY were

selected, with 93 of them sharing the same parent Guangzhan63S and

7 of them being the progeny of PA64S. The mean predicted GY of the

top 100 crosses is 44.43± 0.52. The average predicted GY of the entire

hybrid population is 38.50. Breeders can actually produce these top

crosses based on the results of the present study.

Prediction with MTs

An MT genomic model might have higher prediction accuracy than an

ST genomic model. Regarding the hybrid performance, the prediction

results of MV-ADV with two traits are illustrated in Table 2.

As shown, the performance of MV-ADV was significantly superior

to UV-AD. Trait GY showed the most significant improvement in MT

prediction, particularly with PN as an auxiliary trait, showing that

making use of observed traits related to the target trait can help

enhance predictive ability in MT prediction. PN, GN and SB also

showed an improvement in the MT prediction. The predictive ability

of TGW hardly increased, no matter which trait was used as an

auxiliary trait. The above results demonstrated the benefit of MT

prediction for traits with low heritability, such as GY. For a high-

heritability trait, such as TGW, MT prediction is unnecessary, and UV

prediction is a good choice.

In MV-ADV, the MV effect v is an important component deserving

attention. The percentage increase in the predictive ability of MV-

ADV relative to UV-AD plotted against the variance proportion of v to

the total variance (h2v) estimated using REML is presented in Figure 3.

In most cases, the percentage increase in predictive ability is positively

correlated with h2v , showing that the MV effect v is the main

contributor to the gains with MT over ST.

In the present MT study, not only two traits were considered at a

time but also all of the eight traits were included. Figure 4 describes

the average prediction results of UV-AD with an ST, MV-ADV with

two traits and MV-ADV with eight traits for the hybrids. GY and PN

showed the most significant increases in MT prediction with eight

traits, while the predictive ability of TGW and PH were slightly

improved, showing again that the MT strategy was more suitable for a

trait with low heritability. The average predictive ability of MV-ADV

with two traits was 6.4% higher than that of UV-AD and the gains of

MV-ADV with eight traits over UV-AD was 26.7%. As shown, MV-

ADV with eight traits yielded substantial increases in predictive ability

relative to MV-ADV with two traits and UV-AD with an ST,

demonstrating that a joint analysis with more auxiliary traits might

greatly improve the predictive ability.

Prediction with MEs

To minimize the effects of error on prediction, the phenotypic values

of each trait used in the aforementioned analysis are the average of

each hybrid from two environments. Based on UV-AD, a comparison

of the prediction results for the hybrids using phenotypic values from

an SE and the average of two environments are shown in Table 3.

Obviously, using average phenotypes from MEs might improve the

predictive ability.

Furthermore, accuracy improvements in the ME scenario were

evaluated in the present study. A comparison between the predictive

ability of the SE versus ME model is shown in Table 4, where UV-AD

represents the average of two SE prediction results, and the predictive

ability of MV-ADV is the average of two ME prediction results (with

each environment as the prediction target). Clearly, the performance

of MV-ADV was better than that of UV-AD. In these ME analyses, the

highest h2v was produced for TGW (0.2330), followed by that for PB

(0.1252), resulting in positive gains of MV-ADV over UV-AD. The

smallest h2v (0.0076) was detected in the ME analysis for PN, and thus

the ME prediction underperformed the SE prediction, showing that

the MV effect v has an important role in the ME prediction.

Figure 1 Average predictive ability of UV-A for the 115 inbred lines and UV-

AD for the 575 hybrids.
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DISCUSSION

Effect of dominance variance components on prediction

Previous studies have shown that dominance is the main contributor

to heterosis for height in rice (Shen et al., 2014). Huang et al. (2015)

also found that accumulation of alleles with positive dominance is an

important contributor to the heterotic phenomena in rice hybrids.

Thus detecting some dominance effects would be expected in the rice

hybrids based on NC II. However, in the present study, for most of the

eight traits, little dominance variances were detected, showing that the

traits are primarily controlled through additive variance. Previous

studies have shown that fitting both additive and dominance effects of

marker genotypes provided either similar or higher accuracy depend-

ing on the value of dominance variance (Sun et al., 2014). For some

traits with bigger dominance variances, we observed the effects of

variance components on predictive ability. For trait PB in hybrids,

Table 1 shows that UV-AD outperforms UV-A the most in predictive

ability; accordingly, the variance accounted for by dominance is the

most significant (7.89%), illustrating that adding a substantial

dominance component estimated using REML can substantially

contribute to hybrid prediction.

