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ABSTRACT

A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence
or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge
of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model
operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary
structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and
the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global
arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on
the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or
better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be
explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-
grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures,
something which our tool excels at, rather than providing a handful of the lowest energy structures.
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INTRODUCTION

Structured noncoding RNAs (ncRNAs) are an integral part of
every cell. In contrast to mRNAs, whose main duty is being
the messenger in the construction of proteins from DNA
genes, noncoding RNAs are involved in many regulatory
and functional processes. In these roles, the three-dimen-
sional structure of an ncRNA is of more importance than
the sequence of nucleotides making up the molecule. The
structure, however, is largely determined by the self-folding
of the sequence.

This structural importance has led to many approaches
to predict either the two-dimensional secondary structure
(Zuker 2003; Do et al. 2006; Lorenz et al. 2011) or the
three-dimensional tertiary structure (Das and Baker 2007;
Ding et al. 2008; Parisien and Major 2008; Frellsen et al.
2009; Jonikas et al. 2009; Popenda et al. 2012; Zhao et al.
2012). Compared with the former, predicting the tertiary
structure is both costly in terms of computational resources

and less accurate than secondary structure prediction.
These downsides are, however, balanced by the additional in-
formation encoded in the tertiary structure.
In this work, we propose an approach that bridges the gap

between abstract secondary structure prediction and concrete
all-atomic prediction with a coarse-grained tertiary structure
prediction and sampling approach for RNAs. This approach
is centered on the helix as the main immutable structural
feature.
We provide three interlinked contributions toward pre-

dicting RNA 3D structures.

I. We first introduce a coarse-grained graph that captures
the main structural elements of an RNA structure. It is
derived fromRNA secondary structures and defines the
structural relations of individual helices. Similar graph
representations and their use in structure prediction
have been mentioned by Zhao et al. (2012), Lamiable
et al. (2013), and Kim et al. (2014) but we aim to
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formalize their definition and illustrate its use as a
guide for building a coarse-grain 3D structure.

II. Each helix, or consecutive stack of Watson–Crick base
pairs in the form of a cylinder, is one coarse-grained
building block of our 3D model. Compared with all-
atom models, this greatly reduces the number of pa-
rameters that need to be considered, while the property
of helices of forming regular and consistent structures
makes this model feasible. We also give statistics on
the actual fit of this cylinder abstraction to observed
helices.

III. Finally, we provide a sampling algorithm that suggests
candidate folded 3D structures, which allows us to ex-
plore the ensemble of structures matching a particular
knowledge-based distribution of descriptors of the
coarse-grain tertiary structure. This leads to a sampling
of structures containing not only a realistic local struc-
ture but also a plausible global arrangement of the sec-
ondary structure elements.

Together these contributions yield a fast algorithm that
produces structural predictions competitive with more ad-
vanced methods as we will show.

Other methods and what we contribute

Initial approaches to the prediction of RNA 3D structure sim-
ply adapted the methods developed for predicting tertiary
protein structure (Das and Baker 2007). This yielded modest
accuracy for smaller molecules but suffered from extremely
low accuracy for any structure beyond ∼30 nt in length. A
subsequent approach broke the structure down into nuclear
cyclic motifs which could be assigned energy values and as-
sembled to form full structures (Parisien and Major 2008).
The work of Jonikas et al. (2009) introduced a coarse-grained
model which focused on the individual nucleotide as the sa-
lient building block of the RNA structure and used an energy
function based solely on dinucleotide statistics obtained from
the corpus of known structures. Such models have been suc-
cessfully used, e.g., for modeling the folding dynamics of
noncoding RNAs (Chen et al. 2013), or characterizing RNA
protein interactions (Vincent et al. 2012).
Since the turn of the decade newer approaches have fo-

cused on the statistically sound and efficient prediction of
local tertiary structure (Frellsen et al. 2009), on the assembly
of larger structures based on the knowledge of the structure
of existing secondary structure elements (SSEs) (Popenda
et al. 2012; Zhao et al. 2012) and motifs (Reinharz et al.
2012). An underlying theme of modern RNA structure pre-
diction approaches is the abstraction of the secondary struc-
ture of RNA into distinct elements with distinct properties.
With few exceptions, the structure of helices is relatively uni-
form. Similarly, interior loops, hairpins, junctions and 5′ and
3′ unpaired regions all share certain structural constraints, re-
spectively. In this article, we formalize the definition of each

element and introduce a framework for sampling different in-
stances of each element in order to sample the space of coarse-
grained 3D structures consistent with the given secondary
structure. Whereas previous attempts at reducing the degrees
of freedom in an RNAmolecule have ranged from using three
points to represent a nucleotide (Ding et al. 2008), to using
one point to represent a nucleotide (Jonikas et al. 2009), we
represent the helix using one line segment and two vectors
and consider elements linking helices as the degrees of free-
dom. It should be noted that a recent approach (Kim et al.
2014) has presented a very similar model using a helix-as-a-
stick representation of RNA 3D structure and combining it
with predictions of local junction topology to provide accu-
rate predictions of RNA structures. While our approaches
overlap in the abstraction of the structure, our method for
sampling local structure as well as our energy function formu-
lations differ significantly. Moreover, we emphasize our abil-
ity to generate ensembles of structures competitive with the
predictions of more sophisticated all-atom models.
The remainder of the article first describes the conversion

of a secondary structure to a graph representing the connec-
tivity between the different secondary structure elements.
This is followed by a description of the coarse-grain represen-
tation of a helix and themethods used to fit a helix to a known
all-atom structure. We then shift the focus to the parameters
used to assemble tertiary structures and the energy function
used to direct the sampling toward realistic structures. We
demonstrate the efficacy of this approach in generating struc-
tural ensembles that conform to the target distributions and
finish with a short comparison to other structure prediction
methods. The software implementing this approach is titled
Ernwin, is licensed under the GPL-V3 license, and is freely
available on Github (http://github.com/pkerpedjiev/ernwin).

MATERIALS AND METHODS

Secondary structure elements and graph definition

The secondary structure of an RNAmolecule can be represented as a
collection of elements that share similar characteristics in terms of
how they link the canonical helices within the structure. The indi-
vidual structural elements and their connectivity are depicted in
Figure 1. The graph representation (Fig. 1B), which is used to direct
the construction of the 3D model, is almost identical to the skeleton
graph described by Lamiable et al. (2013), and will be referred to as
such in the rest of this article. The following definitions assume the
lack of pseudoknots in the secondary structure.
“Stems” are canonical double-stranded helical regions. They are

identified by the nucleotides at each “corner,” that is, the nucleo-
tides at the 5′ and 3′ ends of each of the strands (see Fig. 1). The cor-
ners are numbered in increasing order from 5′ to 3′ such that c1(s) <
c2(s) < c3(s) < c4(s) where cn(s) is the index of the nucleotide at cor-
ner n of stem s. Stems may be connected to each other via interior
loops or multiloop segments.
The “5′ unpaired region” is the set of unpaired nucleotides at the

5′ end of the molecule. It is defined by the first and last unpaired
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nucleotides before the first stem. This section is always connected to
the first stem. If there are no paired regions, then the entire molecule
will be a single 5′ unpaired region.

