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Introduct ion

Software developm en t proceeds as a series of

changes to a base set of software. For new projects the

base set may be initially empty. In most projects, how-

ever, there are incremental changes to an existing, per-

haps large, set of code and documentation. Developers

make changes to the code for a variety of reasons, such

as adding new functionality, fixing defects, improving

performance or reliability, or restructuring the software

to improve its changeability. Each change carries with

it some likelihood of failure.

Reducing the number of software failures is one

of the most challenging problems of software produc-

tion . It is especially importan t when rapid delivery

schedules severely restrict coding, inspection, and test-

ing in tervals. This paper deals with  one part of th is

problem: predicting the probability of failure for a soft-

ware change after the coding for that change is com-

pleted. Knowing that the failure probability is h igh

before a software change is delivered allows project

management to take risk reduction measures, such as

allocating more resources for testing and inspection or

delaying its delivery to customers.

Ou r m ain  h ypoth esis is th at easily obtain able

properties of a software change—such as size, dura-

tion, diffusion, and type—have a significant impact on

the risk of failure. Our approach is distinct from most

failure prediction studies (described in the next sec-

tion), which focus on the properties of the code being

changed, rather than on the properties of a change

itself. Knowing which parts of the code are difficult to

change may help one decide where to concentrate

reengineering work, but the changes themselves are

the most fundamental and immediate concern  in  a

software project, because they are necessary to fix and

evolve the product.

In addition to the main hypothesis, we conjecture

that greater programmer experience should decrease

the failure probability and that the increased size and
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diffusion of a change should increase it. To test our

hypotheses we designed the necessary change mea-

sures, constructed a model for change failure probabil-

ity, and then tested our hypotheses by using them in

the predictive model.

From a practical perspective we are interested in

knowing if we can create failure probability models

that are useful in a commercial software project. As a

test case we created such a model for a large software

system, the 5ESS® switch ing system software.1 We

evaluated the predictive properties of our model and

then transformed the model into a decision support

tool. It is currently being used by the 5ESS project to

evaluate the risk of changes that are part of software

updates (SUs).

The remainder of this paper is organized as follows.

In the section immediately below, we review related

work. Next we define the terminology of software

changes and describe the data, after which we discuss

the goals and methods of our research, including the

change measures. In “Model Fitting,” we construct the

models and test our hypotheses. Then we consider the

predictive power of the model and discuss the issues

associated with applying the model in practice.

Related Work

A number of studies investigate the characteristics

of source code files with high fault potential. A com-

mon approach is to use several product measures—

determined from a snapshot of the code itself—as

predictors of fault likelihood, with code size (that is, the

number of lines of code) as the canonical fault predic-

tion measure. Studies conducted by An, Gustafson, and

Melton ,2 Basili and Perricone,3 and Hatton 4 relate

defect frequ en cy to file size. An , Gu stafson , an d

Melton2 also used the degree of nesting to predict a

file’s fault potential. Measures of code complexity, such

as McCabe’s cyclomatic complexity5 and Halstead’s

program volume6 are other examples of product mea-

sures sometimes linked to failure rates. Empirical stud-

ies of product measures and fault rates were described

by Schneidewind and Hoffman,7 Ohlsson and Alberg,8

Shen et al.,9 and Munson and Khoshgoftaar.10

A different class of measures for modeling fault

rates uses data taken from the change and defect his-

tory of the program. Yu, Shen, and Dunsmore11 and

Graves et al.12 use defect history to predict faults, and

Basili and Perricone3 compare new code units with

those that borrow code from other places.

The software reliability literature contains many

studies13-19 that estimate the number of faults remain-

ing in a software system in order to predict the num-

ber of faults that will be observed in some future time

interval. A critique of these approaches is presented by

Moranda.20 In contrast to the preceding studies, which

attempt to iden tify the probability of failu re or the

number of failures for a software entity, we focus on

predicting the probability of failure resulting from a

change to a software entity.

Softw are Changes

Most software products evolve over time because

there is a need to fix defects and extend functionality.

