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Abstract

Event-related potential (ERP) has the potential to reveal the temporal neurophysiological dynamics of risk decision-making, but

this potential has not been fully explored in previous studies. When predicting risk decision with ERPs, most studies focus on

between-trial analysis that reflects feedback learning, while within-trial analysis that could directly link option assessment with

behavioral output has been largely ignored. Suitable task design is crucial for applying within-trial prediction. In this study, we

used a modified version of the classic Balloon Analogue Risk Task (BART). In each trial of the task, participants made multiple

rounds of decisions between a risky option (pump up the balloon) and a safe option (cash out). Behavioral results show that as the

level of economic risk increased, participants were less willing to make a risky decision and also needed a longer response time to

do so. In general, the ERP results showed distinct characteristics compared with previous findings based on between-trial

prediction, particularly about the role of the P1 component. Specifically, both the P1 (amplitude and latency) and P3

(amplitude) components evoked by current outcomes predicted subsequent decisions. We suggest that these findings indicate

the importance of selective attention (indexed by the P1) and motivational functions (indexed by the P3), which may help clarify

the cognitive mechanism of risk decision-making. The theoretical significance of these findings is discussed.

Keywords Decision-making . Risk preference . Balloon Analogue Risk Task (BART) . Event-related potential (ERP) . P1

component . P3 component

Predict future decisions with brain signals

The human brain plans and controls decision-making behav-

ior; therefore, brain activity contains information that could

predict future decisions. Linking brain activation patterns with

behavioral choices provides invaluable knowledge about the

nature of human decision-making (e.g., Cohen & Ranganath,

2007; Knutson, Rick, Wirnmer, Prelec, & Loewenstein,

2007). In the context of risk decision-making (i.e., different

options vary in their risk levels1), the brain activity that pre-

dicts upcoming risk decision may help unravel the psycholog-

ical mechanisms of risk taking. For instance, the predictive

power of reward-related brain regions (e.g., orbitofrontal cor-

tex [OFC] and basal ganglia) indicates that risk decision-

making is strongly reward driven (Bechara, Damasio, &

Damasio, 2000; Christopoulos, Tobler, Bossaerts, Dolan, &

Schultz, 2009; Smith et al., 2009). Taking a step further, re-

searchers have found that the abnormality of these reward-

1
In this study, the operational definition of economic risk is the amount of variance

in outcomes (Rothschild & Stiglitz, 1970). As Fox, Erner, and Walters (2016, pp.

43–88) pointed out, BWhile no single definition of comparative riskiness holds

across all models, it is generally seen as increasing with variation in the outcome

distribution, holding expected value constant.^ For instance, the possibility of

winning/losing 10 points entails a higher level of risk than the possibility of

winning/losing 5 points, given that the probabilities of winning and losing are

controlled (`Holper,Wolf, &Tobler, 2014). This definition has beenwidely applied

in experimental studies (e.g., De Martino, Camerer, & Adolphs, 2010; Giorgetta

et al., 2012; Tom, Fox, Trepel, & Poldrack, 2007).
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related regions leads to maladaptive risk taking in clinical

samples (e.g., pathological gambling, drug abuse,

unprotected sex Bolla et al., 2003; Robbins, Gillan, Smith,

de Wit, & Ersche, 2012). Thus, the neuroscience research on

predicting risky choices is not only theoretically interesting

but also practically important.

Various neuroscience techniques have been used to pre-

dict upcoming risk decision-making in humans, especially

brain-imaging and event-related-potential (ERP) methods.

Brain-imaging research has identified a wide range of brain

regions that are strongly involved in risk decision-making,

including the midbrain dopaminergic system, such as the

ventral striatum, and frontal areas, such as the medial pre-

frontal cortex (MPFC) (Hsu, Bhatt, Adolphs, Tranel, &

Camerer, 2005; Krain, Wilson, Arbuckle, Castellanos, &

Milham, 2006; Levy, Snell, Nelson, Rustichini, &

Glimcher, 2010). In general, the dopaminergic system fo-

cuses on reward processing, while the frontal areas esti-

mate potential risk and/or cost of action. Human

decision-making may depend on the balance between these

two systems (Rushworth & Behrens, 2008). Indeed, the

activities of both systems show reliable predictive power

in risk decision-making tasks. Signal changes in the ventral

striatum significantly predict the willingness to take eco-

nomic risk (e.g., gamble; Buchel, Brassen, Yacubian,

Kalisch, & Sommer, 2011; Huang, Soon, Mullette-

Gillman, & Hsieh, 2014; Niv, Edlund, Dayan, &

O’Doherty, 2012). Regarding frontal areas, the MPFC not

only encodes the difference in risk level between options

but also shows increased activity for risky compared with

safe decisions (Wright, Symmonds, & Dolan, 2013).

Meanwhile, the importance of the insula, anterior cingulate

cortex (ACC), and parietal cortex should not be

underestimated (Kolling, Wittmann, & Rushworth, 2014;

Mohr, Biele, & Heekeren, 2010; Platt & Huettel, 2008;

Smith et al., 2009). However, hemodynamic-based brain-

imaging techniques suffer from limited temporal resolution

(Deshpande, LaConte, Peltier, & Hu, 2009). Therefore, it is

difficult to judge whether the discriminative brain activa-

tions between risky and safe trials reflect the neural activ-

ities that precede and determine the decision, or instead

reflect the consequence of that decision (Helfinstein

et al., 2014). For the same reason, brain-imaging tech-

niques have difficulties in dissociating the psychological

functions that are highly overlapped in time domain

(Amodio, Bartholow, & Ito, 2014). Considering that tem-

porally adjacent cognitive functions (e.g., attention, mental

representation, and information integration) might be in-

volved in risk decision-making (Brand, Labudda, &

Markowitsch, 2006; Weber & Johnson, 2009), this study

employs the ERP as the brain recording technique in ap-

preciation of its exquisite temporal resolution (Liotti,

Woldorff, Perez, & Mayberg, 2000).

ERP approach for prediction

Decision-making can be divided into multiple stages; gener-

ally, people evaluate available options (option assessment),

make choices (behavioral output), and then receive outcome

feedback (feedback processing) (Paulus, 2005; Platt, 2002).

To our knowledge, most previous ERP studies make behav-

ioral predictions by investigating the feedback processing

stage, that is, using feedback-evoked signals in one trial to

predict behavioral decisions in the next trial (e.g., Cohen &

Ranganath, 2007; Zhang et al., 2013). This between-trial anal-

ysis reflects feedback learning, which is based on the rationale

that participants would learn from feedback and adjust behav-

ioral strategies accordingly, even though adjacent trials are

independent from each other (Cohen & Ranganath, 2005;

Peterson, Lotz, Halgren, Sejnowski, & Poizner, 2011;

Starcke & Brand, 2016).