“Interior loops” are double-stranded regions which link exactly
two stems and contain no canonical base pairs, although they may
be rich in noncanonical base pairs (Leontis et al. 2006). These re-
gions always connect corners 2 and 3 of one stem (sj) to corners
1 and 4 of the next stem (sk), where the term “next stem” implies
that c1(sj) < c1(sk). Since no pseudoknots are allowed in our rep-
resentation we have c2(sj) < c1(sk) < c4(sk) < c3(sj). Interior loops
are defined by the nucleotides c2(sj) + 1, c1(sk)− 1, c4(sk) + 1, and
c3(sj)− 1 for sj and sk next to each other. If one strand of an interior
loop has no unpaired bases, then the interior loop is defined only by
the unpaired nucleotides on the other strand. The interior loop i1 in
Figure 1 connects the two stems s3 and s4.

“Multiloop segments” are single-stranded unpaired regions
which connect two stems that are not separated by an interior
loop. They can connect two stems sj and sk where sj < sk in three dif-
ferent ways: c2(sj)→ c1(sk), c4(sj)→ c1(sk), and c3(sj) → c4(sk). In
Figure 1 there are three multiloop segments: m1, m2, and m3.

The “3′ unpaired region” denotes the unpaired nucleotides at the
3′ end of the molecule. This region only connects with the last stem
in the structure (sl) and is defined by the nucleotide c4(sl) + 1 up to
the final 3′ nucleotide.

Creation of the secondary structure graph

The secondary structure graph is created from RNA second-
ary structure predictions. Currently, we use RNAfold from the
ViennaRNA v2 package (Lorenz et al. 2011). The coarse-grained
graph can be trivially created from any secondary structure repre-
sentation or prediction algorithm (i.e., minimum-free energy fold-
ing, centroid structures, nonphysics based methods) which does
not contain pseudoknots. Threading a coarse-grain model onto a
known 3D structure requires the extraction of the secondary struc-
ture, for which we use the annotation produced by MC-Annotate
(Gendron et al. 2001), removing the pseudoknots (conflict elimina-
tion method) (Smit et al. 2008), creating the secondary structure

graph and then fitting helices onto the all-atom model to get the
3D coordinates of the coarse-grain representation (see next section).

The helix and the 3D model

At the core of the Ernwin tertiary structure prediction package is the
reduced cylinder-like model of an RNA helix. The representation of
the helix is defined by a line segment indicating the start and end
points of the axis of the helix (as, ae) as well as two vectors pointing
from the ends of the axis to the middle of the first and last base pairs,
respectively (ts, te) as depicted in the schematic (Fig. 2; Supplemental
Fig. A.10). The calculation of these parameters cannot exactly repre-
sent a helix insofar as RNA helices deviate from an ideal double he-
lix. While such a representation has previously been alluded to
(Laederach et al. 2007; Popenda et al. 2012), the calculation of the
axis and twist vectors has never been explicitly defined. We tested
four different methods for fitting idealized helices to real RNA dou-
ble helices, the details of which are documented in Supplemental
Section A.5. The position of the twist values is illustrated in
Supplemental Section A.5.5 and Supplemental Fig. A.10.

Proposal distribution, model building, and sampling

The proposal distribution for new structures is based on a set of sta-
tistics relating the orientation of two adjacent helices, the orienta-
tions of hairpin loops, and the 5′ and 3′ unpaired regions relative
to helices. Just as the position of 1 nt relative to the previous can
be expressed as a function of the torsion angles and sugar pucker,
the position of one coarse-grain helix relative to the previous can
be expressed using a set of six different parameters (subsequently re-
ferred to as interhelical parameters) (Bailor et al. 2011; Sim and

FIGURE 1. The coarse-grain representation of the 2D structure of an
RNA molecule. (A) The paired regions are shown as gray rectangles.
The arcs show the path of the strand in connecting the paired regions.
The labels in black are names given to distinguish the different second-
ary structure elements in the graph. The elements f1 and t1 are the 5′ and
3′ unpaired regions, respectively. Elements starting with “s” correspond
to base-paired canonical helices. Elements starting with an “h” are hair-
pins. Interior loops and multiloops are denoted by names starting with
“i” and “m,” respectively. The numbers in red indicate the corners of the
stem. (B) The skeleton graph representation of the structure.

FIGURE 2. An illustration of the helix model for the 53 nucleotide
SMK box (SAM-III) Riboswitch RNA structure (C, PDB: 3e5c). The he-
lices are shown as green cylinders, interior loops as thinner yellow cyl-
inders, multiloops as collections of red cylinders, hairpin loops as thin
blue cylinders, and the 3′ unpaired region is shown in magenta. A 5′ un-
paired region is missing from this structure since the first nucleotide is
already paired. We denote the twist parameters as orange lines protrud-
ing from the axis of a helix as viewed along (A) and perpendicular (B) to
the axis of a helix. Each one is perpendicular to the cylinder axis and
points in the direction of the midpoint between the C1′ atoms of the first
and last base pair in the helix. In C, twist vectors are interpolated for the
base pairs in the middle of the stem with values stored only for the vec-
tors at the end of each stem.

Kerpedjiev et al.

