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Abstract

Background: RNA secondary structure prediction is an important issue in structural bioinformatics, and RNA

pseudoknotted secondary structure prediction represents an NP-hard problem. Recently, many different machine-

learning methods, Markov models, and neural networks have been employed for this problem, with encouraging

results regarding their predictive accuracy; however, their performances are usually limited by the requirements of

the learning model and over-fitting, which requires use of a fixed number of training features. Because most natural

biological sequences have variable lengths, the sequences have to be truncated before the features are employed

by the learning model, which not only leads to the loss of information but also destroys biological-sequence

integrity.

Results: To address this problem, we propose an adaptive sequence length based on deep-learning model and

integrate an energy-based filter to remove the over-fitting base pairs.

Conclusions: Comparative experiments conducted on an authoritative dataset RNA STRAND (RNA secondary

STRucture and statistical Analysis Database) revealed a 12% higher accuracy relative to three currently used

methods.
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Introduction

RNA is a carrier of genetic information, and its structure

plays a crucial role in gene maturation, regulation, and

function [1–3]. Studying the relationship between RNA

function and structure and determining the form and

frequency of RNA folding are important to reveal the

role of RNA molecules in the life process [4–6]. The

most common way to manipulate RNA structures algo-

rithmically is to reduce them to base pairs (i.e., secondary

structures) abstracted from the actual spatial arrangement

of nucleotides. For a valid secondary structure, each base,

i, can only interact with at most one other base, j, and

form one base pair (i, j) [7, 8].

The secondary structure of an RNA molecule repre-

sents base-pair interactions that fundamentally deter-

mine overall structure [9–11]. Current studies of RNA

molecular structure emphasize the difficulty of RNA sec-

ondary structure analysis [12, 13].

Pseudoknots are substructures of RNA secondary struc-

ture that describe crossed base pairs [(i, j) and (k, l)] in a

sequence, where i < k < j < l. RNA secondary structure pre-

diction in the absence of pseudoknots has been studied

using dynamic programming algorithms described by

Zuker [14] and Mathews [15, 16] and employing m-fold

[17] and GT-fold [18]. From an algorithmic standpoint,

RNA pseudoknotted secondary structure prediction repre-

sents an NP-hard optimization problem [19]; therefore, in
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order to reduce computational complexity, most algo-

rithms ignore pseudoknots [7].

Common RNA secondary structure prediction models

mainly include thermodynamic models, homology com-

parison models, and statistical-learning models [20]. The

thermodynamic model assumes that RNA molecules are

subject to the laws of thermodynamics, and that RNA

structures with a lower free energy are more stable.

Therefore, from all possible secondary structures, that

with smallest free energy represents the optimal pre-

dicted result. A homologous comparison model sear-

ches for commonly mutated base pairs in sequences

from the same source, although homologous sequences

need to be additionally provided as input [21]. The

statistical-learning model can predict the regularity of

known RNA structures through machine learning and

other methods, with accuracies that can potentially ex-

ceed those associated with the method targeting the

minimum free energy.

After translating the RNA secondary structure-

prediction problem into a classification problem of base

pairings in the sequence by using machine-learning al-

gorithms, computational complexity can be reduced,

but only to a certain extent. However, there remain two

difficulties. First, the existence of pseudoknots makes

the folding of RNA sequences more complicated; there-

fore, bases cannot be distinguished using only three

categories of “unpaired bases”, “paired bases near the

head”. and “paired bases near the end”. The E-NSSE

method, which divides bases into five categories, can

only predict plane pseudoknots, but cannot predict

complex structures involving nonplanar pseudoknots.

Second, a machine-learning model using a fixed-sized

vector as the input feature is unsuitable for processing

sequence-type data and cannot process RNA sequences

of variable length.

As a research hotspot in the field of machine learning,

deep learning can mine deeper hidden features from data

[22–24]. A recurrent neural network is a sequence-

oriented neural-network model for deep learning that dis-

plays excellent performance in natural-language process-

ing, image recognition, and speech recognition [25, 26].