In light of this idea, previous studies have found that the

amplitudes of the ERP components elicited by current feed-

back, particularly the feedback-related negativity (FRN) and

P3, are associated with risk decision in the subsequent trial

(Cohen & Ranganath, 2007; San Martín, Appelbaum,

Pearson, Huettel, & Woldorff, 2013; Zhang et al., 2014;

Zhang et al., 2013). In a strategic gambling game, Cohen

and Ranganath (2007) discovered that a heightened FRN re-

sponse elicited by monetary loss indicates a stronger tendency

to select a different option on the next trial, which is

interpreted from the perspective of trial-by-trial reward learn-

ing (see also Cavanagh, Frank, Klein, & Allen, 2010; Cohen,

Wilmes, & van de Vijver, 2011; van der Helden, Boksem, &

Blom, 2010). Also, our previous studies have reported that

when the P3 amplitude elicited by feedback became larger,

participants would tend to switch between risk seeking and

risk avoidance in adjacent trials (Zhang et al., 2014; Zhang

et al., 2013). These findings, based on between-trial ERP anal-

yses, reveal that feedback information contributes to future

risk preference. The electroencephalogram (EEG) approach

of between-trial research also supports this viewpoint, gener-

ally. For instance, Pedroni et al. (2017) examined the sponta-

neous EEG during intertrial intervals in a sequential risk-

taking task and found an EEG measure (i.e., the percentage

of time covered by EEG microstates) that could reflect the

influence of current feedback on subsequent risk preference.

Between-trial analysis focuses on how an outcome of one

decision influences another decision in the next trial, which

mainly uncovers the mechanism of feedback learning (Cohen

et al., 2011; Zhang et al., 2013). To reach a more comprehen-

sive understanding of risk decision-making, researchers

should also directly establish a predictive relationship between

option assessment and behavioral output within the same trial

(i.e., within-trial analysis). During the stage of option assess-

ment, people evaluate the potential reward and risk associated

with each option and make a trade-off between these two

100 Cogn Affect Behav Neurosci (2018) 18:99–116



aspects (Weber & Johnson, 2008). These cognitive functions

are beyond the framework of feedback learning. Within-trial

ERP analysis could help us to observe how these functions

shape risk preference and how they turn into actions. To our

knowledge, limited progress has been made in this direction.

One exception is a study conducted by Cohen, Elger, and Fell

(2009), which focused on the EEG data and found that during

option assessment, the EEG power enhanced within the delta

(1–4 Hz) and theta (4–8 Hz) frequency bands. Nevertheless,

Cohen et al. (2009) did not detect any association between the

EEG and behavioral choices. In our opinion, a difficulty for

this line of research is to ensure that the electrophysiological

signals of interest are time locked to specific psychological

functions, which is a basic requirement for both ERP and

event-related EEG research (Luck, 2005). However, in most

decision-making paradigms used in ERP/EEG studies, the

available options, as well as the given circumstance, are un-

changed throughout the task (e.g., Gehring & Willoughby,

2002). As a result, participants may assess options and make

up their minds before the time point of option presentation

(Cohen et al., 2011).

Balloon Analogue Risk Task (BART)

We suggest that the Balloon Analogue Risk Task (BART), a

classic paradigm of sequential decision-making (Lejuez et al.,

2002), would be suitable for the ERP-based within-trial pre-

diction. Sequential decision-making means that people should

consecutively make multiple decisions within the same trial

(Pleskac,Wallsten,Wang, & Lejuez, 2008). In each trial of the

BART, participants could pump up for many rounds an empty

balloon, which may grow larger incrementally or end up ex-

ploded. After a successful pump, the balloon would be inflat-

ed to a greater volume (we call it periodical outcome), indi-

cating that the accumulated reward increases. Participants then

choose between cashing out that reward (a safe option) and

continuously betting for more reward (a risky option). Thus, a

positive outcome in the current round also represents the value

of the safe option in the next round, that is, the reward that

participants would receive if they discontinue. We are inter-

ested in using the ERPs elicited by periodical outcome (also

the safe option of the next round) to predict the upcoming

decision within the same trial. For two reasons, we believe

that it would be promising to build a time-locked relationship

between the ERPs evoked by periodical outcome and the stage

of option assessment. First, participants do not know whether

they would get another opportunity to make a decision until

they receive the periodical outcome. Second, both the amount

of accumulated reward and the level of economic risk vary

across different decision rounds; thus, the information about

reward and risk is dynamic and needs real-time evaluation. In

short, the BART provides an ideal task structure that is

suitable for the within-trial behavior prediction using the

ERPs time locked to option assessment.

An abundance of research has been devoted to explore the

neural activations associated with the BART, which undoubt-

edly illuminates this study. First, compared with a passive no-

choice condition in which participants continually inflate a

balloon until it explodes, active engagement in the BART

results in greater activations in the dorsolateral prefrontal cor-

tex (DLPFC), possibly reflecting the cognitive control mech-

anism (Cazzell, Li, Lin, Patel, & Liu, 2012; Lin, Li, Cazzell, &

Liu, 2014; Rao, Korczykowski, Pluta, Hoang, & Detre, 2008;

L. L. Rao et al., 2014). Second, many brain regions respond to

the risk level associated with each pump, including the ACC,

MPFC, OFC, insula, and the midbrain reward processing sys-

tem (Kohno, Morales, Guttman, & London, 2017; Mata, Hau,

Papassotiropoulos, & Hertwig, 2012; Rao et al., 2008;

Schonberg et al., 2012; Telzer, Fuligni, Lieberman, &

Galvan, 2013a, 2013b; Telzer, Fuligni, Lieberman,

Miernicki, &Galvan, 2015). Some of these regions are helpful

to explain individual difference in risk preference during the

BART. For example, participants who showed stronger acti-

vation in the ventral striatum were less likely to cash out

(Telzer et al., 2015). Poor sleep quality in adolescences leads

to more risky decisions and reduced functional coupling be-

tween the DLPFC and ventral striatum (Telzer et al., 2013a).

These findings suggest the importance of individual striatal

dopamine variability in the BART, which is also supported

by studies on genetic difference in dopaminergic systems

(Mata et al., 2012). In addition, Jentsch, Woods, Groman,

and Seu (2010) found that temporary inactivation of the

OFC significantly reduced the tendency of risk taking; to ex-

plain this behavioral change, Jentsch et al. (2010) proposed

that the OFC is crucial for the incentive motivation to obtain

reward.

Previous ERP studies have also revealed that the ampli-

tudes of the FRN and P3 are sensitive to the factors of reward

and risk in the BART. Regarding the reward factor, both the

FRN and P3 are larger following negative (i.e., balloon explo-

sion) compared with positive feedback (Crowley et al., 2009;

Euser, van Meel, Snelleman, & Franken, 2011; Yau, Potenza,

Mayes, & Crowley, 2015). Regarding the risk factor, a series

of studies conducted by Euser and her colleagues show that

the P3 amplitude elicited by positive feedback is correlated

with the total number of risky choices (Euser, Evans, Greaves-

Lord, Huizink, & Franken, 2013a; Euser, Greaves-Lord, et al.,

2013b; Euser et al., 2011). Furthermore, Kardos et al. (2016)

found that the reward positivity (which is argued to be

analogous to the FRN; see Proudfit, 2015, for a review) elic-

ited by positive feedback was larger preceding a safe decision

compared with a risky but failed (i.e., balloon explosion) de-

cision. These findings support the roles of the FRN and P3 in

feedback processing on the BART when outcome processing

responses are averaged across trials. Furthermore, an
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investigation of within-trial outcome processing on the BART

by Kiat, Straley, and Cheadle (2016) has also shown that the

amplitude of the P2 and FRN elicited by outcomes increases

as a function of risk level as participants progress through each

BART trial.