1112 RNA, Vol. 21, No. 6

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Levitt 2011). Likewise, much as the distribution of potential torsion
angles can be inferred by looking at solved structures, so can the
range of potential interhelical parameters. This distribution, which
should exclude parameters which lead to impossible configurations
(due to steric hindrances, for example), is partitioned according to
the size of the secondary structure element (i.e., interior loop or
multiloop), which separates the two stems (see “Secondary structure
elements and graph definition”).
The current implementation uses parameters mined from a

large corpus of predicted 3D structures to ensure there is no
overlap between the tested structures and the statistics used to
predict them. This approach can be used to supplement statistics
mined from known structures in cases where no instances of a
particular secondary structure element are known. Each predicted
3D structure was created from a random sequence whose second-
ary structure was predicted using RNAfold (Lorenz et al. 2011)
and whose 3D structure was predicted using FARNA (Das and
Baker 2007).
The 3D model is initially built by sampling orientation parame-

ters for every interior loop, multiloop, hairpin loop, 5′ and 3′ un-
paired region. Using the parameters for a coarse-grain element is
analogous to inserting a fragment for that element into the overall
structure. The length and twist parameters for each stem are also
sampled from the list of known parameters to account for the slight
variability seen in the structure of canonical helices. The initial mod-
el is built by traversing the skeleton graph (Fig. 1B) and placing each
element in relation to the one preceding it. Due to the cyclical nature
of junctions, one segment is necessarily determined by the orienta-
tions of the other segments. A break is introduced in the multiloop
segment with the largest number of nucleotides of all the segments
in a particular junction.
Direct sampling from the proposal distribution produces struc-

tures that have native-like local structure but lack long-range tertiary
interactions and global structural properties found in real structures.
We therefore need to add an energy function that enforces global
features, such as compactness of structures, and favorable long-
range interactions, which we will describe below. In order to sample
from the corresponding distribution we implement a Markov chain
Monte Carlo (MCMC) simulation. At each sampling step, one loop
or stem is picked at random, its parameters are resampled, and the
resulting structure’s energy is evaluated. The new structure is accept-
ed or rejected according to the Metropolis Hastings rule using the
energy function. The secondary structure is kept fixed during the en-
tire simulation.

Energy function

Before explaining the energy function, wewill state the definitions of
a few commonly used terms:

Measure: some quantifiable property of a 3D structure (e.g., its ra-
dius of gyration).

Proposal distribution: the distribution of structures obtained using
only the statistics on the orientation of adjacent helices.

Target distribution: the desired distribution of a measure, i.e., the
distribution observed in native structures of the appropriate
size (i.e., smaller structures will have a greater chance of having
a lower radius of gyration).

Sampled distribution: the distribution of a measure among all of the
structures sampled over the course of a simulation.

Background distribution: the sampled distribution of a measure for
a simulation run using only the constraint energies, equivalent to
the distribution of the measure induced by the proposal
distribution.

Reference distribution: the distribution used to calculate the energy
values by comparison to the target distribution. Initially derived
from a set of decoy structures (see below), the reference distribu-
tion approaches the sampled distribution as more samples are
added from the MC simulation.

Our energy function is composed of five separate terms each of
which is described in one of the next subsections. Two are based
on physical forces to exclude impossible structures (called constraint
energies, and described in the subsections “Clash detection” and
“Junction closure detection”), the remaining three are knowledge-
based potentials derived from known structures (called noncon-
straint energies, and described in Radius of gyration, A-minor ener-
gy, and Loop–loop interaction energy). For comparison we also use
an energy function which returns a value of zero for every structure
(leading to constant acceptance of new structures and a direct sam-
pling from the proposal distribution) and is intended to mimic the
effect of using no energy.
The knowledge-based potentials are based on coarse-grained

measures whose distributions differ between native structures (tar-
get distribution) and structures sampled from the proposal distribu-
tion (reference distribution). For each of these coarse-grained
measures, we will present examples of the target distribution and
the reference distribution (as calculated from a decoy) as well as
the associated energy calculated by the reference ratio method
(Hamelryck et al. 2010; Valentin et al. 2014). The energy associated
with a value x of the measure is calculated as the log of the ratio of
the target distribution [pt(x)] divided by the reference distribution
[pr(x)] and multiplied by a factor c which serves as a parameter
for tuning how closely the target distribution shouldmatch the sam-
pled values (see Supplemental Section A.6.2):

E = −c∗log
pt(x)
pr(x) (1)

The target distribution is defined by subgraphs of the ribosome
structure (PDB: 1JJ2). For a given structure we calculate the mea-
sure of interest on all subgraphs whose sequence length lies within a
certain range of the target structure. The range is initially very nar-
row (within 1% of the length of the target structure) but is expanded
until there are at least 500 measures that can be used to define a
probability distribution for the target measure. For example, if try-
ing to model a structure with a length of 100, we would consider the
radii of gyration of all ribosomal subgraphs with a length between
100− x, and 100 + x, such that the number of available subgraphs
within that range is >500.
The background, or reference distribution, is initially approxi-

mated from random subgraphs of an artificial ribosome structure
(decoy) built using only the proposal distribution and the constraint
energy terms. In a typical knowledge-based energy function, this
corresponds to the reference state (Sippl 1995) and remains un-
changed throughout the simulation. As pointed out in Hamelryck
et al. (2010) and Valentin et al. (2014), however, the reference state
depends on the structure being sampled. The reference state for the
molecule being simulated is initially unknown, but can be approx-
imated over the course of the simulation. This leads to a reference
distribution which changes to reflect the ensemble of sampled
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structures. The energy function is therefore variable at least during
the burn-in phase of the simulation.

As more samples are produced by the MCMC, they are added to
the reference distribution and used in the calculation of subsequent
energies. Gaussian kernel density estimates are used to convert dis-
crete frequencies into continuous distributions for both the target
and sample distributions using a bandwidth selected using Scott’s
rule (Scott 2009). The bandwidth selection for the kernel density es-
timates smooths the distributions obtained from the training data re-
lieving the threat of trying to match a distribution specific to the
substructures of the ribosome which were used to estimate the pa-
rameters of the energy function. Ernwin recalculates the reference
distribution after every tenth MCMC step. This leads to a conver-
gence of the distribution of sampled coarse-grain measures to their
target distribution. It should be noted that while the reference ratio
method (Hamelryck et al. 2010; Valentin et al. 2014) uses multiple
complete sampling runs (iterations) to adequately describe the refer-
ence distribution such that samples are drawn from the target, we re-
create it multiple times over a single simulation, thus enabling a close
approximation of the target distribution over somepredictable burn-
in period (see “Energy function quality and simulation length”).

An illustration of the calculation of each of the nonconstraint en-
ergy functions is shown in Figure 3. Immediately visible is the ten-
dency for the energy to decrease in the regions where the probability
density of the target distribution is greater than the probability
density of the reference distribution. In practice, the reference distri-
bution and the concomitant energy function change according to
the values of the structures sampled over the course of the simula-
tion. This process is described in more detail in Supplemental
Section A.6.1.

Clash detection

To prevent two or more atoms from occupying the same space, a
heavy energetic penalty is imposed in such situations. As our model
does not track individual atoms, such an energy function has to be
somewhat indirect and imprecise. We have little to no hope of de-
tecting clashes between nucleotides which are not part of a helix.
There is simply too much variation in their spatial position, given
the parameters that define our model. The position of the remaining
nucleotides, which are in helices, can reasonably be approximated
and accounted for (see Supplemental Section A.1.1). These estimat-
ed positions will be referred to later as the virtual base pair and vir-
tual atom positions. Any clashes within the atoms of these
nucleotides are given a heavy energetic penalty to ensure the rejec-
tion of that conformation.

