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Predicting rogue waves in random oceanic sea states

A. L. Islas and C. M. Schobera!

Department of Mathematics, University of Central Florida, Orlando, Florida 32816

sReceived 27 October 2004; accepted 18 January 2005; published online 16 February 2005d

Using the inverse spectral theory of the nonlinear Schrödinger sNLSd equation we correlate the

development of rogue waves in oceanic sea states characterized by the Joint North Sea Wave Project

sJONSWAPd spectrum with the proximity to homoclinic solutions of the NLS equation. We find in

numerical simulations of the NLS equation that rogue waves develop for JONSWAP initial data that

are “near” NLS homoclinic data, while rogue waves do not occur for JONSWAP data that are “far”

from NLS homoclinic data. We show the nonlinear spectral decomposition provides a simple

criterium for predicting the occurrence and strength of rogue waves. © 2005 American Institute of

Physics. fDOI: 10.1063/1.1872093g

Introduction. Rogue waves are rare, large amplitude

waves whose heights exceed 2.2 times the significant wave

height of the background sea. One of the proposed mecha-

nisms for the development of rogue waves in deep water is

nonlinear focusing due to the Benjamin–Feir sBFd
instability.

1,2
The BF instability is a modulational instability

in which a uniform train of surface gravity waves is unstable

to a weak amplitude perturbation. The BF instability is de-

scribed approximately by the focusing nonlinear Schrödinger

sNLSd equation
3

iut + uxx + 2uuu2u = 0, s1d

and in the simplest setting homoclinic orbits of the unstable

Stokes solution of the NLS equation have been used for

modeling rogue waves.
4,5

Homoclinic solutions of the NLS

equation, obtained when two or more unstable modes are

present, can be phase modulated to provide striking ex-

amples of wave amplification where the amplification is due

to both the BF instability and the additional phase

modulation.
5

The NLS equation is the leading order equation in a

hierarchy of envelope equations and is derived from the full

water wave equations under the assumption of a narrow Osed
banded spectrum. This bandwidth constraint limits the appli-

cability of the NLS equation in two dimensions as it results

in energy leakage to high wave number modes.
6

The broader

bandwidth NLS sBBNLSd equation, obtained by assuming

the bandwidth is OsÎed and by retaining higher order terms

in the asymptotic expansion for the surface wave displace-

ment, has been successful in reducing the energy leakage.
6

An alternate approach is to “enhance” the NLS equation with

exact linear dispersion, whereby the equation has improved

bandwidth resolution and stability properties.
7

All these

higher order equations, whether narrow or broader band-

width or enhanced, may be viewed as perturbations of the

NLS equation. Homoclinic orbits of the Stokes wave have

been shown to persist for the BBNLS equation.
5,8

This per-

sistence result suggests homoclinic solutions of the NLS

equation may be significant in modeling rogue waves for

random oceanic states.

Onorato et al.
9

examined the generation of extreme

waves for typical random oceanic sea states characterized by

the Joint North Sea Wave Project sJONSWAPd power spec-

trum. In numerical simulations of the NLS equation it was

found that rogue waves occur more often for large values of

the Phillips parameter a and the enhancement coefficient g

in the JONSWAP spectrum. Even so, they observed that

large values of a and g do not guarantee the development of

extreme waves.

In this Letter we clarify the dependence of rogue wave

events on the phases in the “random phase” reconstruction of

the surface elevation fsee Eq. s2dg. We find that the phase

information is as important as the amplitude and peakedness

of the wave sgoverned by a and gd when determining the

occurrence of rogue waves. Random oceanic sea states char-

acterized by JONSWAP data are not small perturbations of

Stokes wave solutions. As a consequence, it is difficult to

investigate the generation of rogue waves in more realistic

sea states using a linear stability analysis sas in the

Benjamin–Feir instabilityd. Our approach is based on the

NLS equation and its inverse spectral theory, used to exam-

ine a nonlinear mode decomposition of JONSWAP type ini-

tial data. Such analysis allows us to determine the nonlinear

mode content of the data and the proximity smeasured in

terms of a parameter dd to instabilities and homoclinic solu-

tions of the NLS equation.

