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Abstract

Background: Supervised learning methods need annotated data in order to generate efficient models. Annotated

data, however, is a relatively scarce resource and can be expensive to obtain. For both passive and active learning

methods, there is a need to estimate the size of the annotated sample required to reach a performance target.

Methods: We designed and implemented a method that fits an inverse power law model to points of a given

learning curve created using a small annotated training set. Fitting is carried out using nonlinear weighted least

squares optimization. The fitted model is then used to predict the classifier’s performance and confidence interval

for larger sample sizes. For evaluation, the nonlinear weighted curve fitting method was applied to a set of

learning curves generated using clinical text and waveform classification tasks with active and passive sampling

methods, and predictions were validated using standard goodness of fit measures. As control we used an un-

weighted fitting method.

Results: A total of 568 models were fitted and the model predictions were compared with the observed

performances. Depending on the data set and sampling method, it took between 80 to 560 annotated samples to

achieve mean average and root mean squared error below 0.01. Results also show that our weighted fitting

method outperformed the baseline un-weighted method (p < 0.05).

Conclusions: This paper describes a simple and effective sample size prediction algorithm that conducts weighted

fitting of learning curves. The algorithm outperformed an un-weighted algorithm described in previous literature. It

can help researchers determine annotation sample size for supervised machine learning.

Background

The availability of biomedical data has increased during

the past decades. In order to process such data and

extract useful information from it, researchers have

been using machine learning techniques. However, to

generate predictive models, the supervised learning tech-

niques need an annotated training sample. Literature

suggests that the predictive power of the classifiers is

largely dependent on the quality and size of the training

sample [1-6].

Human annotated data is a scarce resource and its

creation expensive both in terms of money and time.

For example, un-annotated clinical notes are abundant.

To label un-annotated text corpora from the clinical

domain, however, requires a group of reviewers with

domain expertise and only a tiny fraction of the avail-

able clinical notes can be annotated.

The process of creating an annotated sample is

initiated by selecting a subset of data; the question is:

what should the size of the training subset be to reach a

certain target classification performance? Or to phrase it

differently: what is the expected classification perfor-

mance for a given training sample size?

Problem formulation

Our interest in sample size prediction stemmed from

our experiments with active learning. Active learning is

a sampling technique that aims to minimize the size of

the training set for classification. The main goal of

active learning is to achieve, with a smaller training set,

a performance comparable to that of passive learning. In

the iterative process, users need to make a decision on

when to stop/continue the data labeling and
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classification process. Although termination criteria is an

issue for both passive and active learning, identifying an

optimal termination point and training sample size may

be more important in active learning. This is because

the passive and active learning curves will, given a suffi-

ciently large sample size, eventually converge and thus

diminish the advantage of active learning over passive

learning. Relatively few papers have been published on

the termination criteria for active learning [7-9]. The

published criteria are generally based on target accuracy,

classifier confidence, uncertainty estimation, and mini-

mum expected error. As such, they do not directly pre-

dict a sample size. In addition, depending on the

algorithm and classification, active learning algorithms

differ in performance and sometimes can perform even

worse than passive learning. In our prior work on medi-

cal text classification, we have investigated and experi-

mented with several active learning sampling methods

and observed the need to predict future classification

performance for the purpose of selecting the best sam-

pling algorithm and sample size[10,11]. In this paper we

present a new method that predicts the performance at

an increased sample size. This method models the

observed classifier performance as a function of the

training sample size, and uses the fitted curve to forecast

the classifier’s future behaviour.

Previous and related work

Sample size determination

Our method can be viewed as a type of sample size

determination (SSD) method that determines sample

size for study design. There are a number of different

SSD methods to meet researchers’ specific data require-

ments and goals [12-14]. Determining the sample size

required to achieve sufficient statistical power to reject a

null hypothesis is a standard approach [13-16]. Cohen

defines statistical power as the probability that a test

will “yield statistically significant results” i.e. the prob-

ability that the null hypothesis will be rejected when the

alternative hypothesis is true[17]. These SSD methods

have been widely used in bioinformatics and clinical stu-

dies [15,18-21]. Some other methods attempt to find the

sample size needed to reach a target performance (e.g. a

high correlation coefficient) [22-25]. Within this cate-

gory we find methods that predict the sample size

required for a classifier to reach a particular accuracy

[2,4,26]. There are two main approaches to predict the

sample size required to achieve a specific classifier per-

formance: Dobbin et al. describe a “model-based”

approach to predict the number of samples needed for

classifying microarray data [2]. It determines sample size

based on standardized fold change, class prevalence, and

number of genes or features on the arrays. Another

more generic approach is to fit a classifier’s learning

curve created using empirical data to inverse power law

models. This approach is based on the findings from

prior studies where it was shown that the learning clas-

sifier learning curves generally follow the inverse power

law [27]. Examples of this approach include the algo-

rithms proposed by Mukherjee and others [1,28-30].