Junction closure detection

The construction of multiloops by placing subsequent helices inde-
pendently one after another leads to the problem that the param-
eters of the final segment of a multiloop will necessarily be
determined by the previously sampled segments. Since this set of pa-
rameters is calculated, rather than chosen from the known values, it
is possible that it corresponds to a sterically impossible structure,
e.g., when the distance between the ends of the two adjacent stems
is too large to be bridged by the nucleotides in between. To counter
this occurrence, we penalize such situations by imposing a large en-
ergetic penalty. The allowed distances are determined as a function
of the distance between the positions of the virtual P and O3′ atoms
of the capping nucleotides of the two adjacent stems.

Radius of gyration

Like proteins, albeit in a less pronounced manner, RNA molecules
tend to form compact structures. To measure the compactness of
the structure, we use the common radius of gyration (ROG) mea-
sure as calculated over the virtual residues of the stems of the struc-
ture (see “Clash Energy,” Supplemental Section A.1.1). Instead of
simply giving a bonus for a more tightly packed structure, we aim
to sample structures whose distribution of ROG values matches
the distribution we would expect from typical structures of that size.

A-minor energy

The A-minor motif is the most common long-range interaction
found in RNA structures and contributes greatly to the overall ter-
tiary fold of the molecule (Nissen et al. 2001). It involves an inter-
action between an unpaired adenine with the minor groove of a
helix. The unpaired adenine (the donor) may be found in hairpins,
interior loops, or junctions, but only instances where it occurs in a
hairpin or interior loop are considered in this paper. Predicting the
positions in the secondary structure where such an interaction
might occur is difficult. We therefore assign a probability of forming
an A-minor interaction to each helix–loop pair and score each loop
by the weighted number of its A-minor interactions.

If we imagine that the interaction between a helix and a loop oc-
curs over a vector connecting the closest points of the two elements,
then we can parameterize it using its distance d, the angle it makes
with the minor groove of the stem (ψ) and the angle (φ) between the
axes of the two elements, as depicted in Figure 4.

FIGURE 3. Frequency distribution and corresponding initial potential
for the four different energy terms (Loop–loop distance [cf. subsection
“Loop–loop interaction energy”], radius of gyration [cf. subsection
“Radius of gyration”], and A-minor energy for interior and hairpin
loops [cf. subsection “A-minor energy”]). The target (dashed) and ref-
erence (dotted) distributions are obtained from subgraphs of the native
ribosome and a decoy ribosome structure obtained by simulating using
only constraint energies (i.e., clash detection and junction closure), re-
spectively. Here we used subgraphs of length 83, the length of the
Escherichia coli thi-box riboswitch 2HOJ.
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We now estimate the probability distribution for true A-minor
interactions P (d, φ, ψ|I) as well as all helix–loop pairs P (d, ϕ, ψ)
from the native ribosome structure. We can then calculate the prob-
ability that two elements (i, j) interact given their relative positions
d, φ, and ψ:

Pi,j(I|d,w,c) = Pi,j(d,w,c|I) × Pi,j(I)
Pi,j(d,w,c) .

Figure 5 shows the probability distributions introduced above for
hairpins. As expected, elements engaged in hairpin A-minor inter-
actions are closer to each other and their interaction vector is gen-
erally more anti-parallel to the receptor minor groove than in the
general population of pairs of proximate elements. The angle be-
tween the donor and receptor elements (φ) varies less, but shows
a split toward a bimodal distribution in the interacting population.
The distributions of parameters for interior loop A-minor interac-
tions are similar although the minor groove–interaction angle (ψ)
varies slightly more; see Supplemental Figure A.1. This is likely
explained by the tendency for the A-minor interactions to occur
at locations that do not correspond to the closest point between
the coarse-grain interior loop donor and its stem receptor (see Sup-
plemental Fig. A.2).
To obtain an energy function we calculate the expected number

of A-minor interactions Ai that a particular loop, i, is involved in,
by summing over all possible interacting helices which are not
directly connected to loop i. Elements further than 30 Å have an
almost negligible probability of participating in A-minor interac-

tions and are therefore excluded.

Ai(I|d,w,c)
∑

j[A,dist(i,j) ≤ 30

Pi,j(I|d,w,c).

Like all other energy terms, we obtain a target
distribution from the ribosome and use the
log odds ratio (Equation 1) to assign an A-mi-
nor energy to each loop. The corresponding
distributions and energy function can be
seen in Figure 6. As expected, the distribution
for the native ribosome structure (target dis-
tribution) is shifted toward higher number
of A-minor interactions compared with the
reference distribution obtained from a decoy.

Loop–loop interaction energy

Unlike proteins, RNAs are polar molecules
and thus lack the innate tendency to form
tightly clustered structures. Their packing is
more reliant on the presence of interacting
motifs which tend to attract each other
(Butcher and Pyle 2011). Among the variety
of interactions which stabilize the global ter-
tiary fold of an RNA molecule is the hair-
pin–hairpin interaction. This often occurs
when two proximate hairpins are linked via
hydrogen bonds and/or base stacking interac-
tions. While there are attempts to predict such
interactions (Theis et al. 2010; Sperschneider
et al. 2011), we do not presume to have this
ability and instead try to sample structures

which have native-like distances between the hairpins. The ribo-
some provides a training set from which to observe a distribution
of distances from one hairpin to its nearest neighbor. This distribu-
tion, along with its analog from the background distribution of the
thi-box RNA are shown in the upper left plot of Figure 6. In this
structure, the loops happen to interact, but in cases where they do
not it is expected that this energy will be balanced by potential A-mi-
nor interactions elsewhere or by the constraints of the local tertiary
structure. An instance of this energy is created for each hairpin in the
structure.

RESULTS

Structure sampling

Coarse-graining RNA structure to the level of secondary
structure elements provides a fast, logical way of sampling
only the regions whose 3D structure varies themost.We sam-
pled using a Markov Chain Monte Carlo simulation for
10,000 iterations. Every nonclash structure was stored and
used to calculate summary statistics about the distributions
of the coarse-grain variables. In the Supplemental Material
we show that as the simulation progresses the deviation be-
tween the target and sampled distributions decreases, indicat-
ing the efficacy of our sampling approach and hinting toward
a potential criterion for when to terminate the simulation
(see Supplemental Section A.6.2). The results indicate that

FIGURE 4. The parameterization of A-minor interactions in the Group I intron (PDB ID:
1GID). On the left is an interaction between an interior loop and a stem, while on the right is
an interaction between a hairpin and a stem. Both are parameterized in the samemanner, wherein
the distance (d) along the interaction vector (the vector between the two closest points on the two
interacting elements) is shown in the side view, the angle between the interaction vector and the
minor groove of the stem (ψ) is shown in the front view, and the angle between the two interacting
elements (ϕ) is shown in the top-down view. The direction of the view is relative to the receptor
stem.
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applying energy functions which take only these coarse-grain
elements into account can shift the distribution of sampled
structures toward the native. To compute the similarity be-
tween two structures, we use the commonly used root mean
square deviation (RMSD) between the superimposed posi-
tions of the virtual residues (see “Clash Energy,” Supple-
mental Section A.1.1) of their coarse-grain helix model
representations (Kabsch 1976). The resulting structures are
comparable in RMSD to the ones created by other tools
such as FARNA (Das and Baker 2007) and RNAcomposer
(Popenda et al. 2012).