Unfortunately, most previous BART studies did not exam-

ine the relationship between brain signals and behavioral de-

cisions on a within-trial basis, that is, whether brain activa-

tions elicited by periodical outcome could predict the decision

in a following round. A notable exception was performed by

Helfinstein et al. (2014), who used functional magnetic reso-

nance imaging (fMRI) and discovered that the ACC, insula,

and OFC are predictive of behavioral choices (pump/cash out)

in the upcoming round. However, as we mentioned earlier,

brain-imaging techniques generally have limited temporal ac-

curacy. Therefore, it is difficult to distinguish the roles of these

regions in risk decision-making, that is, to isolate their activa-

tions in temporal dimension and associate them with different

cognitive functions.

Experimental hypotheses

The current study investigated the predictive validity of the

ERPs elicited by periodical outcomes immediately preceding

either risky or safe choices. A modified version of BARTwas

used to fit our research interest (see the Method section for

details). On the behavioral level, we expected that as decision

rounds accumulate, the tendency to choose the risky option

would significantly decline because of the increasing risk lev-

el (Bishara et al., 2009). On the electrophysiological level, we

expected that ERPs that are time locked to the periodical out-

come could predict subsequent decision-making (safe vs.

risky) on the single-trial level. The most likely candidates

are the FRN and P3. However, since it is unknown whether

the ERPs following periodical outcome could predict future

decisions in a single-trial setup, no specific hypothesis was

made regarding the ERP components.

Method

Participants

Forty-four healthy participants (24 females; age range: 18–24

years, mean = 20.2 ± 0.3 years) were recruited from Beijing

Normal University as paid participants. All participants were

right-handed and had normal or corrected-to-normal vision.

Written informed consent was obtained prior to the experi-

ment. The experimental protocol was approved by the local

ethics committee (Beijing Normal University), and this study

was performed strictly in accordance with the approved

guidelines.

Procedure

Before the experiment, participants were instructed about the

rules and the meaning of the symbols in the task (see Fig. 1 for

the experimental instruction). In brief, there were at most three

rounds for each trial, and participants were asked to choose

between Bpump^ or Bcash out^ in each round. Participants

were told that the probability of balloon inflation versus ex-

plosion was 50% versus 50% in every round. They were also

encouraged to respond in any way that would maximize the

total score amount. The higher the scores they earned, the

more bonus money they would receive at the end of the

experiment.

During the formal task, participants sat comfortably in an

electrically shielded room, approximately 100 cm from a com-

puter screen. The sequence of stimulus presentation is shown

in Fig. 2. Each trial represented a simulated red balloon (3.0° ×

3.5° of visual angle at the starting of any trial) presented on the

center of the screen. In each round, there was a black question

mark inside the balloon, indicating that participants could in-

crementally inflate the balloon or stop the current trial and

cash out the points by pressing the BF^ or BJ^ key on the

keyboard with their left or right index finger, respectively.

The relationship between two options and button positions

were counterbalanced across participants. Choosing the

Bpump^ option would result in the disappearance of the ques-

tionmark for a random interval of 800 to 1,200ms. Thereafter,

if participants succeeded, the balloon would become larger

such that its on-screen size increased by 5%, meanwhile the

amount of current accumulated rewards appeared inside the

balloon with a plus sign. Participants then waited for 1,500 ms

until the question mark was presented again, indicating the

beginning of next round. Otherwise, the appearance of an

explosive symbol replaced the balloon for 1,500ms to provide

a symbolization of exploded balloon, which indicated that the

accumulated rewards were lost. Participants then saw the cap-

italized word BNEXT^ for 1,500 ms, indicating the upcoming

of a new trial. Choosing the Bcash out^ option would result in

the presentation of BNEXT^ immediately, with the accrued

points being added to the total scores. All the numbers and

characters presented in the task were written in Arial font in

boldface. The experiment contained five identical blocks;

each block consisted of 90 trials (i.e., 90 separate balloons),

with each block separated by a short break. At the end of the

task, the total earned points were displayed to participants.

Participants were then debriefed and were paid 60–100

Chinese yuan according to their final scores. Stimulus display

and behavioral data acquisition were conducted using E-Prime

2.0 (Psychology Software Tools, Inc., Pittsburgh, PA, USA).

Overall, the structure of formal task was consistent with the

classic BART. While retaining the key features of sequential

risk taking, we also made modifications in three aspects to fit

the purposes of this study.
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First, the classic BART is constructed to allow a total of

128 possible pumps per trial (Pleskac, 2008). In order to ana-

lyze neural responses in each round separately, the maximum

round number per trial was shortened to three pumps to ensure

that each round had sufficient epochs available for ERP aver-

aging while preventing the task from being too lengthy.

Similar changes have been widely applied in other neurosci-

ence studies using the BART (Fein & Chang, 2008;

Helfinstein et al., 2014).

Second, the BART is an ill-defined problem because par-

ticipants are unaware of the chances of explosion (e.g.,

Pleskac, 2008). Participants need to explore the concealed

Fig. 2 Illustration of experimental trials, which describes four possible

consequences (corresponding to the four rows) if participants kept

pumping up the balloon, that is, the balloon might end up exploding in

Rounds 1, 2, or 3, or might finish as a 20-point reward. The ERP data in

blue boxes were used to predict the decision in the upcoming round. All

the four kinds of trials ended up with a word BNEXT,^ which indicated a

new trial was coming. (Color figure online)

Fig. 1 Graphical instruction for participants prior to the experiment.

Participants were told: BIn this task, you can pump up each balloon up

to three times. You will make 5, 10, or 20 points being added to the total

scores if the first, the second, or the third pump is successful. The

probability of successful and unsuccessful pump is 50% vs. 50%. If the

balloon explodes, you will get zero points for this balloon. If you stop

pump and cash out the current points, the accumulated points will be

added to the total scores immediately.^ (Color figure online)

Cogn Affect Behav Neurosci (2018) 18:99–116 103



probabilistic structure of the paradigm through trial-and-error

learning. However, the ill-defined characteristic may reduce

the BART’s ability to identify real-world risky takers (Pleskac,

2008). In order to focus on subjective risk preference, the

modified task was designed as a well-defined problem to con-

trol the potential influence of feedback learning, such that both

the expected payoff of each pump and the probability of bal-

loon explosion were informed to participants prior to the task.

Similar revisions have been applied by Pleskac (2008), who

compared two conditions such that probability information

was unknown in one condition but was explicit in the other.

According to Pleskac (2008), learning demands were mini-

mized in the explicit condition. Indeed, his results revealed

that task performance became more sensitive to real-world

risk taking (e.g., drug abuse) in the explicit condition (see

also Wallsten, Pleskac, & Lejuez, 2005).