Since our proposed method is a variant of this approach,

we will describe the prior work on learning curve fitting

in more detail.

Learning curve fitting

A learning curve is a collection of data points (xj, yj)

that in this case describe how the performance of a clas-

sifier (yj) is related to training sample sizes (xj), where j

= 1 to m, m being the total number of instances. These

learning curves can typically be divided into three sec-

tions: In the first section, the classification performance

increases rapidly with an increase in the size of the

training set; the second section is characterized by a

turning point where the increase in performance is less

rapid and a final section where the classifier has reached

its efficiency threshold, i.e. no (or only marginal)

improvement in performance is observed with increas-

ing training set size. Figure 1 is an example of a learning

curve.

Mukherjee et al. experimented with fitting inverse

power laws to empirical learning curves to forecast the

performance at larger sample sizes [1]. They have also

discussed a permutation test procedure to assess the sta-

tistical significance of classification performance for a

given dataset size. The method was tested on several

relatively small microarray data sets (n = 53 to 280).

The differences between the predicted and actual classi-

fication errors were found to be in the range of 1%-7%.

Boonyanunta et al. on the other hand conducted the

curve fitting on several much larger datasets (n = 1,000)

using a nonlinear model consistent with the inverse

power law [28]. The mean absolute errors were very

small, generally below 1%. Our proposed method is

similar to that discussed in Mukherjee et al. with a cou-

ple of differences: 1) we conducted weighted curve fit-

ting to favor future predictions; 2) we calculated the

confidence interval for the fitted curve rather than fit-

ting two additional curves for the lower and upper quar-

tile data points.

Progressive sampling

Another research area related to our work is progressive

sampling. Both active learning and progressive sampling

start with a very small batch of instances and progres-

sively increase the training data size until a termination

criteria is met [31-36]. Active learning algorithms seek

to select the most informative cases for training. Several

of the learning curves used in this paper were generated

using active learning techniques. Progressive sampling,

on the other hand, focuses more on minimizing the
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amount of computation for a given performance target.

For instance, Provost et al. proposed progressive sam-

pling using a geometric progression-based sampling

schedule [31]. They also explored convergence detection

methods for progressive sampling and selected a conver-

gence method that used linear regression with local

sampling (LRLS). In LRLS, the slope of a linear regres-

sion line that has been built with r points sampled

around the neighborhood of the last sample size is com-

pared to zero. If it is close enough to zero, convergence

is detected. The main difference between progressive

sampling and SSD of classifiers is that progressive sam-

pling assumes there are an unlimited number of anno-

tated samples and does not predict the sample size

required to reach a specific performance target.

Methods

In this section we describe a new fitting algorithm to

predict classifier performance based on a learning curve.

This algorithm fits an inverse power law model to a

small set of initial points of a learning curve with the

purpose of predicting a classifier’s performance at larger

sample sizes. Evaluation was carried out on 12 learning

curves at dozens of sample sizes for model fitting and

predictions were validated using standard goodness of

fit measures.

Algorithm description

The algorithm to model and predict a classifier’s perfor-

mance contains three steps:

1) Learning curve creation;

2) Model fitting;

3) Sample size prediction;

Learning curve creation

Assuming the target performance measure is classifica-

tion, a learning curve that characterizes classification

accuracy (Yacc), as a function of the training set size (X)

is created. To obtain the data points (xj, yj), classifiers

are created and tested at increasing training set sizes xj.

With a batch size k, x j = k·j, j = 1, 2,...,m, i.e.

�xj = {k, 2k, 3k, ..., k · m} . Classification accuracy points

Figure 1 Generic learning curve.
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(yj), i.e. the proportion of correctly classified samples,

can be calculated at each training sample sizexj using an

independent test set or through n-fold cross validation.