Our main results are s1d JONSWAP data can be quite

near data for homoclinic orbits of complicated N-phase so-

lutions. For fixed values of a and g in the JONSWAP spec-

trum, as the phases in the initial data are randomly varied,

the proximity d to homoclinic data varies. s2d In hundreds of

simulations of the NLS, where the parameters and the phases

in the JONSWAP initial data are varied, we find that rogue

waves develop for JONSWAP data that are “near” NLS ho-

moclinic data, while rogue waves do not occur for JON-

SWAP data that are “far” from NLS homoclinic data. Con-

sequently, we find that the nonlinear spectral decomposition

provides a simple criterium, in terms of the proximity to
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homoclinic solutions, for predicting the occurrence and

strength of rogue waves. This is the first time homoclinic

solutions have been correlated with rogue waves for realistic

oceanic conditions.

Random oceanic sea states. To examine the generation

of rogue waves in a random sea state, we note that the sur-

face elevation h is related to u, the solution of the NLS

equation, by h=Rehiueikxj /Î2k. Using the Hilbert transform

of h and its associated analytical signal, the initial condition

for u can be modeled as the random wave process

usx,0d = o
n=1

N

Cn expfiskn−1x − fndg , s2d

where Cn is the amplitude of the nth component with wave

number kn= sn−1dk, k=2p /L, and random phase fn, uni-

formly distributed on the interval s0,2pd. The spectral am-

plitudes, Cn=−iÎ2Sn /L, are obtained from the JONSWAP

spectrum,
9

Ssfd =
a

f 5
expF−

5

4
S f0

f
D4Gg r, r = expF−

1

2
S f − f0

s0f0

D2G .

s3d

Here f0 is the dominant frequency, determined by the wind

speed at a specified height above the sea surface, s0

=0.07s0.9d for f ø f0sf . f0d and fn=n /L is the wave fre-

quency. The parameter g is the peak-shape parameter; as g is

increased, the spectrum becomes narrower about the domi-

nant peak. For g.1 the wave spectra continues to evolve

through nonlinear wave-wave interactions even for very long

times and distances. It is in this sense that JONSWAP spectra

describe developing sea states rather than a fully developed

sea. The scale parameter a is related to the amplitude and

energy content of the wavefield. Based on an “Ursell num-

ber,” the ratio of the nonlinear and dispersive terms of the

NLS equation s1d in dimensional form, the NLS equation is

considered to be applicable for 2,g,8.
9

Typical values of

alpha are 0.008,a,0.02.

We examine a nonlinear spectral decomposition of the

JONSWAP initial data, which takes into account the phase

information fn. This decomposition is based upon the in-

verse scattering theory of the NLS equation, a procedure for

solving the initial value problem analogous to Fourier meth-

ods for linear problems. We find that we are able to predict

the occurrence of rogue waves in terms of the proximity d to

distinguished points of the discrete spectrum. We briefly re-

call elements of the nonlinear spectral theory of the NLS

equation.

Floquet spectral theory. The integrability of the NLS

equation s1d is related to the following pair of linear systems

sthe so-called Lax paird:

L
sxdf = SD + il − u

u* D − il
DSf1

f2

D = 0, L
stdf = 0, s4d

where D denotes the derivative with respect to x, l is the

spectral parameter and f is the eigenfunction.
3

These sys-

tems have a common nontrivial solution fsx , t ;ld, provided

the potential usx , td satisfies the NLS equation. L
std is not

specified explicitly as it is not implemented in our analysis.

The first step in solving the NLS using the inverse scat-

tering theory is to determine the spectrum ssud= hl
PC uLsxdf=0, ufu bounded ∀ xj of the associated linear

operator L
sxd, which is analogous to calculating the Fourier

coefficients in Fourier theory. For periodic boundary condi-

tions, usx+L , td=usx , td, the spectrum of u is expressed in

terms of the transfer matrix Msx+L ;u ,ld across a period,

where Msx ;u ,ld is a fundamental solution matrix of the Lax

pair s4d. Introducing the Floquet discriminant Dsu ,ld
=TrfMsx+L ;u ,ldg, one obtains

3

ssud = hl P CuDsu,ld P R,− 2 ø Dsu,ld ø 2j . s5d

The distinguished points of the periodic/antiperiodic spec-

trum, where Dsl ,ud= ±2, are: sad simple points hl j
s udD /dl

Þ0j and sbd double points hl j
d udD /dl=0,d2D /dl2Þ0j. The

Floquet discriminant functional Dsu ,ld is invariant under the

NLS flow and encodes the infinite family of constants of

motion of the NLS sparametrized by the l j
sd.