Third, the probability of explosion in the classic BART

increases with each successful pump (Pleskac, 2008). As a

result, the classic BART has an expected value that first in-

creases to a peak and then drops back down with continued

pumping (Leland & Paulus, 2005). Thus, the pump option is

the optimal choice at the early stage of every trial but gradu-

ally becomes suboptimal as the number of successfully inflat-

ing accumulates. This task design confounds increased risk

with varying expected value (Schonberg, Fox, & Poldrack,

2011). We modified the task such that the probabilities of

win and loss were equal throughout the task (see also Yau

et al., 2015, for similar modifications). The reward in the

balloon was zero at the beginning of each trial (consistent with

the classic BART), and increased from zero to 5 points after

the first, from 5 to 10 points (i.e., increased by 5 points) after

the second, and from 10 to 20 points (i.e., increased by 10

points) after the third successful pump. Accordingly, partici-

pants in the second pump faced a trade-off between earning 5

more points and losing 5 points at hand; likewise, in the third

pump they faced a trade-off between earning 10 more points

and losing 10 points at hand. Thus, the expected values of

both the second pump (5 × 1/2 + (−5) × 1/2) and the third

pump (10 × 1/2 + (−10) × 1/2) were zero (i.e., there was no

optimal choice in the scenario). In other words, the major

difference between these two rounds was risk level, but not

expected value.

Behavioral measure

This study introduced a dependent variable of Brisky ratio^ to

measure the preference for risky or safe (risk-avoidant) op-

tions (Zhang et al., 2014; Zhang et al., 2013). Risky ratio

was calculated by dividing the number of risky decisions

(i.e., pump up the balloon) by the total number of decisions

(pump + cash out). Response time (RT) for each decision was

also analyzed.

EEG recording and data preprocessing

EEG activity was recorded referentially against a frontal elec-

trode site and off-line rereferenced to the global average ref-

erence, by a 64-channel amplifier with a sampling frequency

of 250 Hz (NeuroScan Inc., Herndon, VA, USA). Besides two

electrooculogram channels, 62-channel EEG data were col-

lected with electrode impedances kept below 5 kΩ.

Ocular artifacts were removed from the EEG using a re-

gression procedure implemented in NeuroScan software

(Scan 4.3). The recorded EEG data were then filtered (0.01–

30 Hz) and segmented beginning 200 ms prior to the onset of

stimulus and lasting for 1,600 ms. All epochs were baseline-

corrected with respect to the mean voltage over the 200 ms

preceding the onset of stimulus, followed by averaging in

association with experimental conditions.

ERP analysis and single-trial prediction

This study used the ERPs elicited by periodical outcome in

Round 1 and Round 2, to predict behavioral choices in Round

2 and Round 3, respectively (see the two blue rectangles in

Fig. 2). Only the ERPs following positive periodical outcome

(i.e., successfully pump) are considered in the analysis, be-

cause after negative outcome (i.e., explosion) no further action

could be taken due to the task structure (see also Helfinstein

et al., 2014).

Through visual detection on the averaged ERP waveform,

we found out that the P1 and P3 components were sensitive to

the difference between safe and risky trials. In contrast, no

clear FRN was observed in the frontal area. Accordingly, the

P1 and P3 components were chosen for further analyses. The

selection of these components was data-driven.

First, we analyzed the mean amplitudes of the lateral oc-

cipital P1 and the parietal P3 across different sets of elec-

trodes. Time windows for mean amplitude calculation were

centered at the peak latencies of ERP components in grand-

mean waveforms, with a shorter window length for early com-

ponents and a longer length for late components. Through

visual detection on grand-mean ERP waveforms, the peak

latency of the P1 was also considered, because there was ap-

parent difference between safe and risky trials. The mean am-

plitude and peak latency of P1 were measured using the aver-

age data at the electrode sites of O1, O2, PO3, PO4, PO5,

PO6, PO7, and PO8 (analysis window: to pump in the next

round = 80–130 ms, to cash out in the next round = 120–170

ms, after the onset of periodical outcomes). Since the P1 com-

ponent has been scarcely reported in decision-making litera-

ture, this study did not make any hypothesis concerning the

hemisphere distribution of the P1. Accordingly, the P1 mea-

sures in the left and right hemispheres were collapsed to obtain

a high signal-to-noise ratio (see also Eldar et al., 2012;

Hammerschmidt, Sennhenn-Reulen, & Schacht, 2017; Liu,
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Zhang, & Luo, 2014; Raz, Dan, & Zysberg, 2014; Zhang, He,

Chen, & Wei, 2016). Meanwhile, the mean amplitude of P3

was measured using the average data at the electrode sites of

Cz, CPz, Pz, CP1, and CP2 between 300 and 450 ms after

outcome onset.

Second, we used single-trial ERPs elicited by the periodical

outcome in the current round to predict whether participants

would choose risky (pump) or safe (cash out) options in the

next round. To obtain a robust measurement of the spatial-

temporal information buried in single-trial ERPs, we used

the average activity across short intervals (60 ms in length

with a sliding step size of 4 ms; i.e., neighboring 60-ms inter-

vals had an overlap of 56 ms) as classification features

(Blankertz, Lemm, Treder, Haufe, & Muller, 2011; Mars

et al., 2008; Philiastides, Ratcliff, & Sajda, 2006;

Steinhauser &Yeung, 2010). Please note that a relatively short

interval (60 ms) was used in the single-trial analysis because a

narrow time window could reflect temporal changes of ERP

activity more accurately. Considering that the feedback-

evoked ERP epochs had a length of 1,600 ms in this study,

we finally had 386 short intervals as prediction data ((1600 −

60)/4 + 1 = 386). Each interval had 62 mean amplitudes from

the 62 recording electrodes. Then, the 62-dimensional feature

vector was put into logistic regression (LR) classifiers to label

the behavioral decision of the subsequent choice as Bpump^ or

Bcash out.^ The LR classifier has been widely applied in the

field of cognitive neuroscience (e.g., Bhattacharyya, Konar,

Tibarewala, & Hayashibe, 2017; De Lucia & Tzovara, 2015;

Fischer & Ullsperger, 2013; Munneke, Nap, Schippers, &

Cohen, 2015; Tzovara, Chavarriaga, & De Lucia, 2015; van

Gerven, Hesse, Jensen, & Heskes, 2009).

To ensure that the predictive ERP measures have validity

across individuals, this study used a between-subject cross-

validation strategy (Kriegeskorte, Simmons, Bellgowan, &

Baker, 2009; Pereira, Mitchell, & Botvinick, 2009). To that

end, we trained the LR classifier using eight-fold cross-vali-

dation to discriminate between short-interval activity maps of

the BART rounds that immediately preceded a decision to

cash out versus a decision to continuously inflate the balloon.

To balance the number of ERP epochs that preceded pump

versus cash out (i.e., two classes), we randomly selected a

subset of the ERP short intervals (i.e., samples) in the class

with more numerous samples and used the subset as training

data. To ensure against variability due to subset selection, the

procedure was performed 10 times in each training set, and the

results were averaged.