Model fitting and parameter identification

Learning curves can generally be represented using

inverse power law functions [1,27,37,38]. Equation (1)

describes the classifier’s accuracy (Yacc) as function of

the training sample size × with the parameters a, b, and

c representing the minimum achievable error, learning

rate and decay rate respectively. The values of the para-

meters are expected to differ depending on the dataset,

sampling method and the classification algorithm. How-

ever, values for parameter c are expected to be negative

within the range [-1,0]; values for a are expected to be

much smaller than 1. The values of Yacc fall between 0

and 1. Yacc grows asymptotically to the maximum

achievable performance, in this case (1-a).

Yacc (x) = f (X; a, b, c) = (1 − a) − b · xc (1)

Let us define the set Ωas the collection of data points

on an empirical learning corresponding to (X, YaccX ). Ω

can be partitioned into two sub-sets: Ωt to fit the

model, and Ωt to validate the fitted model. Please note

that in real life applications only Ωt will be available.

For example, at sample size xs Ωt = {(xj, yj)| xj ≤ xs} and

Ωv = {(xj, yj)| xj >xs}.

UsingΩt, we applied nonlinear weighted least squares

optimization together with the nl2sol routine from Port

Library[39] to fit the mathematical model from Eq(1)

and find the parameter vector �β = {a, b, c}.

We also assigned weights to the data points inΩt. As

described earlier, data points on the learning curve

associates with sample sizes; we postulated that the clas-

sifier performance at a larger training sample size is more

indicative of the classifier’s future performance. To

account for this, a data point (xj, yj)ÎΩt is assigned the

normalized weight j/m where m is the cardinality of Ω.

Performance prediction

In this step, the mathematical model (Eq.(1)) together with

the estimated parameters {a, b, c} are applied to unseen

sample sizes and the resulting prediction is compared with

the data points in Ωv. In other words, the fitted curve is

used to extrapolate the classifier’s performance at larger

sample sizes. Additionally, the 95% confidence interval of

the estimated accuracy ŷs is also calculated by using Hes-

sian matrix and the second-order derivatives on the func-

tion describing the curve. See appendix1 (additional file 1)

for more details on the implementation of the methods.

Evaluation

Datasets

We evaluated our algorithm using three sets of data. In

the first two sets (D1 and D2), observations are

smoking-related sentences from a set of patient dis-

charge summaries from the Partners Health Care’s

research patient data repository (RPDR). Each observa-

tion was manually annotated with smoking status. D1

contains 7,016 sentences and 350 word features to dis-

tinguish between smokers (5,333 sentences) and non

smokers (1,683 sentences). D2 contains 8,449 sentences,

350 word features to discriminate between past smokers

(5,109 sentences) and current smokers (3,340 sentences).

The third data set (D3) is the waveform-5000 dataset

from the UCI machine learning repository [40] which

contains 5,000 instances, 21 features and three classes of

waves (1657 instances of w1, 1647 of w2, and 1696 of

w3). The classification goal is to perform binary classifi-

cation to discriminate the first class of waves from the

other two.

Each dataset was randomly split into a training set and

a testing set. Test sets for D1 and D2 contained 1,000

instances each while 2,500 instances were set apart as

test set in D3. On the three datasets, we used 4 different

sampling methods - three active learning algorithms and

a random selection (passive) - together with a support

vector machine classifier with linear kernel from WEKA

[41] (complexity constant was set to 1, epsilon set to 1,0

E-12, tolerance parameter 1,0E-3, and normalization/

standardization options were turned off) to generate a

total of 12 actual learning curves for Yacc. The active

learning methods used are:

• Distance (DIST), a simple margin method which

samples training instances based on their proximity to a

support vector machine (SVM) hyperplane;

• Diversity (DIV) which selects instances based on

their diversity/dissimilarity from instances in the train-

ing set. Diversity is measured as the simple cosine dis-

tance between the candidate instances and the already

selected set of instances in order to reduce information

redundancy; and

• Combined method (CMB) which is a combination of

both DIST and DIV methods.

The initial sample size is set to 16 with an increment

size of 16 as well, i.e. k = 16. Detailed information about

the three algorithms can be found in appendix 2 (see

additional file 2) and in literature [10,35,42].

Each experiment was repeated 100 times and Yacc

averaged at each batch size over the 100 runs to obtain

data points(xj, yj) of the learning curve.

Goodness of fit measures

Two goodness of fit measurements, mean absolute error

(MAE) (Eq.(2)) and root mean squared error (RMSE)

(Eq.(3)), were used to evaluate the fitted function onΩv.