The evolution is accomplished by changing the source

Panel 1. Abbreviations, Acronyms, and Terms

ECMS—Extended Change Management System
EXP—developer experience
FIX—fix of  a defect  found in the f ield
IMR—init ial maintenance request
IMRTS—IMR Tracking System
INT—difference in t ime between the last  and

f irst  delta
LA—number of  lines of  code added
LD—number of  lines of  code deleted
LOC—number of  lines of  code
LT—number of  lines of  code in the f iles touched

by the change
MR—maintenance request
ND—number of  deltas
NF—number of  f iles
NLOGIN—number of  developers involved in

complet ing an IMR
NM—number of  modules
NMR—number of  MRs
NS—number of  subsystems
REXP—recent experience
SCCS—Source Code Control System
SEXP—subsystem experience
SU—software update
URL—uniform resource locator
VCS—version control system
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code. Sets of changes are typically grouped together

into releases or generics. A release represents a new

version of software that fixes a number of defects and

adds new features. Good business practices demand

that new featu re offerings and fau lt fixes be made

available to customers as fast as possible. However, as

software system s in crease in  size, th e task of fre-

quently installing new releases becomes increasingly

unwieldy. SUs are used to solve that problem. The SUs

can be thought of as small releases designed to fix the

most urgent defects rapidly and, possibly, to deliver

the most lucrative features.

A logical change to the system is implemented as

an initial maintenance request (IMR). To keep it man-

ageable, each IMR is organized into a set of mainte-

nance requests (MRs), where each MR is confined to a

single subsystem. Each MR may require changes to

several source code files. A file may be changed several

times, and each change to a file is called a delta. The

delta is an atomic change to the source code recorded

by a version control system (VCS). The minimal infor-

mation  associated with  each  delta includes the file,

developer, date, and lines changed. Very large soft-

ware releases typically cause at least one failure, even

in the most reliable software products, so it does not

make sense to predict the failure probability for an

en tire release (although  it is known to be close to

one). For small SUs, however, this is often not true;

the probability of failure is significantly less than one.

It is important for the project management to know

why the probability of failure is high for some changes,

so they can take appropriate action. Because SUs are

composed of IMRs, knowing which IMRs have high

failure probability is crucial, so they can either be more

thoroughly inspected and tested, or even be delayed,

until a subsequent SU. These practical considerations

lead us to study the probability of failure for IMRs,

rather than for entire SUs or releases.

Softw are Project

The project under study is the software for a high

availability telephone switching system (5ESS). In the

5ESS software, in addition to an annual main release,

a continual series of SUs are sent out, both to give cus-

tomers needed software fixes and to add features that

did not make it into the main release. In the 5ESS soft-

ware, the SUs are implemented by patching new and

replacement functions onto a running system. On the

running switch, the SU is loaded into a block of avail-

able memory. Vectors are set to direct the existing

code to the SU code at appropriate points. In  many

cases, there is no system downtime when the SU is

patched into the running system.

Both  releases an d SUs con sist of a n u m ber of

IMRs. IMRs go through several stages until they are

ready to be submitted. They then enter a pool of can-

didate IMRs for release. From  th is pool th e m ost

urgent candidates are selected for the SU. The selected

IMRs are then built, tested, and finally released in the

SU. Our models are designed to provide failure proba-

bilities for IMRs that are in the “submitted” state. SU

failures are costly and may be a cause for customer dis-

satisfaction. Consequently, project management can

use IMR risk information to select IMRs for an  SU;

build and test teams can use the same information to

decide where to spend extra resources for IMRs that

pose a high risk.

Change Data

The 5ESS source code is organized in to subsys-

tems, and each subsystem is further subdivided into a

set of modules. Any given module contains a number

of sou rce code files. Each  logically distinct change

request is recorded as an IMR by the IMR Tracking

System  (IMRTS). Th e IMRTS records th e SU (or

release) number for the IMR and indicates whether

the IMR was opened to fix a defect found in the field.

