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Abstract. This study proposes a two-dimensional Lagrangian stochastic dispersion model for es-
timating spatial and temporal variation of scalar sources, sinks, and fluxes within a forest canopy.
Carbon dioxide and heat dispersion experiments were conducted for field testing the model. These
experiments also provided data for field testing a newly developed one-dimensional Lagrangian
analytical dispersion model. It was found that these two models produce similar scalar source-sink
and flux distribution patterns. Comparing with CO2 flux measurements, the one-dimensional model
performed as well as the two-dimensional model even when the fetch is short (≈100 m). To drive
these Lagrangian models, velocity statistics through the canopy volume must be specified a priori.
The sensitivity of the computed sources, sinks, and fluxes to the description of the flow statistics was
further examined. All in all, we found good agreement between model predicted and eddy-correlation
measured CO2 and sensible heat fluxes.

Keywords: Biosphere-atmosphere exchange, Canopy turbulence, CO2 flux, Inverse model, Lag-
rangian model, Scalar source-sink.

1. Introduction

Estimating concentrations, sources, sinks, and fluxes of heat, water vapour, CO2,
and other scalar entities (e.g., CH4) within and above vegetation canopies continues
to be an active research problem in micrometeorology (Katul et al., 1997, 2001;
Warland and Thurtell, 2000; Siqueira et al., 2000; Leuning, 2000). Establishing
the relationship between source strength and concentration profiles is essential
for such problems and provides practical methodology for long-term field studies
currently underway (Kaiser, 1998; Falge et al., 2001a, b). As discussed in Raupach
(1989a, b), it is helpful to distinguish between two classes of problems: the ‘for-
ward problem’ of predicting the concentration field emanated from a given source,
and the ‘inverse problem’ of inferring the source-sink profile from concentration
measurements. This study focuses on the latter problem for CO2 and heat within a
forest canopy.
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Raupach (1989a, b) developed the ‘Localized Near Field (LNF)’ theory, which
separates the dispersion process into near-field (non-diffusive) and far-field (diffus-
ive) and provides a quasi-analytical Lagrangian solution for linking source strength
and its resulting concentration profile. The LNF theory has been widely adopted for
inferring scalar sources and fluxes though its performance was found to be between
fair and good (Denmead, 1995; Katul et al., 1997, 2001; Leuning et al., 2000). To
alleviate some of the theoretical limitations imposed by LNF, Katul and Albertson
(1999) proposed an Eulerian approach to infer scalar fluxes using simplifications to
a turbulent flux budget equation in conjunction with concentration measurements
and velocity statistic profiles calculated by a second-order closure model (Wilson
and Shaw, 1977). Siqueira et al. (2000) compared the performance of this Eulerian
approach with LNF theory modified to include a smoothness constrain and a hybrid
Eulerian–Lagrangian model. Though the fundamentals of these three methods are
very different, they concluded that all the models gave comparable predictions of
scalar source-sink and flux profiles and recommended that these models be used in
concert with each other.

Recently, based on Taylor’s (1921) dispersion theory and Gaussian homogen-
eous turbulence assumption, Warland and Thurtell (2000) developed an analytical
Lagrangian model to represent the dispersion process continuously from near-field
to far-field and relate the source density to the gradients in concentration. Using the
Coppin et al. (1986) wind-tunnel heat dispersion experiment, they demonstrated
that their model captured the near-field effect better than LNF. However, in-situ
experiments are still required for testing this model.

When applying any of the above mentioned models to infer scalar sources
and sinks, two important factors must be considered. First, these models are one-
dimensional and neglect advective transport by the mean wind. Hence, it might be
inappropriate to adopt these models to conditions where advection is significant.
Second, in order to drive these models, it is necessary to specify (or calculate) the
flow field a priori. The flow field can be estimated from higher-order closure models
(Ayotte et al., 1999; Massman and Weil, 1999; Katul and Albertson, 1998; Katul
and Chang, 1999) or by canonical velocity statistic profiles derived from compar-
able field experiments (Raupach et al., 1996). These estimated profiles represent
ensemble-averaged (average over many sampling runs) flow properties that do not
explicitly resolve individual run-by-run variation partly induced by changes in local
atmospheric stability. While some studies considered the effects of atmospheric
stability through its role on the upper boundary condition (Leuning, 2000), local
stability effects on the flow statistics inside the canopy are commonly averaged
out. Whether incorporating the run-by-run variation in flow statistics improves the
source and flux estimations is not well explored.

The objective of this study is to investigate a two-dimensional Lagrangian
stochastic dispersion model for estimating scalar source-sink and flux distributions
and to examine the two limiting factors described above. Dispersion experiments
for CO2 and sensible heat were conducted at Duke Forest for testing the proposed
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model. Comparisons between this two-dimensional model and the newly proposed
one-dimensional Lagrangian analytical model of Warland and Thurtell (2000) are
also presented.