MAE is the average absolute value of the difference

between the observed accuracy (yj) and the predicted

accuracy (
⌢

yj ). RMSE is the average of the square root
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values of the difference between the observed accuracy

(yj) and the predicted accuracy (
⌢

yj ). RMSE and MAE

values of close to zero indicate a better fit. Using ||Ωv||

to represent the cardinality of Ωv, MAE and RMSE are

computed as follows:

MAE =
1

| �v |

m
∑

(xj,yj)∈�v

| yj −
∧
yj | , ∀

(

xj,yj

)

∈ �v (2)

RMSE =

√

√

√

√

√

√

m
∑

(xj,yj)∈�v

(

yj −
∧
yj

)2

| �v |
, ∀

(

xj, yj

)

∈ �v

(3)

On each curve, we started the curve fitting and pre-

diction experiment at |Ωt| = 5, i.e. at the sample size of

80 instances. In the subsequent experiments, the |Ωt|

was increased by 1 until it reached 62 points, i.e. at the

sample size of 992 instances.

To evaluate our method, we used as baseline the non-

weighted least squares optimization algorithm described

by Mukherjee et al [1]. Paired t-test was used to com-

pare the RMSE and MAE between both methods for all

experiments. The alternative hypothesis is that the

means of the RMSE and MAE of the baseline method is

greater than those of our weighted fitting method.

Results

Using the 3 datasets and 4 sampling methods, 12 actual

learning curves are generated. We fitted the inverse

power law model to each of the curves, using an

increasing number of data points (m = 80-992 in D1

and D2, m = 80-480 in D3). A total of 568 experiments

were conducted. In each experiment, the predicted per-

formance was compared to the actual observed

performance.

Figure 2 shows the curve fitting and prediction results

for the random sampling learning curve using D2 data

at different sample sizes. In Figure 2a the curve was

fitted using 6 data points; the predicted curve (blue)

deviates slightly from the actual data points (black),

though the actual data points do fall in the relatively

large confidence interval (red). As expected, the devia-

tion and confidence interval are both larger as we pro-

ject further into the larger sample sizes. In 2b, with 11

data points for fitting, the predicted curve closely resem-

bles the observed data and the confidence interval is

much narrower. In 2c with 22 data points, the predicted

curve is even closer to the actual observations with a

very narrow confidence interval.

Figure 3 illustrates the width of the confidence interval

and MAE at various sample sizes. When the model is

fitted with a small number of annotated samples, we

can observe that the confidence interval width and MAE

in most of the cases have larger values. As the sample

size increases and the prediction accuracy improves,

both confidence interval width and MAE values become

smaller within a couple of exceptions. At large sample

sizes, confidence intervals are very narrow and residual

values very small. Both Figures 2 and 3 suggest that the

confidence interval width relates to MAE and prediction

accuracy.

Similarly, Figure 4 shows RMSE for the predicted

values on the 12 learning curves with gradually increas-

ing sample sizes used for curve fitting. Regarding fitting

samples sizes, we can observe a rapid decrease in RMSE

and MAE from 80 to 200 instances. From 200 to the

end of the curves, values stay relatively constant and

close to zero with a few exceptions. The smallest MAE

and RMSE were obtained from the D3 dataset on all the

learning curves, followed by the learning curves on the

D2 dataset. For all datasets RMSE and MAE have simi-

lar values with RMSE sometimes being slightly larger.

On Figure 2 and 5, it can be observed that the width

of the observed confidence intervals changes only

slightly along the learning curves, showing that perfor-

mance variance among experiments are not strongly

impacted by the sample size. On the other hand, the

predicted confidence interval narrows dramatically as

more samples are used and the prediction becomes

more accurate.

We also compared our algorithm with the un-

weighted algorithm. Table 1 shows average values of

RMSE for the baseline un-weighted and our weighted

method; min and max values are also provided. In all

cases, our weighted fitting method had lower RMSE

than baseline method with the exception of one tie. We

pooled the RMSE values and conducted a paired t-test.

The difference between the weighted fitting method and

the baseline method is statistically significant (p < 0.05).

We conducted a similar analysis comparing the MAE

between the two methods and obtained similar results.

Discussion

In this paper we described a relatively simple method to

predict a classifier’s performance for a given sample size,

through the creation and modelling of a learning curve.

As prior research suggests, the learning curves of

machine classifiers generally follow the inverse-power

law [1,27]. Given the purpose of predicting future per-

formance, our method assigned higher weights to data

points associated with larger sample size. In evaluation,

the weighted methods resulted in more accurate predic-

tion (p < 0.05) than the un-weighted method described

by Mukherjee et al.