However, common deep neural-network models are

restricted to features with a fixed shape and, therefore,

cannot model RNA primary structures with variable

sequence lengths. Here, we applied a long short-term

memory (LSTM) network to establish a secondary

structure-prediction method that is adaptable to RNA

sequences of variable length. A previous study by

Mathews [27] showed that a higher base-pairing

probability calculated by the partition function re-

sulted in a greater the probability of its appearance in

the real structure. Therefore, the type of base and the

output of its partition function was selected as the

feature of the base. Additionally, we introduced a

mask vector to eliminate the effect of the extended

sequence on the model, which allowed the model to

process variable length RNA primary sequences. A

weight vector was used to dynamically regulate the

proportion of the loss function associated with each

base in the total loss function of the sequence, thereby

alleviating the unbalanced distribution of the samples.

However, there may be some conflicting predicted bases

in the predicted result of LSTM, for example, the i-th

base is predicted to be paired with the j-th base, but the

j-th base is predicted to be an unpaired base or paired

with another base. To solve the problem, a energy-based

filter is also proposed to filter the conflicting predicted

result of LSTM.

Methods

RNA secondary structure prediction

A, G, C, U are four different bases in RNA molecules,

several bases are arranged in order to form the primary

structure of RNA [28, 29]. The primary structure of an

RNA sequence S consisting of n bases can be expressed

as S = s1, s2, ... sn, where s1 is the base near the 5′ side, sn
is the base near the 3′ side, si is the i-th base in se-

quence S and si∈{A, G, C, U}.

RNA secondary structure prediction problem, with the

purpose of calculating the pairing results yi of each base

si in sequence S when the primary structure of S is

known, is a classification problem. According to differ-

ent categories of classification, RNA secondary structure

prediction problems can be divided into the following

categories:

(1) Two categories classification: pairing results consist

of the category of paired base (yi = 1) and the

category of not paired base (yi = 0).

(2) Three categories classification: pairing results

include the category of paired base near 5′ side

(yi = 1), the category of paired base near 3′ side

(yi = 2) and the category of not paired base (yi = 0).

(3) Multi-category classification: for a sequence with

pseudoknots, pairing results yi = j(j = 0,1 … n)

means the i-th base is paired with the j-th base if

j > 0, otherwise the i-th base is not paired.

This paper focus on (1, 3).

Adaptive LSTM with energy-based model

The scheme of a RNA secondary structure-prediction

model based on Adaptive LSTM and energy-based filter

is shown in Fig. 1.

The input feature matrix of a sequence is a two-

dimensional tensor X. X [i, j] represents the j-th feature

of the i-th base, the N + 5 dimensional vector X [i] is the
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input feature vector of a base, the first element of x [i] is

the frequency of the base in the sequence, the second to

5th elements represent the type of base, replacing A,U,C,

G and unknown type by [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,

0,0] and [0,0,0,0]. The last N elements are the outputs of

the partition function. The output label is set as the

multi-category classification in section 2.1.

This model capable of predicting RNA pseudoknots

comprises adaptive module, LSTM module and energy-

based filter module.

LSTM module consists of an input layer, an LSTM

layer, fully connected layers, and a softmax layer. The in-

put layer maps the input features into higher dimen-

sional feature vectors and inputs them into the forward

LSTM unit lstm_f and the backward LSTM unit lstm_b

in the LSTM layer. After splitting the outputs of the for-

ward LSTM and the backward LSTM, they are input

into the back-propagation neural network comprising

the full connection layer and the output layer for classifi-

cation. The fully connected layers use tanh as an activa-

tion function, and a dropout layer was added to improve

fitting to the test data. The output layer uses softmax as

an activation function and converts the output of the

fully connected layer into a probability distribution vec-

tor that represents the probability that each base in the

sequence belongs to each output category.

The adaptive module is used to make the model han-

dle sequences with variable length and reduce the im-

pact from imbalanced samples.