By applying the described energy functions, the sampling
can be directed toward regions of the conformation space
that share similar characteristics with native structures. In
the case of the radius of gyration, constant-energy sampling
yields larger, more spread out structures due to the prefer-
ence for coaxial arrangements of helices (see Supplemental
Fig. A.3).

Figure 6, which uses the E. coli thi-box riboswitch as an ex-
ample, shows that structures sampled with no energy func-
tion tend to have a radius of gyration of slightly >20 Å.
Structures sampled using an energy function including a
term for the radius of gyration have a radius of gyration dis-
tribution peaking at ∼18 Å. The application of the energy
term has slightly broadened the distribution of sampled
structures, which fortuitously happens to peak at the true val-
ue of∼18 Å. Clearly visible in this example is the limitation in
trying to sample from the target distribution. As it includes
structures smaller and greater than the native, it is more
spread out and cannot be adequately approximated by the to-
pology of the thi-box riboswitch structure. Fortunately, for
larger structures, such effects become less noticeable due to
the greater variety of conformations that can be adopted by
larger structures.

The other two energy terms exhibit a pattern more in line
with our expectations than that of the ROG energy. The A-
minor energy for interior and hairpin loops (Fig. 6, upper

right and lower left, respectively, for the thi-box riboswitch
[PDB ID: 2HOJ] and Supplemental Figures A.7, A.8 for all
other structures) is broadened to resemble the target distri-
bution. The peaks of the distribution, while slightly displaced
from the native values are shifted toward them as compared
with the background distribution.

FIGURE 5. Cross sections and iso-surface showing the probability density of the parameters describing hairpin to stem A-minor interactions. (A) The
probability density of seeing interaction parameters (d, ϕ, ψ) given an A-minor interaction. (B) The probability density of an interaction as calculated
using Bayes’ law. (C) The probability density of seeing a particular set of parameters among all adenine-containing hairpin loops within 30 Å of each
other. The iso-surface in each plot corresponds to the mean probability density of all the points on the 3D grid describing the parameter space. The
same plots for interior loops are presented in Supplemental Figure A.1.

FIGURE 6. The four different coarse-grain measures and their distri-
butions as applied to the E. coli thi-box riboswitch (PDB ID: 2HOJ,
length: 83 nt). After including an energy value for the coarse-grain mea-
sures, the structures sampled begin to adopt values (“sampled” distribu-
tion above) similar to those expected from native structures (“target”
distribution above). The radius of gyration is only slightly affected due
to the constraints imposed by the topology of the RNA molecule. The
blue and red dashed lines show the measures as calculated for the native
and best sampled structure. The graphs for the loop distance, A-minor
(interior loops), and A-minor (hairpin loops) are presented for the first
hairpin, the first interior loop, and the first hairpin, respectively. A sep-
arate energy term is created for each element that the energy applies to.
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The loop distance values for structures sampled with the
constraint energy function are centered around a distance
of 50 Å, while the real value is closer to 10 Å (Fig. 6, upper
left). This is due to the presence of a kissing hairpin interac-
tion in the structure and is reflected in both the target and
sampled distributions. It should be noted that the target dis-
tribution includes structures which have hairpins that do not
interact and thus peaks at a value beyond that expected for a
structure with interacting hairpins. Nevertheless, the distri-
bution of sampled structures is shifted in the direction of
closer hairpins.
A stark example of applying the described energy functions

to the sampling of a particular structure is illustrated in
Figure 7. The distribution of RMSD values of the structures
sampled with a constant-energy function (“constant-ener-
gy”) has a weighted mean at a value of ∼13 Å. Applying our
energy function shifts the weightedmean of the RMSD distri-

bution to a value slightly >7Å. By visualizing the lowest energy
sampled structure, we see a marked qualitative improvement
in the model from the energy-based sampling as compared
with the constraint energy sampling (Fig. 7, top left and
top right, respectively). The shift toward lower RMSD does
not always occur, as for the example of 3R4F (see Supple-
mental Section A.4), but in the RNAs tested, the general trend
was toward an improvement. The results for all of the tested
structures are shown in Supplemental Figure A.4.
Supplemental Figure A.6 shows the target, background

and sampled distributions for a number of solved structures.

Comparison with other structure prediction methods

Prediction quality

The overall quality of sampled structures is comparable to
some of the best structure prediction programs available.
By calculating a coarse-grain model from the structures pre-
dicted using FARNA and RNAcomposer (where we provide
the true secondary structure) we provide a comparison of the
alignment between the predicted and native structures using
the RMSDmetric (Fig. 8). The structures used for the bench-
marks were collected from the BGSU RNA 3D Hub nonre-
dundant RNA structures list (Leontis and Zirbel 2012) and
filtered to exclude structures with <70 or >500 nt as well as
multimers and RNAs with bound proteins.
An example of a relatively successful simulation using

Ernwin is shown in Figure 7. The conformation of the lowest
energy structure has two helical arms arranged in a roughly
parallel fashion with the two hairpin loops near to each other,
whereas a random structure sampled using a constant energy
shows a worse configuration where each of the arms of the

FIGURE 7. A visualization of the best (lowest energy) structure for the
E. coli thi-box riboswitch (2HOJ, see “Prediction quality”) sampled us-
ing using the full energy (left) versus the constraint energy (right). The
darkened structure is native whereas the lighter is sampled. The plot
shows the shift toward sampling more native-like structures using the
full energy as opposed to the constraint energy. Superpositions of the
lowest energy models and the native structures are provided for the
whole benchmark set in Supplemental Table A.1.