The project also has an SU tracking database that lists

all the SU failures and the IMRs that caused these fail-

ures, based on a root cause analysis.

Figure 1 shows the change hierarchy and its asso-

ciated databases. Boxes with dashed lines define data

sources, such  as the SU tracking database; the blue

boxes define changes; and the remaining boxes define

properties of changes. The arrows define an “is a part

of” relationship among changes—for example, each

MR is part of an IMR.

The change history of the files is maintained using

the Extended Change Management System (ECMS)21

for in itiating and tracking changes; and the Source

Code Control System (SCCS)22 for managing different

versions of the files. The ECMS records information
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about each MR. Every MR is owned by a developer,

who makes changes to the necessary files to imple-

ment the MR. The lines in each file that were added,

deleted, or unchanged are recorded as one or more

deltas in  SCCS. It is possible to implemen t all MR

changes restricted to one file by a single delta, but in

practice developers often perform several deltas on a

single file, especially for larger changes. For each delta,

the time of the change, the login of the developer who

m ade th e ch an ge, th e n u m ber of lin es added an d

deleted, the associated MR, and several other pieces of

information are all recorded in the ECMS database.

Failed IMRs are identified only for the population

of IMRs that are part of the SUs. Consequently, we use

only that population of IMRs in our analysis. The pop-

ulation includes about 15,000 IMRs during a period of

ten years.

Research Goals and M ethods

Our main research goal is to determine if we can

predict the probability that a change to the source code

will cause a failu re based on  in formation  available

after the coding stage. Prediction at an earlier stage is

likely to be much less precise, and prediction at a later

stage w ou ld be m u ch  less u sefu l, becau se few er

options would be available to mediate the risk.

Despite extensive literature on source code com-

plexity,5,6 complexity of an object-oriented design,23

or functional complexity,24 little attention has been

devoted  to  stu dyin g th e  proper t ies of softw are

changes. Belady and Lehman 25 described an  early

study of releases, and Basili and Weiss26 reported on

an exploratory investigation of smaller changes. We

used a subset of change measures obtained by the

SoftChange system27 from a software project’s version

control database. We grouped such measures into five

Sof tware update

Feature

IMRIs a f ield fault?

IMRTS

Did it  fail?

Bad IMRs

SU t racking

ECMS
Descript ion

Delta
SCCS

Time, date File, module

Developer
Number of  lines

added or deleted

ECMS – Extended Change Management  System

IMR – Init ial maintenance request

IMRTS – IMR Tracking System

MR – Maintenance request

SCCS – Source Code Control System

SU – Sof tware update

MR

Figure 1. 

Change hierarchy and data sources.
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classes: size, interval, diffusion, experience, and change

purpose measures. For each  of these measures we

formed a hypothesis about its effect on the likelihood

of failure of a change, as described below.

Properties of Changes

The properties of change that factor into our pre-

diction include the diffusion and size of a change, the

type of change, and the programmers’ experience with

the system, as described below.

Diffusion of a change is one of the most important

factors in predicting the likelihood of failure. By diffu-

sion of a change, we mean the number of distinct parts

of software, such as files, that need to be touched, or

altered, to make the change. A large diffusion indicates

that the modularity of the code is not compatible with

th e ch an ge, becau se several m odu les h ave to be

touched to implement the change. We expect diffuse

changes to have a higher probability of failure than

non-diffuse changes of a comparable size. The diffusion

of a change reflects the complexity of the implementa-

tion and, consequently, leads to a higher likelihood of

serious mistakes being made by programmers.

We also expect that a larger change wou ld be

more likely to fail. The intuitive reason is that a larger

change (with  a comparable diffusion) would create

more opportun ities to make a mistake that wou ld

result in a failure.