The energy-based filter module is used to filter the

over-fitting pairs by selecting the structure with lower

free energy. In the output of LSTM, each base si, of

the sequence has an independently predicted category

yi, representing the most likely base index to be

paired with. However, it is possible that some predicted

results could have been duplicated or might have shown

Fig. 1 Framework X∈R
Iauthor
l1

�I
paper

l2
�Iterm

l3 of the Adaptive-LSTM with filter
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inconsistencies. For example, the i-th base was predicted

as being paired with the j-th base (yi = j), but the base with

which the j-th base was predicted to be paired with was

not the i-th base (yi ≠ j). The energy-based filter correct

some of these conflicting bases to make the predicted

structure conform to the principle of base pairing and

have lower free energy.

Adaptive LSTM

A mask vector was introduced to enable the model to ef-

fectively process sequences of different length and to en-

sure that the extended base will not affect the normal

training of the model.

Let the maximum length of the sequence the model

can accept be N. For the k-th sequence, its length is nk,

and the original sequence features comprising its feature

of nk bases are x(1), x (2) ... x (nk). Expand the sequence

feature by setting the features of the nk + 1-th to N-th

base, x (nk + 1), x (nk + 2)...x(N), with an arbitrary value,

so that all lengths of all sequences can be unified into a

fixed value, N. An N-dimensional mask vector, Mk, is

generated (Mk = [Mk(i) | i = 1, 2 ... N], Mk(i) = 1) when

i ≤ nk, and Mk(i) = 0 when nk < i ≤N. The mask vector is

used to distinguish between the original and extended

parts of a sequence, and the new sequence represents

the input to the LSTM network. Therefore, the cross-

entropy loss function of this sequence is calculated as

follows:

Lk y; y
0

� �

¼
1

n

X

n

i¼1

Mk ið Þ
X

m

j¼0

y
0

i; j½ � log y i; j½ �ð Þ ð1Þ

where n is the length of the sequence, m is the number

of categories, the two-dimensional arrays y and y’ repre-

sent the prediction result and the real label, respectively,

and y [i, j] indicates the probability that the i-th base be-

longs to the j-th category.

When calculating the cross-entropy of the i-th base in

the k-th sequence, Mk(i) will appears as a product in the

calculation of the gradient formula. When the i-th base

is from the original sequence, (i ≤ nk) [Mk(i) = 1], the gra-

dient value will not be changed by Mk(i), and the net-

work weight will be updated similar to that in a

conventional method. When the base is not found in the

original sequence (nk < i ≤N) [Mk(i) = 0], the gradient

value will be 0, and the network weight will not be up-

dated. Therefore, the invalid prediction by the model of

extended bases will not affect the update of the model.

Dynamic weighting method

Among the two categories used for classification of RNA

secondary structure prediction, the ratio of the number

of bases belonging to the paired and unpaired categories

~ 6:4 in the RNA STRAND dataset; however, in the

multi-category classification problem, the ratio is ~ 6/n:

6/n: …: 6/n:4. As n increases, there will be an uneven

distribution of samples, which might lead a model to

predict all bases as in the unpaired category, because

the number of bases belonging to that category in the

real structure is much larger than that of any other

categories.

To address this problem, a dynamic weighting method

was added to the model. For the k-th sequence, a weight

vector, Wk, was generated. If the i-th base is a paired

base in the real structure, the value of Wk(i) equals the

number of unpaired bases in the sequence; otherwise,

the value of Wk(i) is 1. After adding the dynamic weight-

ing method, the loss function of the k-th sequence is as

follows:

Lk y; y
0

� �

¼
1

w

X

n

i¼1

W k ið ÞMk ið Þ
X

m

j¼0

y
0

i; j½ � log y i; j½ �ð Þ

m ¼
X

N

k¼1

Mk ;w ¼
X

N

k¼1

W k �Mk ;

W k ¼

1 y
0

i; 0½ �≠1
X

n

i¼1

y
0

i; 0½ � y
0

i; 0½ � ¼ 1

8

>

<

>

:

ð2Þ

Energy-based filter

As the result of translating the RNA secondary structure-

prediction problem into a classification problem of base

pairings, there exist some conflicting pairing result in the

output of LSTM. The energy-based filter is used to deal

with this problem.