The Floquet spectrum s5d of a generic NLS potential

consists of the entire real axis plus additional curves scalled

bandsd of continuous spectrum which terminate at the simple

points l j
s. N-phase solutions are those with a finite number of

bands of continuous spectrum. Double points arise when two

simple points have coalesced and their location is important.

Using the direct spectral transform, any initial condition

or solution of the NLS can be represented in terms of a set of

nonlinear modes. The spatial structure and dynamical stabil-

ity of these modes is determined by the order and location of

the corresponding l j as follows:
10 sad Simple points corre-

spond to stable active degrees of freedom. sbd Double points

label all additional potentially active degrees of freedom.

Real double points correspond to stable inactive szero ampli-

tuded modes. Complex double points are associated with all

the unstable active modes and label the corresponding ho-

moclinic orbits.

Figure 1 shows the spectrum of a typical unstable

N-phase solution. There are N bands of spectrum determined

by the 2N simple points l j
s. The 2M complex double points

l j
d indicate that the solution is unstable and that there is a

FIG. 1. Spectrum of an unstable N-phase solution.
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homoclinic orbit. The simple periodic eigenvalues are la-

beled by circles and the double points are labeled by crosses.

An example of a spectrum for a nearby semistable N-phase

solution where the complex double point is split Osed is

given in Fig. 2sad.
Explicit formulas for the N-phase solutions,

Qsu1 , . . . ,uNd, are obtained in terms of the simple spectrum.

The phases evolve according to u j =k jx+V jt+u j
0, k j

=2pn j /L, where k j and V j are determined by l j
s ssince the

spectrum is invariant k j and V j are constantsd. For a given

N-phase solution, the isospectral set sall NLS solutions with

the same spectrumd comprises an N-dimensional torus char-

acterized by the phases u j. If the spectrum contains complex

double points, then the N-phase solution may be unstable.

The instabilities correspond to orbits homoclinic to the

N-phase torus.

JONSWAP data and the proximity to homoclinic solu-

tions of the NLS. In the numerical simulations the NLS

equation is integrated using a pseudospectral scheme with

256 Fourier modes in space and a fourth-order Runge–Kutta

discretization in time sDt=10−3d. The nonlinear mode con-

tent of the data is numerically computed using the direct

spectral transform described above, i.e., the system of ordi-

nary differential equations s4d is numerically solved to obtain

the discriminant D. The zeros of D±2 are then determined

with a root solver based on Muller’s method.
10

The spectrum

is computed with an accuracy of Os10−6d, whereas the spec-

tral quantities we are interested in are in the range

Os10−2d–Os10−1d.
Complex double points typically split under perturbation

into two simple points, l±, thus opening a gap in the band of

spectrum fsee Fig. 2sadg. We denote the distance between

these two simple points by dsl+ ,l−d= ul+−l−u and refer to it

as the splitting distance. We use d to measure the proximity

in the spectral plane to homoclinic data, i.e., to complex

double points and their corresponding instabilities. Since the

NLS spectrum is symmetric with respect to the real axis and

real double points correspond to inactive modes, in subse-

quent plots only the spectrum in the upper half complex l

plane will be displayed.

We begin by determining the spectrum of

JONSWAP initial data given by s2d for various combinations

of a=0.008,0.012,0.016,0.02, and g=1,2 ,4 ,6 ,8. For each

such pair sg ,ad, we performed fifty simulations, each with a

different set of randomly generated phases. As expected, the

basic spectral configuration and the number of excited modes

depended on the energy and the enhancement coefficient a
and g. However, the extent of the dependence of the spec-

trum upon the phases in the initial data was surprising.

As a typical example of the results, Figs. 2sad and 3sad

FIG. 2. sad Nonlinear spectrum and sbd evolution of Umax for JONSWAP

data sg=4 and a=0.016d that are near homoclinic data. Dashed curve cor-

responds to 2.2Hs.