Effect of marker density on prediction

The impacts of marker density were also investigated using the UV-

AD model. Four SNP densities were compared using UV-AD for the

rice hybrids (Supplementary Table S1). The edited set of 3 299 150

SNPs with 45% minor allele frequency (designated as 3300K) was

Figure 2 Mean percentage increase in the true phenotypic values of top crosses relative to the mean of each validation set plotted against the number of top

selection. The upper red dotted curves define the mean percentage increase in the true phenotypic values of top crosses plus the s.d. of 100 predictions

(drawn from 20 stochastic fivefold cross-validations). The lower red dotted curves define the mean percentage increase in the true phenotypic values of top

crosses minus the s.d., GY, TGW, PN and PL were predicted using UV-A; PH, PB, SB and GN were predicted using UV-AD.
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compared with subsets of those SNPs: 1 609 838 (1610K), 470 688

(470K), and 95 994 (96K). The 1610K and 470K subsets were obtained

by removing the SNPs with the missing rates 410% and 42%,

respectively; the 96K subset was obtained by only retaining the SNPs

without any missing values.

The average predictive ability slightly increased as the density of

SNP markers increased from 96K to 3300K, showing that large SNP

sets with missing values could also undergo improved prediction

accuracy to a certain degree. Lumping consecutive SNP sites with the

same genotype from the 3300K set was also tried in the present study,

but the prediction result was almost the same as that with the 3300K.

Previous studies have shown that more markers can increase the

accuracy of GS by providing SNPs located closer to the causative genes

(VanRaden et al., 2009). In the current study, gains in 3300K might be

attributed to more information provided by ultra-high-density SNPs.

Therefore, the 3300K SNP set was chosen to construct genetic

relationship matrices in the present study.

Value of the NC II scheme for predicting some potential crosses

In the present study, with phenotypic values of rice hybrids base on

NC II and high-density SNP markers, cross-validation was used to

evaluate the accuracy of each previously described prediction. Applica-

tion of GS for predicting rice hybrids derived from recombinant

inbred lines has been reported previously (Xu et al., 2014). The 575

hybrids can certainly be used as a training sample to predict traits of

some important potential crosses. First, performance of the crosses

between the 115 inbred lines can be predicted as described previously.

Second, there are many varieties of rice already genotyped, such as the

3023 rice varieties in the 3000-rice genomes project and the 1495

diverse varieties of hybrid rice (Huang et al., 2015). Theoretically, the

hybrids for prediction do not have to share common parents with the

hybrids in the training set. Nevertheless, it is notable that these

experimental data are based on NC II and the five male sterile lines

have an important role in the performance of the hybrids. Using the

575 hybrids as the training set, to ensure the accuracy of prediction,

prediction of some potential crosses between the 5 male sterile lines

and several other varieties is recommended.

High-quality shared marker is an important factor for genomic

prediction. As discussed previously, the accuracy of GS is expected to

be increased with more SNPs located closer to the causative genes.

From the 3000-rice genomes project, when 996 009 SNPs in the 3kRG

Core SNP set (Alexandrov et al., 2015) was compared with the

3 299 150 SNPs, the intersection included only 155 833 SNPs, leading

to a great loss of information. Using 6 572 189 SNPs in the 3kRG

filtered set (Alexandrov et al., 2015), the intersection including

2 395 866 SNPs was selected, and most of the marker information

could be kept. Obviously, to find more common markers, using

Table 2 Average predictive ability with MT and ST for the hybrids (the target traits for prediction are in the first column, and the auxiliary traits

are located in the second row)

Trait MV-ADV UV-AD

GY TGW PN PH PB SB GN PL Average

GY 0.4087 0.7590 0.3930 0.4651 0.5238 0.6664 0.4362 0.5217 0.3947

TGW 0.8814 0.8794 0.8838 0.8807 0.8801 0.8795 0.8844 0.8813 0.8800

PN 0.7664 0.4080 0.4076 0.4196 0.4217 0.4393 0.4343 0.4710 0.4087

PH 0.8640 0.8679 0.8632 0.8689 0.8704 0.8688 0.8751 0.8683 0.8637

PB 0.7076 0.6836 0.6907 0.6912 0.7853 0.7421 0.7088 0.7156 0.6827

SB 0.7651 0.7195 0.7284 0.7308 0.8099 0.8290 0.7480 0.7615 0.7197

GN 0.7888 0.6433 0.6637 0.6542 0.7246 0.7986 0.6639 0.7053 0.6444

PL 0.8029 0.8043 0.8000 0.8162 0.8112 0.8207 0.8050 0.8086 0.7939

Abbrevitions: GN, grain number per panicle; GY, grain yield per plant; MT, multi-trait; PB, primary branch number; PH, plant height; PL, panicle length; PN, productive panicle number per plant;

SB, secondary branch number; ST, single trait; TGW, thousand-grain weight; UV-AD, UV GBLUP model including additive and dominance effects.