In laws of thermodynamics, RNA structures with a

lower free energy are more stable [16], so the energy-

based is used to randomly change the label of con-

flicting base pairings according to the free energy of

the structure to make the structure more likely to its

real structure.

According to the Watson-Crick base complementary

pairing principle [23], each base s(i), can only interact

with at most one other base, s(j), to form one base pair

(s(i), s(j)) and {s(i), s(j)} ∈{{A,U},{C,G},{G,U}}. As a result,

the predicted result of i-th base y(i) can be reserved if

the two following conditions are met:

(1) y(y(i))=i

(2) (s(i), s(y(i))) is in {(A, U), (U, A), (C, G), (G, C), (G,

U), (U, G)}

If these conditions are not met, y(i) should be set as 0

to classify the i-th base as unpaired base.

By setting all the conflicting bases to unpaired bases, it

may incorrectly turn false positive samples into false
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negative samples, energy-based filter is improved from

reducing unmatched pairs to filter pairing results by the

free energy of secondary structure. The flow chart of

energy-based filter is shown in the right upper of Fig. 1

and the energy-based filter algorithm is as follows:

In Extract_bases(y), bases with conflicting pairing re-

sult will be extracted from y (the predicted result of

Adaptive LSTM) into conflicting base list S(i) and its

index Id(i), i∈{0,1 … m− 1}, S(i), Id(i)∈{1,2 … k}, where m

is the number of conflicting bases, k is the length of the

primary sequence, i is the index of each base in the con-

flicting bases list, Id(i) is the index of the i-th base in its

primary sequence, S(i) represents the predicted result of

Adaptive LSTM of i-th conflicting base (the Id(i)-th base

in its primary sequence).

The pairing result matrix Mmxn, denoting n pairing re-

sults, is randomly initialized with 0 or 1, each column of

the matrix represents the pairing result of the m con-

flicting bases. In the j-th pairing result, if M(i,j) = 1, it

means the predicted result of Adaptive LSTM of i-th

conflicting base is retained, if M(i,j) = 0, it means the

predicted result of Adaptive LSTM of i-th conflicting

base is not accepted and S(i) should be set as 0 to clas-

sify this base to unpaired base.

Correct(M[:,j]) is to correct the j-th pairing result ac-

cording to the j-th column of M: y’ is a copy of y, in the

j-th pairing result, for each conflicting base, if M(i,j) =

1and the y (Id(i))-th base in primary sequence is con-

flicting base or unpaired base, keep y’(Id(i)) and set

y’(y (Id(i))) = Id(i), else set y’(Id(i)) = 0.

Reducing unmatched pairs is to correct the predicted

result according to the two conditions.

In Calculate_energy(y’), E(j) is the free energy of the

j-th pairing result. And Mbest is the structure with

lowest free energy in M till now.

Change each pairing result: for each base of each

pairing result, if M(i,j) =Mbest(j), set M(i,j) = 1-M(i,j) in a

low possibility p1, else set M(i,j) = 1-M(i,j) in a high pos-

sibility p2.

Evaluation metrics

Accuracy (ACC) is a commonly used evaluation metrics

in classification. Sensitivity (SEN) and specificity (PPV)

are commonly used in RNA secondary structure predic-

tion [30]. Matthews correlation coefficient (MCC) is an

evaluation metrics that combines sensitivity and specifi-

city. This paper uses SEN, PPV, MCC and ACC to

evaluate the model, they are calculated as follows:

sen ¼
TP

TP þ FN
ð3Þ

ppv ¼
TP

TP þ FP
ð4Þ

mcc ¼
TP � TN−FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

ð5Þ

acc ¼
TP þ TN

TP þ TN þ FP þ FN
ð6Þ

Where TP (true positives) means the number of cor-

rectly predicted bases; FN (false negatives) means the

number of bases that are not correctly predicted; FP

(false negatives) means the number of unpaired bases

that predicted to be paired; TN (true negatives) means

the number of correctly predicted unpaired bases [31].