The changes for new functionality often involve

creating new functions and new source code files,

while the defect fixes are less likely to do that. As a

result, defect fixes tend to be much smaller than new

functionality changes. Because of these significant dif-

ferences, we have no reason to expect that the proba-

bility of failu re wou ld be similar for both  types of

changes. Furthermore, if we assume that programmer

familiarity with the code is an important factor in pre-

venting failures, it is more likely that the fixed code

would be less familiar to the developer than the new

code he or she just wrote for a feature. If this hypothe-

sis is true, then similarly sized and diffuse fault fixes

made by programmers with similar experience would

have a higher probability of failure than the new fea-

ture changes.

Finally, programmers’ experience with a system

should increase their familiarity with  it and, conse-

quently, reduce their likelihood of making a serious

mistake in a change. Of course, this inequality should

hold true only for otherwise similar changes.

To test our hypotheses, first we defined a number

of ch an ge m easu res an d extracted th em  from  th e

product under study. Then we constructed and fitted a

predictive change failure probability model and tested

our hypotheses. Finally, we selected a parsimonious

model with  h igh predictive power and applied it in

practice to predict the risk of failure.

Construction of Change M easures

In this work we are interested in change measures

that have three basic properties:

• Th e measu re sh ou ld be au tomatically com-

pu ted from  an y softw are project’s ch an ge

management data.

• The measure could be obtained immediately

after the coding stage to provide enough time

for risk reduction activities if the predicted risk

turns out to be high.

• Th e m easu re sh ou ld reflect a property of a

change that might significantly affect the prob-

ability that a change would cause a failure.

The first poin t ensures that it would be possible to

extract similar measures for most software projects.

The second guarantees that a measure could be used

in practice if it turned out to be important in predicting

the probability of failure. The last poin t reflects the

goals of this investigation.

Change diffusion or interaction measures include

the total number of files (NF), number of modules

(NM), and number of subsystems (NS) touched by an

IMR, or the number of developers involved in com-

pleting an IMR (NLOGIN). We use the following IMR

size measures: number of lines of code (LOC) added

(LA), LOC deleted (LD), and LOC in the files touched

by the change (LT). The number of MRs (NMR) and

the number of deltas (ND) reflect both the diffusion

and size of an IMR. We measured the duration of an

IMR by calculating the difference in time between the

last and first delta (INT). We also used information

about whether the change was made to fix a defect

found in the field (FIX). If the IMR was a fix, the pre-

dictor FIX is one; otherwise it is zero.

IMR experience measures are based on the aver-
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age experience of developers performing the change.

Developer experien ce (EXP) is determ in ed by th e

number of deltas completed by a developer in making

previous changes before the current change is started.

EXP is computed by taking a weighted geometric aver-

age over the set of developers involved in the change,

wh ere th e weigh ts are th e n u m ber of deltas con -

tribu ted by each  developer. Two m odification s of

developer experience measures are also computed:

recent experience (REXP) and subsystem experience

(SEXP). For REXP, recent deltas are weighted more

heavily than deltas performed a long time ago (the

number of deltas completed n years ago gets weight

). For SEXP, only deltas on the subsystems

th at a ch an ge tou ch es are in clu ded in  calcu latin g

developer experience. Table I summarizes the defini-

tions of these measures.

M odel Fit t ing

Logistic regression, described by McCullagh and

Nelder,28 is a standard way to model probabilities or

proportions. Linear regression , though  more com-

m on ly u sed, is n ot su itable, becau se th e m odeled

response must have values between zero and one. In

logistic regression, as in linear regression, one uses a

number of predictor variables and the response vari-

able, which—in contrast to linear regression—can only

range between zero and one. In our case, the response

variable is one if an IMR caused a failure, and zero

otherwise. Most predictor variables are highly skewed

and need a logarithmic transformation.

We use all change measures in the full model:

(1)

,

where , C is the in tercept,

and the estimated coefficients are αi. Table II shows

the significance of the factors in the full model.