Figure 3 Percentage increase in the predictive ability of MV-ADV relative to

UV-AD plotted against h2
v estimated using REML.

Figure 4 Average predictive ability of UV-AD with a single trait, MV-ADV with

two traits and MV-ADV with eight traits for the hybrids.
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high-density SNPs of the prediction target was necessary. Additionally,

42 varieties in the 3000-rice genomes project were found to have the

same names with some varieties in the 115 inbred lines, and

consistency of their SNPs was checked. Ignoring heterotic and missing

markers, the average consistency rate of the SNPs in the homonymous

varieties was 0.8604± 0.1520. Notably, the consistency rates of the

15 varieties were 40.99 and those of 7 varieties were o0.70.

We presumed that some inconsistency reflected the practical differ-

ences between homonymous varieties provided by different units.

Taking these differences into account, the 42 homonymous varieties

were not excluded from the 3023 varieties for prediction. Thus the

quality of the SNP data was reliable, and the 575 observed hybrids can

be used as a training set for predicting some potential crosses in rice.

Effect of the MV model on MT prediction

The joint analysis of MTs has been shown to help improve the

selection of some primary traits with low heritabilities or those that are

difficult to measure (Alimi et al., 2013). Recent studies have illustrated

that MT models might improve the accuracy of prediction.

MT models are most advantageous when the traits analyzed are highly

correlated (Piepho et al., 2008). An MT model is expected to increase

the accuracy of prediction by incorporating information from

genetically correlated traits. The phenotypic correlation between traits

contains both genetic and error correlations. Therefore, the

performance of MT models is associated with the correlation

coefficient between the phenotypic values of MTs (Supplementary

Table S2). The highest correlation coefficient was produced between

SB and GN followed by that between GY and PN. As expected, joint

analyses with SB and GN or GY and PN produced notable improve-

ments in prediction accuracy.

Although genetic correlation was shown to be a key factor in

determining the MT advantage over ST (Jia and Jannink, 2012), results

in the present study show that there are other important factors

affecting the advantage. In the MT prediction with two traits, the

improvement of joint analyses with SB and GN was not on the top of

list, which was much smaller than that with GY and PN. On average,

GY showed the most significant improvement, followed by PN, GN

and SB, indicating that low-heritability traits might be better predicted

using an MT model. Furthermore, MT and ST analyses did not

produce significantly different prediction accuracies for a trait with

high heritability, such as TGW or PH. In a word, MV-ADV is best

suited for a target trait with low heritability or the joint analysis of

highly correlated traits.

The MV relationship matrix of MV-ADV is constructed with the

phenotypic values, which reflects not only the shared biological

basis but also the shared environmental effects in MT prediction.

The highest phenotypic correlation coefficient was produced between

GN and SB (Supplementary Table S2), and thus the most significant

variance proportion of h2v (0.4891) was achieved in predicting GN with

SB, followed by predicting SB with GN (0.3984). However, joint

analyses of GN and SB did not produce high-level increase in the

predictive ability of MV-ADV relative to UV-AD. We presume

that the lack of benefits reflected the higher heritability of GN and SB.

The genetic effects in UV-AD reflect the phenotypic variation, leading to

the less contribution of the MV effect v to the predictive ability.

Previous studies have shown that the contributions of auxiliary

traits added to the model would tend asymptotically toward zero;

therefore, MT prediction with two traits should be sufficient to

improve the prediction accuracy for a particular trait (Schulthess et al.,

2016). However, in the MV analyses, predictive ability of GY with

eight traits using MV-ADV was 0.8794, showing notable increase not

only relative to the average predictive ability with two traits (0.5217)

but also relative to the highest predictive ability with two traits

(0.7590). The scenario of predicting PN was similar to that of

predicting GY, showing that a joint analysis with more auxiliary traits

might greatly improve the predictive ability. In plant breeding, traits

being sex-linked or expressed later in life are not as widespread as

those in animals. However, some plant traits are difficult or expensive

to measure, such as root traits, stress resistance traits and grain yield

per plot, and thus the application of MT prediction borrowing

phenotypic values of auxiliary traits from the target population is

promising.