The range of SEN, PPV and ACC is between 0 and 1,

while the range MCC is between − 1 and 1, and the

higher these evaluation metrics are, the better the

model is.

Results and discussion

Dataset. The dataset of this paper comes from authorita-

tive dataset RNA STRAND [32], including five subsets:

TMR (The tmRNA website [33]),SPR (Sprinzl tRNA

Database [34]),SRP (Signal recognition particle database

[35]),RFA (The RNA family database [36])and ASE

(RNase P Database [37]).There are 2493 sequences in

the 5 datasets, the maximum and average length is 553

and 267.37 respectively. The number of sequences, the

average sequence length, the minimum length and the

maximum length are shown in Table 1. 90% of these se-

quences are randomly selected as training data and the

rest 10% are testing data.

Comparison between adaptive-LSTM with and without

energy-based filter

To prove the validity of the energy-based filter, a com-

parative experiment was carried out on the five datasets.

Figure 2 shows the accuracy comparison of adaptive

LSTM with energy-based filter(y-axis) and adaptive

LSTM without energy-based filter(x-axis) on 249 test

RNAs and the size of each points indicates the length of

sequence. The number of points above the dotted line

y = x are much more than the number of points under

the dotted line. There are 172 RNAs (above the dotted

line y = x) predicted by adaptive-LSTM with filter with

higher accuracy than the accuracy predicted by adaptive-

Table 1 Datasets

Dataset Number Average Max Min

TMR 721 361.1 463 102

ASE 454 332.6 486 189

SPR 622 77.3 93 54

SRP 383 224.7 533 66

RFA 313 118.9 553 40
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LSTM. On the dataset ASE and TMR adaptive-LSTM

with filter predicted 100 and 100% of test RNAs are bet-

ter than the prediction by adaptive-LSTM.

In the Fig. 2, most of the RNAs in dataset SPR (in

black) with energy-based filter have lower accuracy than

without the filter. There are two possible reasons. The

first one is the average length of the sequences in SPR

dataset is much shorter than other datasets and their

folding structures are relatively simple. Less free energy

gap of the simple structures leads to energy-based filter

failure. The second possible reason is the percentage of

bases with unknown base type is 11.44% on SPR dataset,

while the percentage on TMR, ASE, SRP, RFA are 0.04,

0.02, 5.93%, which will cause inaccuracy of free-energy.

Since the energy-base filter heavily relies on the free en-

ergy, the two reasons may make the energy-based filter

failed over adaptive-LSTM.

Comparison between adaptive LSTM and other three

classical methods

ProbKnot [38] assembles maximum expected accuracy

structures from computed base-pairing probabilities in

O(N2) time. Cylofold [39] is an RNA secondary structure

prediction method with no algorithmic restriction in

terms of pseudoknot complexity. Centroidfold [40] use

novel estimators to maximize an objective function which

is the weighted sum of the expected number of the true

positives and that of the true negatives of the base pairs.

Comparison experiments between adaptive LSTM with

energy-based filter and these three classical method was

operated, the SEN, PPV, ACC and MCC of ProbKnot

are 0.757, 0.587, 0.646 and 0.319, the SEN, ppv, ACC

and MCC of Cylofold are 0.414, 0.319, 0.406 and

0.014, the SEN, PPV, ACC and MCC of Centroidfold

are 0.673, 0.605, 0.654 and 0.307, the SEN, PPV, ACC

and MCC of Adaptive LSTM are 0.927, 0.613, 0.689

and 0.483, the SEN, PPV, ACC and MCC of adaptive-

LSTM with energy-based filter are 0.685, 0.883, 0.780

and 0.592.

Table 2 shows the MCC and ACC of the adaptive-

LSTM (Adaptive), adaptive-LSTM with energy-based

filter (Filter) and other classic RNA secondary structure-

prediction methods. Adaptive LSTM is better than other

three methods in all metrics and energy-based filter can

further improve the ACC and MCC. Because the Cylo-

fold algorithm does not allow for missing bases, it

Fig. 2 Scatter of accuracy comparison between adaptive-LSTM with and without filter
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generated no results for SPR datasets in which the se-

quence information was incomplete.