To evaluate the performance of the classifiers, the receiver

operating characteristic (ROC) curve was plotted, and the area

under the curve (AUC) was calculated to quantify the predic-

tion results. A permutation statistical analysis was performed

to test whether the achieved AUC values exceeded chance

level. The permutation procedure was applied to calculate

the 95% confidence interval (CI) of the AUC under the null

hypothesis (i.e., there is no predictive information buried in

ERP short intervals) by producing a distribution of the AUC

with label-permuted trials (repeated 1,000 times). We then

checked whether the AUC given by LR classifiers was outside

of the 95% CI of the associated label-permuted distribution, in

which case we determined that the AUC produced by the LR

classifier achieved a significance level of p < .05.

Statistics

Descriptive data were presented as mean ± standard error. The

significance level was set at .05.

A repeated-measures analysis of variance (ANOVA) was

performed on the behavioral measure of risky ratio as well as

ERP measurements, with risk decision (pump vs. cash out)

and round number as within-subject factors. The factor of

round number had three levels for behavioral data (Rounds

1, 2, and 3) while it had two levels for ERP data (using the

ERPs elicited by Round 1 outcome to predict the Round 2

decision, and using the ERPs elicited by Round 2 outcome

to predict the Round 3 decision; the ERPs elicited by Round 3

outcome was not analyzed, because no further decision could

be taken after Round 3).

For the analysis of response time (RT), the generalized

linear mixed model (GLMM; Lo & Andrews, 2015) was used

because of the unbalanced nature of the data (i.e., one partic-

ipant, #27, never pumped up balloons in Round 3, and 13

participants never cashed out in Round 1). The GLMM was

configured with intercept, risk decision (pump vs. cash out),

round number, and Choice × Round interaction as four fixed

factors, and subject as a random factor. As suggested by Lo

and Andrews (2015), the RT distribution was considered as

inverse Gaussian (identity link function between the predic-

tors and RT).

Greenhouse–Geisser correction for ANOVA tests was used

whenever appropriate. Accordingly, for all the F tests with df

> 1 in the numerator, both the corrected p value and the

Greenhouse–Geisser epsilon value (ε) are reported. Post hoc

testing of significant main effects was conducted using

Bonferroni method. Significant interactions were analyzed

using simple effects model.

Results

Behavioral results

Risky ratio

The numbers of risky versus safe decisions in each participant

are shown in Table 1. The data from all the 44 participants

were used to statistically analyze the measure of risky ratio.

On average, there were 438.5 ± 4.04 Bpump^ trials and 11.5 ±
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Table 1 Trial number in the three rounds of BART for each participant

Subject

number

Round 1 Round 2 Round 3

Total Pump Cash Total Pump Cash Total Pump Cash

1 450 448 2 223 192 31 98 42 56

2 450 450 0 227 143 84 71 15 56

3 450 449 1 225 153 72 78 15 63

4 450 436 14 216 169 47 83 40 43

5 450 386 64 193 187 6 91 42 49

6 450 441 9 223 175 48 89 16 73

7 450 450 0 226 209 17 104 42 62

8 450 448 2 223 208 15 105 53 52

9 450 450 0 224 137 87 68 15 53

10 450 449 1 225 190 35 99 29 70

11 450 448 2 224 124 100 60 4 56

12 450 450 0 228 206 22 101 34 67

13 450 441 9 221 205 16 100 51 49

14 450 448 2 222 205 17 99 4 95

15 450 450 0 226 184 42 91 15 76

16 450 405 45 203 181 22 89 41 48

17 450 443 7 222 170 52 84 35 49

18 450 450 0 223 162 61 80 25 55

19 450 340 110 171 147 24 75 25 50

20 450 426 24 212 150 62 70 23 47

21 450 449 1 225 123 102 58 6 52

22 450 450 0 226 181 45 89 50 39

23 450 440 10 219 204 15 100 52 48

24 450 450 0 227 169 58 80 15 65

25 450 449 1 225 151 74 79 38 41

26 450 450 0 229 178 51 92 15 77

27 450 449 1 225 131 94 62 0 62

28 450 449 1 224 218 6 107 54 53

29 450 435 15 218 216 2 109 96 13

30 450 440 10 223 207 16 108 60 48

31 450 449 1 225 197 28 97 75 22

32 450 450 0 222 123 99 61 41 20

33 450 448 2 226 179 47 92 55 37

34 450 450 0 226 224 2 115 34 81

35 450 450 0 225 167 58 89 36 53

36 450 450 0 225 220 5 116 64 52

37 450 448 2 226 111 115 59 15 44

38 450 448 2 223 196 27 99 61 38

39 450 449 1 225 160 65 82 18 64

40 450 447 3 224 209 15 110 69 41

41 450 447 3 225 121 104 57 1 56

42 450 323 127 162 102 60 55 6 49

43 450 447 3 224 98 126 48 22 26

44 450 419 31 210 102 108 48 6 42

Note. Participants in color/boldface (n = 12) were excluded from ERP analysis because they had less than 15 trials in one or more conditions
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4.04 Bcash out^ trials in Round 1; 170.1 ± 5.43 Bpump^ trials

and 49.6 ± 5.28 Bcash out^ trials in Round 2; and 33.1 ± 3.36

Bpump^ trials and 52.1 ± 2.40 Bcash out^ trials in Round 3.

The risky ratio was 97.4 ± 0.9 %, 77.4 ± 2.5 %, and 36.4 ±

3.2 % in Round 1, 2, and 3, respectively (see Fig. 3a). A one-

way repeated-measures ANOVA revealed a significant effect

of round number, F(2, 86) = 235, p < .001, ε = 0.934, η2p =

0.845. Pairwise comparisons showed that the risky ratio sig-

nificantly reduced from Round 1 to Round 2, and from Round

2 to Round 3 as well (ps < .001).

Response time

The trial number in the three rounds of BART for each partic-

ipant was listed in Table 1.

The GLMM (Akaike corrected = 3,152, Bayesian = 3,180)

demonstrated that a main effect of round number, F(2, 244) =

8.88, p < .001, was significant. The RT in Round 1 (763 ± 157

ms) was longer than that in Round 2 (660 ± 156 ms, p < .001)

and Round 3 (688 ± 157 ms, p = .012).

Most importantly, a significant interaction of Risk Decision

× RoundNumber was detected,F(2, 244) = 39.1, p < .001 (see

Fig. 3b). The RT for the cash-out decision (891 ± 160 ms) was

longer than that for the pump decision (635 ± 156 ms) in

Round 1, F(1, 244) = 37.0, p < .001, but this tendency was

reversed in Round 2, F(1, 244) = 7.41, p = .007, pump RT =

694 ± 157ms, cash-out RT = 627 ± 156ms, and Round 3,F(1,

244) = 38.5, p < .001, pump RT = 817 ± 161 ms, cash-out RT

= 558 ± 156 ms.

ERPs

In this section, we did not include the participants who had

less than 15 trials in one or more conditions, because these

ERP data had a relatively low signal-to-noise ratio.

Consequently, the final sample for ERP analysis consisted of

32 participants (refer to Table 1).

P1 component

Mean amplitude The main effect of risk decision was signif-

icant, F(1, 31) = 31.6, p < .001, η2p =0.505 (see Fig. 4). The P1

evoked by the current outcome showed larger amplitudes

when participants decided to pump up balloons (2.79 ± 0.19

μV), compared with cash out (1.34 ± 0.22 μV), in the next

round. The main effect of round number was not significant,

F(1, 31) < 1, η2p = 0.002. The interaction of Risk Decision ×

Round Number was not significant, F(1, 31) < 1, η2p = 0.001.