Moreover, traditional MV methods are known for using genetic and

residual covariance across correlated traits to obtain sizable gains in

prediction accuracy (Scutari et al., 2014; Lopez-Cruz et al., 2015).

These methods are more time-consuming than UV methods, and this

limitation is expected to become serious when the number of

phenotypic records or variates increases (Schulthess et al., 2016).

In the present study, the dimensions of MV-ADV are the same as

those of UV models (n× n), leading to high efficiency particularly

in REML.

Effect of the MV model on ME prediction

In our ME analyses, the MV model for ME prediction includes all data

to estimate marker effects, and borrowing information across

Table 3 Average predictive ability for the hybrids from a single

environment and the average of two environments

Trait Environment

1 (1)

Environment

2 (2)

((1)+(2))/2 Prediction for the

average data of two

environments

GY 0.2897 0.3671 0.3284 0.3947

TGW 0.7487 0.8832 0.8160 0.8800

PN 0.3404 0.2425 0.2915 0.4087

PH 0.6904 0.8643 0.7774 0.8637

PB 0.5429 0.6170 0.5800 0.6827

SB 0.6147 0.6103 0.6125 0.7197

GN 0.4912 0.5989 0.5451 0.6444

PL 0.7041 0.6952 0.6997 0.7939

Abbrevitions: GN, grain number per panicle; GY, grain yield per plant; PB, primary branch

number; PH, plant height; PL, panicle length; PN, productive panicle number per plant; SB,

secondary branch number; TGW, thousand-grain weight.

Environment 1= the experimental farm of Huazhong Agricultural University. Environment 2= the

experimental farm of Hubei Academy of Agricultural Sciences.

Table 4 Average predictive ability with SE and ME for the hybrids

Trait UV-AD MV-ADV

GY 0.3284 0.3364

TGW 0.8160 0.8247

PN 0.2915 0.2856

PH 0.7774 0.7735

PB 0.5800 0.6052

SB 0.6125 0.6197

GN 0.5451 0.5696

PL 0.6997 0.7065

Average 0.5813 0.5902

Abbrevitions: GN, grain number per panicle; GY, grain yield per plant; ME, multi-environment;

PB, primary branch number; PH, plant height; PL, panicle length; PN, productive panicle

number per plant; SE, single environment; SB, secondary branch number; TGW, thousand-grain

weight; UV-AD, UV GBLUP model including additive and dominance effects.
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environments is permitted. For most of the eight traits, the

prediction can benefit from records of the hybrids collected in

other environments, which is consistent with previous across-

environment work (Jarquín et al., 2014). However, it is notable

that, in the ME analysis for PN and PH, the ME prediction

underperformed the SE prediction, showing that environmental

difference might negatively affect the ME prediction in some cases.

Additionally, as shown in Tables 3 and 4, MV-ADV under-

performed the prediction for average phenotypic values of two

environments, showing that the latter is a feasible method to

eliminate the effects of error on prediction. If the goal is to obtain

a maximal amount of genetic information regarding the target

plant, then replicated field trials on several farms in different

environments are necessary, and using average phenotypic values

of different environments is simple and effective. However, if the

research focuses on plant performance in a specified environment,

then trials in other environments are valuable, and the MV-ADV

model is recommended.

CONCLUSIONS

The prediction results of the rice hybrid performance based on

NC II demonstrated that we could take advantage of GS, even for a

low-heritability trait (such as GY), because a modest increase in

the number of top selection could generate a stable higher mean

phenotypic value for rice hybrids. Thus the strategy was used to

pick out superior potential crosses between the 115 inbred lines

and those between the 5 male sterile lines and some other

genotyped varieties. Additionally, in the present study, we devel-

oped an MV-ADV model for predicting unobserved phenotypes of

hybrids benefiting from joint analysis with auxiliary traits or with

the phenotypes observed in other environments. In both MT and

ME prediction, the results confirmed the superiority of MV-ADV

over UV-AD, particularly in the MT scenario for a low-heritability

target trait (such as GY) with highly correlated auxiliary traits. For

a high-heritability trait (such as TGW), MT prediction is unne-

cessary, and UV prediction is sufficient. We expect that the

outcomes of the present study will contribute to the genomic

prediction of rice hybrid performance.
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