FIGURE 8. A comparison of the RMSD value between the structures sampled by each program and the native structure. Each dash in the chart
represents one sampled structure. The circles represent the lowest energy structures. On the right is a tabulation of the lowest energy structures pre-
dicted by each program. The RMSD values were calculated by threading a coarse-grain representation onto the all-atom models generated by the
other programs. Missing values indicate that the corresponding program failed to give a prediction for that structure.
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structure points in a separate direction and the loops are
on opposite ends of the molecule. The quality of the better
prediction is largely due to the accurate sampling of most
coarse-grain measures shown in Figure 6. The loop distance,
expected number of hairpin loop A-minor interactions, and
the radius of gyration are sampled at values extremely close
to the native. The sampled values for the entire ensemble
match the target values very well, except for the case of the
ROG which is, in this case, constrained by the topology of
the secondary structure. An examination of the energy land-
scape (Fig. 9) indicates that our energy function describes
this structure particularly well, showing the desired negative
correlation between RMSD and energy. While this is the case
for most structures (Supplemental Table A.2), there are some
notable exceptions that lead to poor predictions. One of these
is presented and discussed in more detail in Supplemental
Section A.4.

The circledRMSDvalues in Figure 8 correspond to the low-
est energy structure for FARNA, Ernwin, and NAST. For
RNAcomposer they correspond to the structure returned
when asking for one structure. As is expected, smaller struc-
tures are predicted with greater accuracy than larger ones.
RNAcomposer performs exceptionally well on a handful
and significantly worse on others. This is likely explained
by its use of known fragments for the interior and multi-
loop sections, leading to near exact matches for structures
with unique junction topology and sequences (i.e., tRNA,

2TRA). FARNA exhibits more tempered performance over
the smaller structures which degrades over the larger struc-
tures and Ernwin exhibits measured performance over the
whole data set. Over the entire sampling run, Ernwin consis-
tently and thoroughly samples a wide range of available con-
formations, often yielding structures in the more native range
of the samples. FARNA can sample awide range of values, but
does so more sparsely which is likely due to the fact that its
simulated annealing approach falls into an energy basin that
is difficult to escape as the temperature decreases. This per-
forms well in the context of smaller structures, but leads to
poor sampling of larger structures. In such cases, Ernwin
can sample more structures closer to the native than both
FARNA and RNAComposer.
NAST samples many structures but in very narrow ranges

of the conformational landscape whereas RNAComposer
only returns a maximum of 10 structures. The seemingly
exemplary performance of RNAComposer in sampling
low-RMSD structures should be looked upon with slight sus-
picion due to its use of loop topology and sequence to pick
out large fragments for constructing sampled structures.
Given the presence of the benchmark structures in the PDB
database, these fragments are likely in RNAComposer’s data-
base of building blocks and thus accurately assembled into
the known structures. While this works well with structures
containing seen-before and unambiguous motifs, it can
quickly backfire when a motif is absent from the database,

FIGURE 9. Statistics for the structure prediction procedure of FARNA (top) and Ernwin (bottom). The energy of the best structure constantly de-
creases up to 1,000,000 iterations with FARNA, whereas it plateaus very rapidly with Ernwin. This indicates that the broad conformational space has
been mostly explored shortly within the start of the Ernwin simulation and subsequent MC steps only explore around the low-energy basin. The left
plots display the RMSD of the structures as a function of their energy, where Ernwin displays the desired correlation. The next plot shows the RMSD of
the structure as a function of the MC iteration showing no clear downward trend as the simulation progresses. The third plot shows the energy as a
function of the iteration number showing the clear downward trend throughout the entire FARNA simulation and the quick arrival at a steady for
Ernwin. Finally the histogram shows the RMSD of every structure sampled by both methods. The RMSDs are not directly comparable as FARNA’s are
for an all-atom model while Ernwin’s are calculated over the coarse-grain representation.
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or has multiple geometries (as may be the case for the struc-
tures 4GMA or 4P9R).
A thorough and wide sampling of the potential solution

structures, as provided by Ernwin, can help explore the enor-
mous conformational space accessible to larger RNA mole-
cules and provide many potential structures for further
examination. It quickly samples unique structures (see
Supplemental Table A.4 for timing information), and can
be readily expanded with more accurate and more numerous
fragments to expand the range of accessible conformations.

Energy function quality and simulation length

One of the challenges in structure prediction is determining
the burn-in period before sampling structures from the distri-
bution, as well as determining the thinning factor. This, of
course, depends on the sampling procedure as well as the en-
ergy function. In an attempt to quantify this, we recorded the
energy value and RMSD of the current structure at each iter-
ation of the simulation (see Fig. 9). In contrast to FARNA,
Ernwin quickly reaches a locally minimal energy and samples
structures around it. The histogram of RMSD values indicates
the propensity for sampling low-energy, low-RMSD struc-
tures. FARNA, in contrast, continuously finds lower energy
structures throughout the entire simulation, but due to the
lack of correlation between the energy and RMSD (left panel)
ends up sampling many suboptimal structures.
While FARNA’s energy function works well for smaller

structures, it seems to fail for larger structures and leads to
sampling of high-RMSD conformations. Ernwin’s energy
function, based on global helical arrangements provides a
more robust measure of the general quality of a structure.
While the example provided in Figure 9 is particularly fortu-
itous, most structures tested show a characteristic linear cor-
relation between the energy and RMSD of the sampled
conformations (see Supplemental Table A.2 for Ernwin and
Supplemental Table A.3 for FARNA). By examining the tra-
jectory of the sampled energy values, we propose that
Ernwin achieves an adequate sampling within <2000 itera-
tions, whereas FARNA requiresmanymore iterations to reach
the lowest energy values. Given Ernwin’s method of sampling
coarse-grain measures from target distributions, one can also
assess how well it has sampled from each distribution by
examining the Jensen-Shannon divergence (Endres and
Schindelin 2003) of the sampled values from the target values
(see Supplemental SectionA.6.2 and Supplemental Fig. A.13).
When the divergence levels off, we have adequately sampled
from our target distribution indicating that additional MC
steps provide no new conformations.While there is no consis-
tent number of iterations that is applicable to all structures,
examining the progress of the distribution can provide an em-
pirical method for determining when to end a simulation. A
thorough treatment of this topic, however, is out of the scope
of this paper and is merely mentioned to highlight the utility
of having a probability-distribution based energy function.