The evaluation experiments were conducted on free

text and waveform data, using passive and active
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learning algorithms. Prior studies typically used a single

type of data (e.g. microarray or text) and a single type of

sampling algorithm (i.e. random sampling). By using a

variety of data and sampling methods, we were able to

test our method on a diverse collection of learning

curves and assess its generalizability. For the majority of

curves, the RMSE fell below 0.01, within a relative small

sample size of 200 used for curve fitting. We observed

minimal differences between values of RMSE and MAE

which indicates a low variance of the errors.

Our method also provides the confidence intervals of

the predicted curves. As shown in Figure 2, the width of

the confidence interval negatively correlates with the

prediction accuracy. When the predicted value deviates

more from the actual observation, the confidence inter-

val tends to be wider. As such, the confidence interval

provides an additional measure to help users make the

decision in selecting a sample size for additional annota-

tion and classification. In our study, confidence intervals

were calculated using a variance-covariance matrix on

the fitted parameters. Prior studies have stated that the

variance is not an unbiased estimator when a model is

tested on new data [1]. Hence, our confidence intervals

may sometimes be optimistic.

Figure 2 Progression of online curve fitting for learning curve of the dataset D2-RAND.
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A major limitation of the methods is that an initial set

of annotated data is needed. This is a shortcoming

shared by other SSD methods for machine classifiers.

On the other hand, depending on what confidence

interval is deemed acceptable, the initial annotated sam-

ple can be of moderate size (e.g. n = 100~200).

The initial set of annotated data is used to create a

learning curve. The curve contains

j data points with a starting sample size of m0 and a

step size of k. The total sample size m = m0 + (j-1)*k.

The values of m0 and k are determined by users. When

m0 and k are assigned the same value, m = j*k. In active

learning, a typical experiment may assign m0 as 16 or

32 and k as 16 or 32. For very small data sets, one may

consider use m0 = 4 and k = 4. Empirically, we found

that j needed to be greater than or equal to 5 for the

curve fitting to be effective.

In many studies, as well as ours, the learning curves

appear to be smooth because each data point on the

curve is assigned the average value from multiple

experiments (e.g. 10-fold cross validation repeated 100

times). With fewer experiments (e.g. 1 round of training

and testing per data point), the curve will not be as

smooth. We expect the model fitting to be more accu-

rate and the confidence interval to be narrower on

smoother curves, though the fitting process remains the

same for the less smooth curves.

Although the curve fitting can be done in real time,

the time to create the learning curve depends on the

classification task, batch size, feature number, processing

time of the machine among others. The longest experi-

ment we performed to create a learning curve using

active learning as sample selection method run on a sin-

gle core laptop for several days, though most experi-

ments needed only a few hours.

For future work, we intend to integrate the function to

predict sample size into our NLP software. The purpose

is to guide users in text mining and annotation tasks. In

Figure 3 Progression of confidence interval width and MAE for predicted values.
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Figure 4 RMSE for predicted values on the three datasets.

Figure 5 Progression of confidence interval widths for the observed values (training set) and the predicted values.
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clinical NLP research, annotation is usually expensive

and the sample size decision is often made based on

budget rather than expected performance. It is common

for researchers to select an initial number of samples in

an ad hoc fashion to annotate data and train a model.

They then increase the number of annotations if the tar-

get performance could not be reached, based on the

vague but generally correct belief that performance will

improve with a larger sample size. The amount of

improvement though cannot be known without the

modelling effort we describe in this paper. Predicting

the classification performance for a particular sample

size would allow users to evaluate the cost effectiveness

of additional annotations in study design. Specifically,

we plan for it to be incorporated as part of an active

learning and/or interactive learning process.

Conclusions

This paper describes a simple sample size prediction

algorithm that conducts weighted fitting of learning

curves. When tested on free text and waveform classifi-

cation with active and passive sampling methods, the

algorithm outperformed the un-weighted algorithm

described in previous literature in terms of goodness of

fit measures. This algorithm can help users make an

informed decision in sample size selection for machine

learning tasks, especially when annotated data are

expensive to obtain.

Additional material

Additional file 1: Appendix1 is a PDF file with the main lines of R

code that implements curve fitting using inverse power models.

Additional file 2: Appendix 2 is a PDF file that contains more

details about the active learning methods used to generate the

learning curves.
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