Peak latency The main effect of risk decision was significant,

F(1, 31) = 668, p < .001, η2p = 0.956 (see Fig. 4); the P1 evoked

by the current outcome had shorter latencies when participants

decided to pump up balloons (106 ± 1.22 ms), compared with

cash out (144 ± 1.23ms), in the next round. The main effect of

round number was not significant, F(1, 31) < 1, η2p < 0.001.

The interaction of Risk Decision × Round Number was not

significant, F(1, 31) < 1, η2p = 0.005.

P3 component

For the mean amplitude of the P3, the main effect of risk

decision was significant, F(1, 31) = 905, p < .001, η2p =

0.967; the P3 evoked by the current outcome showed much

larger amplitudes when participants decided to pump up bal-

loons (8.26 ± 0.21 μV) rather than cash out (0.96 ± 0.20 μV)

in the next round.

The main effect of risk level was significant, F(1, 31) =

8.80, p = .006, η2p = 0.221; the outcome-evoked P3 was

Fig. 3 Behavioral results. a Risky ratio in the three rounds. b Response

time in different conditions. Star indicates p < .05 in pairwise

comparisons. Light red for the RT in Round 1 indicates that the

measure should be cautiously interpreted due to its relatively low

reliability (see Limitations in the Discussion section). (Color figure

online)
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larger in Round 2 (5.09 ± 0.24 μV) than in Round 1 (4.13

± 0.22 μV).

Most interestingly, the interaction of Risk Decision × Risk

Level was significant, F(1, 31) = 4.86, p = .035, η2p = 0.136

(see Fig. 5). When participants decided to pump up balloons

in the upcoming round, the P3 evoked by the outcome of

Round 2 (9.01 ± 0.31 μV) was larger than that evoked by

the outcome of Round 1 (7.52 ± 0.28 μV), F(1, 31) = 12.0,

p = .002. When participants decided to cash out in the next

round, the P3 did not show any significant difference between

Round 1 (0.75 ± 0.26μV) and Round 2 (1.17 ± 0.28μV), F(1,

31) = 1.27, p = .268.

Single-trial prediction

For the ERP data from the 32 participants, the LR classifier

was trained on seven-eighths of the participants (n = 28) and

then applied to the remaining participants (n = 4) to discrim-

inate between ERP short intervals preceding risky versus safe

choices.

When using the outcome-evoked ERP in Round 1 to pre-

dict the decision in Round 2, the AUC of the null hypothesis

(H0: no predictive information in the ERP) was calculated in

the eight testing sets, resulting in a mean 95% CI of [0.51,

0.57] (see Fig. 6a). For the AUC produced by the LR classi-

fiers, there were three distinctive peaks across the time win-

dow of −200 to 1,400 ms (Peak 1 = 94 ± 1.32ms, AUC = 0.64

± 0.02; Peak 2 = 158 ± 2.10 ms, AUC = 0.70 ± 0.03; Peak 3 =

370 ± 2.45 ms, AUC = 0.84 ± 0.02; see Fig. 6a and c).

Considering that the weight of the LR classifier indicates the

predictive contribution of its associated electrode site, the

electrode sites that were most contributive to the prediction

were PO6, PO8, and O1 for Peak 1; PO8, PO6, and PO3 for

Peak 2; and CPz, CP1, and Pz for Peak 3.

When using the outcome-evoked ERP in Round 2 to pre-

dict the decision in Round 3, the AUC of the null hypothesis

was calculated for the eight testing sets, resulting in a mean

Fig. 4 Lateral occipital P1 component (n = 32). Data were averaged at the

electrode sites of O1, O2, PO3, PO4, PO5, PO6, PO7, and PO8 (magenta

circles in topographies). To ensure a relatively low signal-to-noise ratio,

individual ERPs that contained less than 15 trials in one or more condi-

tions were excluded, resulting in a final sample of 32 participants. Here,

ERP time locked to the onset of the outcome presentation in the current

decision round is conditionalized by the decision (pump or cash out) in

the next round (e.g., waveform displayed by a red solid line shows the

averaged ERP epochs that were time locked to the outcome of Round 1

and were followed by a Bpump^ decision in Round 2). (Color figure

online)

Fig. 5 Parietal P3 component (n = 32). Data were averaged at the

electrode sites of Cz, CPz, Pz, CP1, and CP2 (blue circles in the

topographies). To ensure a relatively low signal-to-noise ratio, individual

ERPs that contained less than 15 trials per condition were excluded. Here,

ERP time locked to the onset of the outcome presentation in the current

decision round is conditionalized by the decision in the next round. (Color

figure online)
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95% CI of [0.46, 0.56] (see Fig. 6b). For the AUC produced

by the LR classifiers, there were three distinctive peaks across

the time window of −200 to 1,400 ms (Peak 1 = 94 ± 1.55 ms,

AUC = 0.62 ± 0.03; Peak 2 = 162 ± 2.36 ms, AUC = 0.74 ±

0.04; Peak 3 = 370 ± 3.78 ms, AUC = 0.90 ± 0.02; see Fig. 6b

and d). The electrode sites that were most contributive to the

prediction were PO8, PO6, and O1 for Peak 1 and Peak 2; and

Pz, CPz, and P1 for Peak 3.

It is worth noting that the AUC peaks shown in Fig. 6a–b

occurred at the same time with the peaks of the difference

waves between pump and cash out conditions in Figs. 4–5.

Discussion

Using a modified version of the BART, this study has success-

fully conducted a within-trial predictive analysis to reveal the

relationship between brain activities and upcoming risk deci-

sion-making. On a given trial, the P1 and P3 components

elicited by periodical outcome in one round could predict

behavioral decision (pump/cash out) in the next round. The

amplitude of the P3 but not the P1 was sensitive to round

number (Round 1/2). The reliability of these findings has been

verified with both conventional averaging and single-trial

analyses.

Major findings and interpretations

Behavioral results

From Round 1 to Round 3, the frequency of risky decision

gradually decreased, indicating that the willingness to pump

declined as the reward accumulated and the risk level raised.

Meanwhile, the RT for risky decisions increased from Round

Fig. 6 Results of the single-trial prediction. LR classifiers were trained

using the 62-channel ERPs (60 ms in length) evoked by periodical out-

comes to predict the future decisions between risky versus safe choices.

For the ERP data from the 32 participants, eight-fold cross-validation

resulted in eight testing sets (n = 4 per set). a–b Area under the curve

(AUC) produced by the LR classifiers (in red) and the 95% confidential

interval (CI) of the null hypothesis (the upper and lower 95% CI bound-

aries were displayed using black solid and dotted lines, respectively).