DISCUSSION AND CONCLUSION

In this paper, we have presented a coarse-grained model of
RNA structure parameterized by the angles and shifts be-
tween helices. We have shown that coupling a simple propos-
al distribution with a probability-based energy function can
yield predictions that match those of programs with much
more sophisticated models and energy functions. We pro-
pose that our model can be used for quick exploration of
the macroscale conformational space of an RNA molecule.
We suggest that such a model can also be useful for the

elucidation and identification of different RNA species in
atomic-force microscopy images where the positions of
the individual atoms are largely indistinguishable (Petkovic
et al. 2015). Given fluorescence resonance energy transfer
(FRET) data, the structures generated by our model can
provide the experimentalist with an overview of the global
structure of the RNA molecule without the overwhelming
precision (and uncertainty) of an all-atom model. Simple di-
agnostics such as determining whether two loops have the po-
tential to localize within a certain distance of each other, while
maintaining steric integrity, can also easily be performed.
A particularly compelling future application is the combi-

nation of our sampling method with data from a SAXS ex-
periment. As RNA in solution can adopt a multitude of
conformations, its true structure in a solution may not be ac-
curately represented by the crystal structures used as bench-
marks (Ali et al. 2010; Brenner et al. 2010). Spectra obtained
from SAXS experiments, however, reflect the true distribu-
tion of conformations present in a solution. Furthermore,
coarse-grained models as presented here, are sufficient to
generate theoretical SAXS profiles. Thus, SAXS data could
be incorporated directly in the simulation as an additional
potential based on the difference between the theoretical
and measured SAXS profile. A similar approach can be envi-
sioned for FRET data which can be directly interpreted as
a probability distribution on the distance between some
donor and acceptor groups, which can be turned into an
energy function in the same way as our coarse-grain mea-
sures. Other low-resolutionmethods such as hydroxyl radical
footprinting offer information about how accessible a par-
ticular nucleotide is to solvent (Tullius and Greenbaum
2005), while multiplexed hydroxyl radical cleavage analysis
(MOHCA) yields potential interactions between nucleotides
within 25 Å of each other (Das et al. 2008). Each of these can
be encoded as a potential and sampled from, yielding an en-
semble of structures which conform to the constraints im-
posed by the experimental method. Given the probabilistic
nature of the potentials, uncertainty about the constraints
(due to difficulty in resolving gel bands, for example) can
be encoded in the target distribution imposed by the exper-
imental data.
Beyond the potential applications, this work aims to

provide a platform for further exploration into the determi-
nants of global tertiary RNA structure. The inclusion of
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predicted local structural motifs (Lescoute et al. 2005; Sarver
et al. 2008; Petrov et al. 2013; Theis et al. 2013) provides an
immediate avenue for the improvement of the prediction
quality. Information about the extended secondary structure
(Höner zu Siederdissen et al. 2011) of a sequence could pro-
vide a more fine-grain partitioning of the statistics used in
generating the proposal distribution. The framework makes
it straightforward to add additional energy terms for long-
range interactions and thus provides an orthogonal path
for determining what information is necessary for the accu-
rate prediction of global RNA structure.

In summary, coarse-grained 3D RNA structures provide a
fast, efficient way toward tertiary structure prediction. They
also point toward an information mismatch that we aim to
fill with future research. In particular, sequence information
is only taken into account during the initial graph construc-
tion phase, when the skeleton graph is created from predicted
secondary structures. Even using this simplified representa-
tion, the lowest energy structure are comparable and often
better than some of the more fine-grained prediction meth-
ods. In addition, Ernwin provides a more thorough and
wider sampling of the conformational space than existing
methods. Such an accomplishment without sequence infor-
mation calls into question the efficacy of the sampling ap-
proaches of other more fine-grained methods and provides
a simplified model for exploring new methods of building
and sampling de novo structures.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

We thank Christoph Flamm and Thomas Hamelryck for inspiration
and fruitful discussions and Craig Zirbel for helpful advice and com-
ments about the manuscript. This work was funded, in part, by the
Austrian DK RNA program FG748004, and by the Austrian FWF,
project “SFB F43 RNA regulation of the transcriptome.”

Received August 20, 2014; accepted February 13, 2015.

REFERENCES

Ali M, Lipfert J, Seifert S, Herschlag D, Doniach S. 2010. The ligand-free
state of the TPP riboswitch: a partially folded RNA structure. J Mol
Biol 396: 153–165.

Bailor MH, Mustoe AM, Brooks CL III, Al-Hashimi HM. 2011. 3D
maps of RNA interhelical junctions. Nat Protoc 6: 1536–1545.

Brenner MD, Scanlan MS, Nahas MK, Ha T, Silverman SK. 2010.
Multivector fluorescence analysis of the xpt guanine riboswitch
aptamer domain and the conformational role of guanine. Biochem-
istry 49: 1596–1605.

Butcher SE, Pyle AM. 2011. The molecular interactions that stabilize
RNA tertiary structure: RNA motifs, patterns, and networks. Acc
Chem Res 44: 1302–1311.

Chen C, Mitra S, Jonikas M, Martin J, Brenowitz M, Laederach A. 2013.
Understanding the role of three-dimensional topology in determin-

ing the folding intermediates of group I introns. Biophys J 104:
1326–1337.

Das R, Baker D. 2007. Automated de novo prediction of native-like RNA
tertiary structures. Proc Natl Acad Sci 104: 14664–14669.

Das R, Kudaravalli M, Jonikas M, Laederach A, Fong R, Schwans JP,
Baker D, Piccirilli JA, Altman RB, Herschlag D. 2008. Structural in-
ference of native and partially folded RNA by high-throughput con-
tact mapping. Proc Natl Acad Sci 105: 4144–4149.

Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE,
Dokholyan NV. 2008. Ab initio RNA folding by discrete molecular
dynamics: from structure prediction to folding mechanisms. RNA
14: 1164–1173.

Do CB, Woods DA, Batzoglou S. 2006. CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinformatics
22: e90–e98.

Endres DM, Schindelin JE. 2003. A new metric for probability distribu-
tions. IEEE Trans Inform Theory 49: 1858–1860.

Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J,
Hamelryck T. 2009. A probabilistic model of RNA conformational
space. PLoS Comput Biol 5: e1000406.

Gendron P, Lemieux S, Major F. 2001. Quantitative analysis of nucleic
acid three-dimensional structures. J Mol Biol 308: 919–936.

Hamelryck T, BorgM, PaluszewskiM, Paulsen J, Frellsen J, Andreetta C,
Boomsma W, Bottaro S, Ferkinghoff-Borg J. 2010. Potentials of
mean force for protein structure prediction vindicated, formalized
and generalized. PLoS One 5: e13714.

Höner zu Siederdissen C, Bernhart SH, Stadler PF, Hofacker IL. 2011. A
folding algorithm for extended RNA secondary structures.
Bioinformatics 27: i129–i136.

Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D,
Altman RB. 2009. Coarse-grained modeling of large RNA molecules
with knowledge-based potentials and structural filters. RNA 15:
189–199.

KabschW. 1976. A solution for the best rotation to relate two sets of vec-
tors. Acta Crystallogr A 32: 922–923.

Kim N, Laing C, Elmetwaly S, Jung S, Curuksu J, Schlick T. 2014.
Graph-based sampling for approximating global helical topologies
of RNA. Proc Natl Acad Sci 111: 4079–4084.