Compared with the three classical methods, Adaptive

LSTM have higher ACC in four datasets and higher

MCC in all datasets, after adding the energy-based filter,

the MCC is further improved to 0.78 on average. Be-

cause the Cylofold algorithm does not allow for missing

bases, it generated no results for SPR datasets in which

the sequence information was incomplete.

Case study on RNA with pseudoknots

RFA_00633 (hepatitis delta virus ribozyme) is an RNA

sequence with pseudoknots and represents a noncoding

RNA molecule found in the hepatitis delta virus that is

necessary for viral replication and reportedly the only

catalytic RNA required by a human pathogen for

viability [41]. The length of its primary sequence is 91

bases, and its native secondary structure is shown in

Fig. 3.

Figure 4 shows the predictive results from the Prob-

Knot, adaptive LSTM with energy-based filter, Centroid-

fold and Cylofold. There were no pseudoknots in the

predicted structures, and the ACC values were 51.6 and

40.7% for ProbKnot and centroidfold, respectively Fig. 4a

and c. Figure 4d shows the predicted structure with

pseudoknots by cylofold, with an ACC of 63.7%.

Adaptive LSTM without energy-based filter cannot

predict a valid result to construct a secondary structure

because there are conflicting pairing bases. The structure

predicted by the adaptive LSTM showed an ACC of

93.4%, which exceed that of the other three methods.

Conclusions

This paper proposed a RNA secondary structure predict-

ing method based on Adaptive LSTM with energy-based

filter. This method addressed problems associated with

truncating sequences in order to address problems asso-

ciated with the variability in RNA-sequence length, with

truncation often resulting in the loss of sequence in-

formation and incompleteness. Additionally, we added a

dynamic weighting algorithm to alleviate problems re-

lated to the unbalanced distribution of samples and use

energy-based filter to remove the conflicting pairing result.

Experimental results showed that this method effectively

improved the accuracy of RNA secondary structure pre-

diction, as the MCC metrics were 16% higher than other 3

classical algorithms on average, and energy-based filter

can further improve the MCC to 59.2% which is 28%

higher than other methods. For tests using the TMR data-

set harboring sequences with large span lengths, MCC

and ACC values were 43.4 and 63%, respectively, which

were 33 and 9.9% higher than that of the ProbKnot algo-

rithm, respectively.

Table 2 MCC and ACC of adaptive LSTM and other three

methods

Dataset Metrics ProbKnot Cylofold CentroidFold Adaptive Filter

TMR MCC 0.105 −0.043 0.106 0.434 0.581

ACC 0.531 0.485 0.561 0.630 0.786

SPR MCC 0.591 * 0.668 0.786 0.751

ACC 0.796 * 0.834 0.891 0.870

SRP MCC 0.262 −0.184 0.177 0.421 0.475

ACC 0.613 0.396 0.584 0.708 0.690

RFA MCC 0.398 0.256 0.299 0.451 0.699

ACC 0.677 0.624 0.650 0.661 0.834

ASE MCC 0.238 0.043 0.286 0.323 0.484

ACC 0.611 0.523 0.642 0.556 0.720

Average MCC 0.319 0.014 0.307 0.483 0.592

ACC 0.646 0.406 0.654 0.689 0.780

Boldface represents the highest MCC or ACC in comparison with the other

three methods

*indicates Cylofold does not generate results on SPR dataset, since Cylofold

can not accept the sequence with missing bases in SPR dataset

Fig. 3 Native secondary structure of RFA_00633
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Fig. 4 Predicted secondary structure of RFA_00633. a ProbKnot. b Cylofold. c Centroidfold. d Adaptive LSTM with energy-based filter
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Our future research will focus on improving the net-

work structure by adding convolutional layer or atten-

tion layer and use cross validation, which could further

enhance the predictive accuracy of the model.
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