Because some predictors are strongly correlated, it

may be difficult to interpret the estimated values of the

coefficients in  the fu ll model. Model selection tech-

n iqu es su ch  as stepwise regression , described by

Chambers and Hastie,29 can assist in choosing the best

model. The technique proceeds by iteratively dropping

logit 1p2 5 log5p / 11 2 p26

1 a13log  REXP 1 a14log  SEXP

1a12log  EXP1 a11FIX1 a10log INT

1a9log  1LT1 121 a8log  1LD 1 12

1a6log  NMR 1 a7log  1LA 1 12

1a3log  NF 1 a4log  NLOGIN 1 a5log  ND

logit 1P 1failu re 2 2 5 C 1 a1log NS 1 a2log NM

1 / 1n 1 12

Type Abbreviation Definition

Dif fusion

NS Number of  subsystems touched

NM Number of  modules touched

NF Number of  f iles touched

NLOGIN Number of  developers involved

Size

LA Lines of  code added

LD Lines of  code deleted

LT Lines of  code in the f iles
touched by the change

Dif fusion ND Number of  deltas

and size NMR Number of  MRs

Interval
INT Time between the last  and

f irst  deltas

Purpose FIX Fix of  a defect  found in the
f ield

Experience

EXP Developer experience

REXP Recent  developer experience

SEXP Developer experience on a
subsystem

Table I. Summary of change measures.

Description Predictor p-value

Number of  subsystems log NS 0.00

Number of  modules log NM 0.00

Number of  f iles log NF 0.02

Number of  deltas log ND 0.00

Number of  MRs log NMR 0.04

Number of  logins log NLOGIN 0.25

Lines of  code added log (LA + 1) 0.00

Lines of  code deleted log (LD + 1) 0.87

Lines of  code in the log (LT + 1) 0.09
touched f iles

Is it  a problem f ix? FIX 0.00

Change interval log INT 0.00

Experience of  developers log EXP 0.00

Recent  experience log REXP 0.56

Subsystem experience log SEXP 0.36

Table II. ANOVA for the full model.
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predictors from the fu ll model un til dropping any

remain ing predictor would no longer be beneficial,

based on Mallows Cp criteria.30,31 The procedure in

this case suggested a simpler model, as follows:

(2)

Both Table II and Table III show that the coeffi-

cients for size, diffusion, purpose, and experience are

significantly different from zero, supporting our main

hypothesis that change properties do affect the proba-

bility of failure, at least in the considered project.

Our specific hypotheses on size and diffusion of

changes are also supported because the IMR failure

probability increases with  the number of deltas, the

number of lines of code added, and the number of

subsystems touched. Average programmer experience

significantly decreases the failure probability. Finally,

the changes that fix field problems are more likely to

fail than other IMRs if values for other predictors are

comparable.

The model also indicates that the IMR interval has

an influence on failure probability, even after account-

ing for other factors. We specu late that the longer

interval might indicate organizational or other difficul-

ties that may arise when IMR is implemented, and

these difficulties might increase the potential for failure.

For example, if it takes an unexpectedly long time to

complete coding the change, that increase could reduce

the time and effort used for inspection and testing.

We should note that there may be other predictors

we did not measure. For example, we expect that the

number and type of installations for the SU would influ-

ence the probability of failure. When an update is sent

to a very large number of installations or to installations

that handle an extremely heavy workload, it is reason-

able to expect the probability of failure to increase.

As a caution, note that the hypotheses were con-

firmed only in a statistical sense; our statistical model

(or, in deed, an y statistical m odel) does n ot prove

causal relationships. There might be a latent factor that

affects both the predictors and the response. Since the

final model is intuitive and reasonable, the possibility

of such an unknown latent factor appears unlikely.

Predict ion

In  practice, we need to iden tify the IMRs that

have a high risk of failure early enough in the devel-

opment process to be able to take appropriate preven-

tive action . Ou r goal is to perform  th e prediction

immediately after the coding is complete.

Although calcu lating the probability of an  IMR

failure is an essential part of the prediction problem,

we need to know what range of probability values is

too high for a given delivery, so an appropriate risk

management action  can  be taken . Furthermore, to

manage the risk of an IMR, it is important to know

why the model predicts a high probability of failure.

We took th e followin g steps to address th ese two

requirements.