Laederach A, Chan JM, Schwartzman A, Willgohs E, Altman RB. 2007.
Coplanar and coaxial orientations of RNA bases and helices. RNA
13: 643–650.

Lamiable A, Quessette F, Vial S, Barth D, Denise A. 2013. An algo-
rithmic game-theory approach for coarse-grain prediction of
RNA 3D structure. IEEE/ACM Trans Comput Biol Bioinform 10:
193–199.

Leontis NB, Zirbel CL. 2012. Nonredundant 3D structure datasets
for RNA knowledge extraction and benchmarking. In RNA 3D
structure analysis and prediction, pp. 281–298. Springer, Berlin,
Heidelberg.

Leontis NB, Lescoute A, Westhof E. 2006. The building blocks and mo-
tifs of RNA architecture. Curr Opin Struct Biol 16: 279–287.

Lescoute A, Leontis NB, Massire C, Westhof E. 2005. Recurrent struc-
tural RNA motifs, Isostericity Matrices and sequence alignments.
Nucleic Acids Res 33: 2395–2409.

Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, Hofacker L. 2011. ViennaRNA Package 2.0. Algorithms
Mol Biol 6: 26.

Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. 2001. RNA tertiary
interactions in the large ribosomal subunit: the A-minor motif. Proc
Natl Acad Sci 98: 4899–4903.

Parisien M, Major F. 2008. The MC-Fold and MC-Sym pipeline infers
RNA structure from sequence data. Nature 452: 51–55.

Petkovic S, Badelt S, Block S, Flamm C, Delcea M, Hofacker I, Müller S.
2015. Sequence-controlled RNA self-processing: computational
design, biochemical analysis, and visualization by AFM. RNA (in
press).

Petrov AI, Zirbel CL, Leontis NB. 2013. Automated classification of
RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19: 1327–1340.

Kerpedjiev et al.

1120 RNA, Vol. 21, No. 6

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P,
Bartol N, Blazewicz J, Adamiak RW. 2012. Automated 3D structure
composition for large RNAs. Nucleic Acids Res 40: e112.

Reinharz V, Major F, Waldispühl J. 2012. Towards 3D structure predic-
tion of large RNAmolecules: an integer programming framework to
insert local 3Dmotifs in RNA secondary structure. Bioinformatics 28:
i207–i214.

Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. 2008. FR3D:
finding local and composite recurrent structural motifs in RNA 3D
structures. J Math Biol 56: 215–252.

Scott DW. 2009.Multivariate density estimation: theory, practice, and vi-
sualization, Vol. 383. Wiley, New York, NY.

Sim AY, Levitt M. 2011. Clustering to identify RNA conformations con-
strained by secondary structure. Proc Natl Acad Sci 108: 3590–3595.

Sippl MJ. 1995. Knowledge-based potentials for proteins. Curr Opin
Struct Biol 5: 229–235.

Smit S, Rother K, Heringa J, Knight R. 2008. From knotted to nested
RNA structures: a variety of computational methods for pseudoknot
removal. RNA 14: 410–416.

Sperschneider J, Datta A, Wise MJ. 2011. Heuristic RNA pseudoknot
prediction including intramolecular kissing hairpins. RNA 17:
27–38.

Theis C, Janssen S, Giegerich R. 2010. Prediction of RNA secondary
structure including kissing hairpin motifs. In Algorithms in bioinfor-
matics, pp. 52–64. Springer, Berlin, Heidelberg.

Theis C, Höner zu Siederdissen C, Hofacker IL, Gorodkin J.
2013. Automated identification of 3D modules with discriminative
power in RNA structural alignments. Nucleic Acids Res 41: 9999–
10009.

Tullius TD, Greenbaum JA. 2005. Mapping nucleic acid structure by hy-
droxyl radical cleavage. Curr Opin Chem Biol 9: 127–134.

Valentin JB, Andreetta C, Boomsma W, Bottaro S, Ferkinghoff-Borg J,
Frellsen J, Mardia KV, Tian P, Hamelryck T. 2014. Formulation of
probabilistic models of protein structure in atomic detail using the
reference ratio method. Proteins 82: 288–299.

Vincent HA, Henderson CA, Stone CM, Cary PD, Gowers DM,
Sobott F, Taylor JE, Callaghan AJ. 2012. The low-resolution solution
structure of Vibrio choleraeHfq in complex with Qrr1 sRNA.Nucleic
Acids Res 40: 8698–8710.

Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y. 2012. Automated
and fast building of three-dimensional RNA structures. Sci Rep 2:
734.

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridi-
zation prediction. Nucleic Acids Res 31: 3406–3415.

Ernwin structure prediction

www.rnajournal.org 1121

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


 10.1261/rna.047522.114Access the most recent version at doi:
 2015 21: 1110-1121 originally published online April 22, 2015RNA

  
Peter Kerpedjiev, Christian Höner zu Siederdissen and Ivo L. Hofacker
  
model
Predicting RNA 3D structure using a coarse-grain helix-centered

  
Material

Supplemental
  

 http://rnajournal.cshlp.org/content/suppl/2015/04/03/rna.047522.114.DC1

  
References

  
 http://rnajournal.cshlp.org/content/21/6/1110.full.html#ref-list-1

This article cites 38 articles, 11 of which can be accessed free at:

  
Open Access

  
 Open Access option.RNAFreely available online through the 

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by/4.0/
(Attribution 4.0 International), as described at 

, is available under a Creative Commons LicenseRNAThis article, published in 

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 http://rnajournal.cshlp.org/subscriptions
 go to: RNATo subscribe to 

© 2015 Kerpedjiev et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.047522.114
http://rnajournal.cshlp.org/content/suppl/2015/04/03/rna.047522.114.DC1
http://rnajournal.cshlp.org/content/21/6/1110.full.html#ref-list-1
http://creativecommons.org/licenses/by/4.0/
http://rnajournal.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by& saveAlert=no&cited_by_criteria_resid=rna;21/6/1110&return_type=article&return_url=http://rnajournal.cshlp.org/content/21/6/1110.full.pdf
http://rnajournal.cshlp.org/cgi/adclick/?ad=56351&adclick=true&url=https%3A%2F%2Fhorizondiscovery.com%2Fen%2Fresources%2Ftreasury%3Freferrer%3D%7BAD4C1C0D-2A94-4FB2-A2C4-EEC923A91CDE%7D%26utm_source%3DRNAjournal%26utm_medium%3Dbanner%26utm_campaign%3D22q
http://rnajournal.cshlp.org/subscriptions
http://rnajournal.cshlp.org/
http://www.cshlpress.com