Light color indicates results of the eight testing sets while the dark color

indicates the average. c–dReceiver operating characteristic (ROC) curves

for classification by logistic regression on the eight testing sets. ROC

results are calculated using four ERP intervals (60 ms; i.e., intervals

covering the three distinctive peaks in the AUCwaveforms and a baseline

interval, −160 to −100 ms). a and c Outcome-evoked ERPs in Round 1

predict the decision (to cash out vs. to continuously inflate the balloon) in

Round 2. b and dOutcome-evoked ERPs in Round 2 predict the decision

in Round 3. (Color figure online)
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1 to Round 3, indicating that choosing the risky option became

more difficult for participants. According to Pleskac and

Wershbale (2014), the response slowing should not be ex-

plained in terms of fatigue or disengagement but rather reflects

more planning and deliberate thinking (see also Hassall,

Holland, & Krigolson, 2013). Given that the task demand

remained constant, the change in RT indicates that the tension

between reward and risk became stronger as participants

stepped further. Consequently, the escalating risk forced par-

ticipants to shift from risk seeking to risk avoidance, even

though the expected values of two options were the same.

This phenomenon is consistent with the classic St.

Petersburg paradox that subjective risk preferencemay change

independent of the expected value of options (Weber &

Johnson, 2008).

ERP results: Conventional averaging analysis

Regarding the ERP data, the first important finding is that the

amplitude and latency of the early P1 component (peaked

between 100 and 150 ms after feedback) predicted whether

participants would continuously take risk in the next round;

that is, both larger amplitude and shorter latency indicated a

higher likelihood of making a risky decision. The visual P1

component represents early sensory processing located in the

extrastriate cortex and responds to physical stimulus parame-

ters such as luminance (Luck, 2005; Olofsson, Nordin,

Sequeira, & Polich, 2008). More importantly, both the ampli-

tude and the latency of the P1 are sensitive to selective atten-

tion, such that attended locations elicit a larger P1 than unat-

tended locations do (Clark & Hillyard, 1996), and the P1

latency is shorter for the stimulus that preferentially attracts

attention (Olofsson et al., 2008). Taken together, when the

periodical outcome engaged more attentional resources

(reflected by a larger P1 amplitude and a shorter P1 latency),

participants were more likely to make a risky decision than a

safe decision in the upcoming round. Seeing that the physical

characteristics of positive outcome remained unchanged be-

tween risky and safe trials, the P1 difference between these

two conditions should not be accounted for by visual features

(Weber & Johnson, 2009). Rather, this result may reflect that

participants paid more attention to the potential reward asso-

ciated with a successful pump. That is to say, when partici-

pants were more interested in the rewarding aspect of options

and pay more attention to it, they would be prone to keep on

taking risk (i.e., goal-directed attention allocation). A wide

range of addiction research on reward sensitivity supports

our idea that risk preference could be strengthened by atten-

tional allocation (Kambeitz et al., 2016; Losel & Schmucker,

2004; Pardini et al., 2015; Verdejo-Garcia, Chong, Stout,

Yucel, & London, 2017). For instance, Fridberg et al. (2010)

reported that subjective preference to an option varies accord-

ing to the relative amount of attention paid to gains versus

losses, and that cannabis users who exhibited an attentional

bias to gains showed increased risk-taking behavior. It is

worth noting that the P1 latency varied between conditions

through visual detection; therefore, we analyzed the P1 using

two separate time windows. Considering that it is difficult to

accurately estimate the peak latency of a latent ERP compo-

nent by observing ERP waveforms, and that differences in

latency do not necessarily indicate differences in component

timing (Luck, 2005), the result of the P1 latency (and the P1

findings in general) should be interpreted with caution.

The second ERP finding is the P3 component (peaked ap-

proximately 350–450 ms after feedback). The P3 amplitude

also predicted whether participants would take risk in the

forthcoming round (larger amplitudes indicated a higher like-

lihood of risky choice). Unlike the P1, the P3 showed an

interaction between round number and decision, such that

the P3 followed by a risky decision showed larger amplitudes

across different rounds (see also Hassall et al., 2013). The P3

has been associated with various cognitive functions, depend-

ing upon the experimental paradigm being used (Polich, 2007;

Polich & Criado, 2006). According to previous literature, the

P3 observed in decision-making tasks may indicate the moti-

vational significance of outcome feedback; this component is

larger to the outcomes with higher motivational relevance

(Martin & Potts, 2009; Nieuwenhuis, Aston-Jones, &

Cohen, 2005; Polezzi, Sartori, Rumiati, Vidotto, & Daum,

2010; Schuermann, Endrass, & Kathmann, 2012). The P3

amplitude increased in individuals who attributed more mean-

ing to feedback (De Bruijn, Mars, & Hulstijn, 2004) or

showed stronger desire for rewards (Zheng et al., 2010).

Accordingly, the predictive effect of the P3 amplitude may

reflect that more motivations were allocated to the plan of a

risky decision, and that the amount of motivation for risky

decision increases with its risk level. We suggest that selective

attention (indexed by the P1) was unaffected by the factor of

risk, but more motivations (indexed by the P3) were needed to

choose the risky option when the risk level increased. When

participants plan to make a risky choice, they may feel psy-

chological pressures because of the uncertainty associated

with the risky option (Starcke & Brand, 2012). Thus, more

motivations are needed to overcome the pressures and push

forward the behavioral plan. Furthermore, higher risk level

produces stronger pressures to risk-takers, thereby the level

of motivation increases accordingly when making risky deci-

sions in high-risk rounds (Schwager & Rothermund, 2013).

This interpretation is consistent with the finding that stronger

motivations are necessary to choose risky options, even

though the expected value of risky options are the same with

that of safe ones (Niv et al., 2012; Polezzi et al., 2010).

As an alternative interpretation, the P3 findings may also

reflect attentional focus on the risk factor, regarding the close

relationship between the P3 and attentional function (Pontifex,

Hillman, & Polich, 2009). From the perspective of the context

110 Cogn Affect Behav Neurosci (2018) 18:99–116



updating theory (Donchin & Coles, 1988; Polich, 2007), the

P3 in this study might indicate the updating of external infor-

mation (which would be involved in subsequent decision-

making) in working memory. Taking a step further, it is pos-

sible that the P1 and P3 correspond to lower-level and higher-

level attentional processes, respectively, such that the P1 en-

codes the bottom-up attentional engagement of rewarding in-

formation while the P3 encodes the top-down directed atten-

tional allocation in which the risk information is taken into

account (Debener, Kranczioch, Herrmann, & Engel, 2002;

Wu & Zhou, 2009). This interpretation could help explain

why only the P3 but not the P1 was sensitive to round number,

given that both components were related to attention process-

es. This Battentional^ hypothesis is not necessarily conflicting

with the aforementioned Bmotivational^ hypothesis, seeing

that motivationally significant stimuli preferentially engage

attention (Engelmann & Pessoa, 2007). It is also possible that

the P3 manifested an interaction between attention and moti-

vation. For instance, the P3 amplitude might reflect a compe-

tition between the attention to the potential risk and the moti-

vation to pursue more rewards. This idea is awaited to be

examined in future studies.