First, we considered the predictive power of the

model by looking at a family of type I and type II

errors. We then chose two cutoff probabilities to classify

the IMRs into three categories: high risk, medium risk,

and normal. Finally, we constructed flags, each corre-

sponding to one predictor in  the model, to indicate

why the risk was high. For example, an IMR may be

classified as having a high risk with two flags, “many

subsystems touched” and “is a field fau lt fix.” The 

project management and developers responsible for the

IMR then act based on the class of risk and the flags.

Predictive Pow er

We classify an IMR as risky if its predicted probabil-

ity of failure is above a cutoff value. Choosing a cutoff

value means attaining a balance between two factors:

• The proportion of IMRs that do not fail when

included in the SU, but are identified as risky.

Th is proportion  is categorized as th e type I

error. Such IMRs incur wasted effort in trying

to reduce their risk.

1a6log  1LA 1 12.

1a3FIX1 a4log  INT1 a5log  EXP

logit 1P 1failu re 2 2 5 C 1 a1log  NS 1 a2log  ND

Description Predictor Estimate p-value

Number of  subsystems log NS 0.41 0.000

Number of  deltas log ND 0.10 0.000

Is it  a f ix? FIX 0.60 0.000

Interval log INT 0.05 0.000

Experience log EXP –0.11 0.002

Lines of  code added log (LA + 1) 0.18 0.002

Table III. Coefficients for the reduced model.
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• Th e proportion  of IMRs th at do fail w h en

included in  the SU, but are not identified as

risky, known as the type II error. Such IMRs

incur failure remediation  costs and customer

dissatisfaction.

To choose an appropriate cutoff value, we need to

look at error probabilities for a range of cutoff values

and to conduct a cost-benefit analysis. The decision

may be different for different projects and for different

types of deliveries. Customers do not expect SUs or

patches to fail; consequently, the cutoff value should

be lower than it would be for large deliveries like new

releases of software. High-reliability systems (such as

the project under study) may require lower cutoff val-
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Type I and Type II errors for different cutoff values.
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ues than systems in which some failures may be toler-

ated. The decision could also be partly based on the

available resou rces. If th e testin g an d in spection

resources are especially scarce at a particular time, the

cutoff value may be raised accordingly.

Figure  2 shows how type I and type II errors

depend on the cutoff value. The horizontal axis shows

the cutoff probability (increasing to the right), while

the type I and type II errors are plotted using colored

lin es. Th e  p lo t  is p rodu ced  u sin g th e  m odel in

Equ at ion  (2)  an d IMR failu re  data  for  a ll years

between 1996 and 1999 to illustrate trends. The errors

do not change significantly for the first three years. In

1999, however, the type II error drops and the type I

error increases slightly. The change in 1999 is a result

of radical ch an ges in  th e SU process design ed to

increase SU quality.

Risk Flags

Inspection of the error plots suggested two cutoff

values appropriate for the project. One cutoff proba-

bility was u sed to iden tify “h igh -risk” IMRs an d

another, lower, cutoff probability was used to iden-

tify “medium-risk” IMRs. We initially used this risk

classification and the failure probability routinely to

com m u n icate th e risk in form ation  for su bm itted

IMRs. Almost immediately we got feedback from the

project management involved that the risk probabil-

ity and the risk class were not sufficient for the proj-

ect  m an agem en t  to  u se  in  m akin g appropr ia te

decisions. As a result we designed an additional set of

flags corresponding to each predictor in  the model to

communicate the reason why the failure probability

was high.

A flag is raised if th e correspon din g predictor

exceeds the 95th percentile of the values. For example,

the “many subsystems touched” flag is raised for an

IMR if the number of subsystems touched is larger

than the number of subsystems touched by 95%  of

IMRs. The “low developer experience” flag is raised

when the programmers’ experience is below the expe-

rience value observed in  95%  of IMRs. Finally, all

defect fix IMRs have the flag “is a defect fix.”