FIG. 3. sad Nonlinear spectrum and sbd evolution of Umax for JONSWAP

data sg=4 and a=0.016d that are far from homoclinic data. Dashed curve

corresponds to 2.2Hs.
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show the numerically computed nonlinear spectrum of

JONSWAP initial data when g=4 and a=0.016 for two dif-

ferent realizations of the random phases. We find that

JONSWAP data correspond to “semistable” N-phase solu-

tions, i.e., we interpret the data as perturbations of N-phase

solutions with one or more unstable modes fcompare Fig.

2sad with the spectrum of an unstable N-phase solution in

Fig. 1g. In Fig. 2sad the splitting distance dsl+ ,l−d<0.07,

while in Fig. 3sad dsl+ ,l−d<0.2. Thus the JONSWAP data

can be quite near homoclinic data as in Fig. 2sad or far from

homoclinic data as in Fig. 3sad, depending on the values of

the phases fn in the initial data. For all the examined values

of a and g we find that, when a and g are fixed, as the

phases in the JONSWAP data vary, the spectral distance d of

typical JONSWAP data from homoclinic data varies.

Most importantly, irrespective of the values of the

JONSWAP parameters a and g, in simulations of the NLS

equation s1d we find that extreme waves develop for

JONSWAP initial data that are near NLS homoclinic data,

whereas the JONSWAP data that are far from NLS ho-

moclinic data typically do not generate extreme waves. Fig-

ures 2sbd and 3sbd show the corresponding evolution of the

maximum surface elevation, Umax, obtained with the NLS

equation. Umax is given by the solid curve and as a reference,

2.2HS sthe threshold for a rogue waved is given by the dashed

curve. HS is the significant wave height and is calculated as

four times the standard deviation of the wave amplitude. Fig-

ure 2sbd shows that when the nonlinear spectrum is near

homoclinic data, Umax exceeds 2.2HS sa rogue wave develops

at about t=40d. Figure 3sbd shows that when the nonlinear

spectrum is far from homoclinic data, Umax is significantly

below 2.2HS and a rogue wave does not develop. In this way,

we correlate the occurrence of rogue waves characterized by

JONSWAP spectrum with the proximity to homoclinic solu-

tions of the NLS equation.

The results of hundreds of simulations of the NLS equa-

tion consistently show that proximity to homoclinic data is a

crucial indicator of rogue wave events. For example, Fig. 4

shows the synthesis of 200 random simulations of the NLS

equation for JONSWAP initial data for different sg ,ad pairs

swith g=2,4 ,6 ,8, and a=0.012,0.016d. For each such pair

sg ,ad, we performed 25 simulations, each with a different

set of randomly generated phases. Each circle represents the

strength of the maximum wave sUmax /HSd attained during

one simulation as a function of the splitting distance

dsl+ ,l−d. The results for the particular pair sg=4,a
=0.012d is represented with an asterisk. A horizontal line at

Umax /HS=2.2 indicates the reference strength for rogue wave

formation. We identify two critical values d1=0.08 and d2

=0.22 that clearly show that sad if d,d1 snear homoclinic

datad rogue waves will occur; sbd if d1,d,d2, the likeli-

hood of obtaining rogue waves decreases as d increases and,

scd if d.d2 the likelihood of a rogue wave occurring is ex-

tremely small.

This behavior is robust. As a and g are varied, the

strength of the maximum wave and the occurrence of rogue

waves are well predicted by the proximity to homoclinic

solutions. The individual plots of the strength vs d for par-

ticular pairs sg ,ad are qualitatively the same as in Fig. 4 as

can be seen by the highlighted case sg=4, a=0.012d. These

results give strong evidence of the relevance of homoclinic

solutions of the NLS equation in investigating rogue wave

phenomena for more realistic oceanic conditions and identi-

fies the nonlinear spectral decomposition as a simple diag-

nostic tool for predicting the occurrence and strength of

rogue waves. Finally we remark that the nonlinear spectral

analysis can be implemented for other general data snon-

JONSWAPd in order to predict the occurrence of rogue

waves.

This work was partially supported by NSF Grant No.

NSF-DMS0204714.
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