ERP results: Single-trial analysis

Aside from the results based on averaged ERPs, this study

also used single-trial signatures of the brain to discrimi-

nate the upcoming decisions between risky and safe

choices. Here, the basic question is when and where the

ERP data carry predictive information about the future

decision (Pereira et al., 2009). To answer the Bwhen^

question, a sliding window (60 ms in length) was used

to define ERP intervals along the time axis, resulting in

three peaks in the AUC waveform (approximately at the

peak latencies of Bto pump^ P1, Bto cash out^ P1, and the

P3 in the averaged ERPs). Furthermore, the weights of

linear classifiers at the three AUC peaks answered the

Bwhere^ question, which reveal that predictive informa-

tion mainly came from lateral occipital (the first two

peaks) and parietal (the third peak) cortices. The single-

trial analysis not only confirmed the robustness of the P1

and P3 findings on averaged ERPs via a data-driven ap-

proach but also has the potential to be applied in more

practical fields such as consumer psychology (see also

Gajewski, Drizinsky, Zülch, & Falkenstein, 2016; Ma,

Wang, Wang, Wang, & Wang, 2010).

Theoretical significance

In our opinion, the theoretical significance of this study is

twofold.

Risk decision-making perspective

The current findings help to understand how the human

brain deals with multiple decision variables (e.g., reward

and risk) in the time domain. It has been acknowledged

that both reward and risk are encoded in the brain and play

important roles in risk decision-making (see the

Introduction section). Taking one step further, the current

findings describe the temporal relationship of these two

factors, indicating that the processing of reward precedes

that of risk. That is, the neural signals were insensitive to

the risk level of the current scenario until a relatively late

time window (approximately 350–450 ms) where the P3

reached its peak. The temporal priority of the reward factor

may explain why a high level of reward sensitivity leads to

maladaptive risk taking regardless of the perceived risk

(Cservenka, Herting, Seghete, Hudson, & Nagel, 2012;

Lyvers, Duff, Basch, & Edwards, 2012).

The current findings also have implications for the re-

search on risk preference. Regarding the determinants of

risk preference, previous studies have largely focused on

involuntary cognitive processes associated with analytical

thinking (e.g., Weber & Johnson, 2008). This idea has been

well received by the BART literature. For instance,

Wallsten et al. (2005) listed probability learning, discrimi-

nation, and probabilistic categorization as the major cogni-

tive factors underlying the influence of periodical outcome

on subsequent risk preference. The role of voluntary pro-

cesses in the BART, however, has been acknowledged re-

cently (e.g., Pleskac & Wershbale, 2014). The results of

this study indicate that risk preference could be modulated

at as early as about 100 ms (i.e., the P1 latency) after

feedback presentation, such that there should be little time

for analytical thinking. Accordingly, we suggest that the

importance of bottom-up voluntary processes in risk pref-

erence should be highlighted in future studies.

ERP perspective

The current study is the first one that combines within-trial

analysis with the ERP technique. Considering that the round-

based BART shows similar task structure with the trial-based

simple gambling tasks, one might argue that the within-trial

prediction in this study adds no new knowledge beyond the

traditional between-trial prediction (e.g., Zhang et al., 2014;

Zhang et al., 2013).

We disagree with this opinion because in simple gam-

bling tasks, outcome feedback indicates the ending point of

the ongoing decision-making. Accordingly, between-trial

prediction reflects the relationship between outcome in

one occasion and behavioral output in another occasion.

In contrast, different rounds in the BART are not indepen-

dent; periodical outcome in one round also functions as an
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option that participants should evaluate in the next round.

Accordingly, within-trial prediction reflects the relation-

ship between option assessment and behavioral output in

the same occasion.

Indeed, this difference has fundamentally affected the

ERP patterns. Specifically, while previous studies using

between-trial ERP analysis focused on the FRN that indi-

cates trial-by-trial feedback learning (Cavanagh et al.,

2010; Cohen et al., 2011; San Martín et al., 2013), the

current study highlights the potential link between the P1

and behavior. The early component P1 has not been con-

sidered to play a significant role in decision-making in

previous studies. Although the P1 amplitude might be

modulated by personality traits (e.g., impulsivity) that af-

fects decision preference (Houston & Stanford, 2001), no

study to date has reported that the P1 could predict behav-

ioral choices. In our opinion, this finding has the potential

to enrich the ERP literature about decision-making.

Limitations

To sum up, this study has disclosed the temporal dynamics of

the brain–behavior relationship during risk decision-making,

which showed distinct patterns of neural prediction compared

with those based on between-trial studies. However, a few

limitations should be noticed.

First, in order to control feedback learning, the informa-

tion of expected payoff and winning probability was pro-

vided to participants. Consequently, the BART changed

from decision under ambiguity to decision under risk

(Starcke & Brand, 2016). According to Schonberg et al.

(2011), the original BART might confound risk preference

with learning ability. That is, it is undetermined whether a

participant chooses the risky option because of his or her

risk preference or because he or she believes that it is the

optimal choice. Thus, Schonberg et al. (2011) suggested

separating the learning factor from the BART (see also

Pleskac, 2008). Nevertheless, one should be cautious when

comparing the current results with previous findings based

on the original BART, the latter of which might have been

modulated by the factor of learning.

A related issue is whether the confounding effect of

feedback learning was successfully controlled in our task.

One might argue that a learning component cannot be

completely excluded even when the probability informa-

tion is explicitly given (Jessup & O’Doherty, 2011).

However, the absence of the FRN effect in the current

results might support our idea, regarding its close associ-

ation with reward learning (Cohen et al., 2011; Walsh &

Anderson, 2012).

Second, the RT data of the cash out condition in Round

1 (see Fig. 3b) should be cautiously interpreted, because it

was calculated based on very few trials (11.5 ± 4.04 trials

per participant), and 13 participants who did not cash out in

Round 1 were excluded from the analysis. We admit that it

is unclear why some participants had chosen to cash out

zero point in Round 1, but response error is a possible

explanation.

Third, seeing that the P1 amplitude was insensitive to

round number, we hypothesize that the attentional func-

tion was independent of the risk factor. Some previous

studies, however, suggest the opposite (Karlsson,

Loewenstein, & Seppi, 2009). It remains unclear if using

a higher level of incentive in the task would create an

observable experimental effect. In addition, although we

interpret the effect of round number from the perspective

of risk level, the reward magnitude of each balloon also

increased as a function of round number. Consequently,

the potential interaction between risk level and reward

magnitude could not be excluded. In this study we dismiss

the possibility that the effect of round number on the P3

amplitude reflected variations in reward magnitude rather

than risk level, because the P3 was sensitive to round

number only when participants made risky decisions. In

our opinion, if on-screen reward magnitude indeed modu-

lated the P3, then this component should have also be

enlarged as a function of round number when participants

made safe decisions because choosing the safe option

would guarantee the acquisition of the on-screen reward.

However, regarding the limitations of the current task de-

sign, we hope follow-up studies using alternative tasks

would clarify that this issue does not affect the interpreta-

tion of the ERP components in this study.

Finally, this study did not consider individual differ-

ence. For example, it has been widely proposed that men

and women differ in risk decision-making (de Visser et al.,

2010). For another example, personality traits such as im-

pulsivity and sensation seeking also affect BART perfor-

mance (Lauriola, Panno, Levin, & Lejuez, 2014). All of

these limitations indicate that follow-up investigations

would be necessary.
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