Current Use

The methodology is currently packaged as “the

IMR Risk Assessm en t tool” in  th e 5ESS software 

project. The tool u ses change summaries obtained

from the SoftChange system.26 Currently, the sum-

m aries an d prediction s are au tom atically u pdated

three n igh ts a week. During each  update, the IMR

risk assessment tool:

• Extracts the needed change measures from the

summaries;

• Fits the logistic regression  model specified in

Equ ation  (2), based on  th e IMRs th at h ave

been delivered in SUs;

• Uses the fitted model to predict the risk of all

submitted IMRs;

• Classifies all submitted IMRs in to risk classes

an d calcu lates th e r isk flags, as descr ibed

above; and

• Summarizes the IMR risk and other properties

on a Web page.

The project manager for the SU then inspects the high-

risk IMRs and possibly delays some for a later SU. The

developer responsible for the IMR is sent an  e-mail

message with the following content (proprietary infor-

mation is changed):

The IMR Risk Assessment tool has flagged your

IMR—123456—as potentially risky to SU 25. The

enclosed URL provides a detailed explanation  of

the IMR risk assessment process:

http:/ /www.lucent.com/imrrisk/

As the developer of this IMR, please recheck your

code and the test plan  to minimize the risk th is

IMR poses to SU 25.

Conclusions

Ou r idea of predictin g failu re probabilities of 

changes based on the properties of the changes seems

feasible and useful. We are able to construct a model that

appeals to our intuition and apply it to the changes that

constitute 5ESS software development. The model uses

easily obtainable properties of a software change, includ-

ing its size, duration, diffusion, and type, as well as the

experience of the developer(s) who implemented it.

All the data we use to compute failure probabili-

ties is automatically obtained from the change control

system used in the 5ESS software. One could construct

Many subsystem s flagIMR Risk

1123456 0.031
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a similar model for any software development project

for which the same types of data are available, as they

are likely to be for most change control systems. Even

in cases where all the data are not available, it is likely

that one could construct a useful failure probability

model. Someth ing as simple as a quan tification  of

developer expertise, expressed as the number of deltas

a developer has made to the code, is a strong predictor

of change quality.

A key element in  creating and statistically vali-

dating a change failure probability model is the exis-

tence of h istorical data that iden tifies wh ich  IMRs

fail w h en  in clu ded in  an  SU an d w h ich  do n ot.

Without such data we could not perform the logistic

regression  n eeded to  con stru ct  th e  m odel. Th is

increases the value of conducting the part of root

cause analysis that identifies the changes that caused

each failure.

On ce th e m odel is in  place, th e developm en t

organ ization  can  start u sin g it to m ake decision s.

Sh ou ld  th e  deve lopm en t  o rgan iza t ion  expen d

resources on remedial work to improve their confi-

dence that a change with a high probability of failure

is safe to deliver to customers in a SU? Determining

the cutoff value used to decide which IMRs receive

further scrutiny is a subjective decision about balanc-

ing development resources against customer satisfac-

t ion . Se t t in g a  h igh  cu to ff va lu e  in creases th e

incidence of failures and angers customers; setting a

low one wastes resources. Somewhat paradoxically,

the decisions made about the cutoff value and about

how the failure probability model is used affect the

model. When all works well, the incidence of failures

drops because of the increased scrutiny of high-risk

changes. The lower failure incidence becomes part of

the historical record on which the model is based, and

the model will have to be adjusted to take the new

factor into account.

It is important to note that we worked only with

existing data in constructing the model—that is, we did

not require the collection of any additional data about

changes, and we did not perturb the change manage-

ment system. Compared to the cost of maintaining the

change management system, the incremental cost of

computing the model is negligible. Indeed, a consider-

able amount of valuable information can be derived

free from change management systems for those orga-

nizations that have the discipline to use it, as illustrated

in studies conducted by Basili and Weiss,26 Mockus et

al.,27 Graves et al.,12 Eick et al.,32 Mockus and Votta,33

Atkins et al.,34 and Siy and Mockus.35 The information

is free to those who have the data.
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