2. Theory and Methods

2.1. LAGRANGIAN STOCHASTIC DISPERSION MODEL

In the Lagrangian frame of reference, the scalar source density S(x, y, z, t) and
concentration C(x, y, z, t) are related by

C(x, y, z, t) =
∫ t

−∞

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
S(x0, y0, z0, t0)

× P(x, y, z, t | x0, y0, z0, t0) dy0 dx0 dz0 dt0, (1)

where P(x, y, z, t | x0, y0, z0, t0), the transition probability density function, de-
scribes the probability density of a tracer particle found at (x, y, z, t) and which
was originally released at (x0, y0, z0, t0), where x, y, z, t denote the longitudinal,
lateral, vertical, and time axes, respectively. Considering a limited homogeneous
streamwise and uniformly infinite cross-streamwise source density distribution
under steady state condition, (1) can be simplified to a two-dimensional form as

C(x, z) =
∫ ∞

−∞

∫ ∞

0

∫ t

−∞
S(z0)P (x, z, t | x0, z0, t0) dt0 dz0 dx0. (2)

If P is known, then (2) can be used to solve the forward and inverse problems
(Raupach, 1989a). In the one-dimensional case, P can be readily estimated by
LNF theory. Here, P is two-dimensional and can be calculated by the Lagrangian
stochastic dispersion model of particle trajectory simulations. The Lagrangian
stochastic model is based on the assumption that the evolution of the position (xi)
and velocity (ui) of a fluid element is a Markov process. Basic concepts, details,
and many references are summarized in Rodean (1996). Following this assumption,
the stochastic equations describing the particle velocity and position are

dui = ai(xi, ui, t) dt + bij (xi, ui, t) dλj , (3a)

ui(t) = ui(t0) +
∫ t

t0

dui (3b)

and

dxi = ui dt, (4a)
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xi(t) = xi(t0) +
∫ t

t0

dxi, (4b)

where the sub-indexes i and j = 1, 2, or 3 with summation implied over re-
peated indexes, and x1 = x, x2 = y, x3 = z, and u1 = u, u2 = v, u3 = w

are the longitudinal, lateral, and vertical velocities, respectively (since this study
considers a two-dimensional frame, i and j = 1 and 3 only). In (3), ai can be
interpreted as a drift coefficient vector, bij is the random acceleration tensor, dt

is the time interval, and dλ is a Gaussian random increment with zero mean and
variance dt . Once coefficients a and b are determined, then the formulation for
particle trajectories is established. So far, the most rigorous criterion for determ-
ining a is Thomson’s (1987) well-mixed condition while b can be determined by
Kolmogorov’s theory for the inertial subrange. The well-mixed condition states
that if the tracer particles are initially uniformly distributed (well-mixed), they
should remain so during the dispersion process. Unfortunately, the well-mixed
condition is not sufficient for selecting a unique solution for the coefficient a in
more than one-dimensional flows. Efforts have been made to provide a criterion for
distinguishing better Lagrangian stochastic formulations within the ‘well-mixed’
family (e.g., Reynolds 1998a, b; Borgas et al., 1997; Wilson and Flesch, 1997), but
not enough improvement over Thomson’s (1987) model was achieved (Sawford,
1999; Kurbanmuradov and Sabelfeld, 2000). In this study, assuming steady state,
Thomson’s solution was adopted in which coefficients a and b were given by

ai = −bikbjk(V
−1)jk(uk − Uk) + φi

ga

, (5a)

φi

ga

= 1

2

∂Vil

∂xl

+ ∂Ui

∂t
+ Ul

∂Ui

∂xl

+
(

1

2
(V −1)lj

(
∂Vil

∂t
+ Um

∂Vil

∂xm

)
+ ∂Ui

∂xj

)
(uj − Uj)

+1

2
(V −1)lj

∂Vil

∂xk

(uj − Uj)(uk − Uk), (5b)

bij = δij (C0ε)
1/2 ≈ δij

(
2σ 2

w

tL

)1/2

. (6)

In (5a), (5b), and (6), the sub-indices i and j = 1, 2, and 3 with summation over
the repeated index, Ui is the mean Eulerian velocity, the tensor Vij is defined as
Vij = (ui − Ui)(uj − Uj), the overbar denotes an ensemble average, σ 2

w, the ver-
tical velocity variance, is the one-dimensional form of Vij , C0 is the Kolmogorov
constant and ε is the mean turbulent kinetic energy dissipation rate, and the quantity
C0ε is approximated by 2σ 2

w/tL, where tL is the Lagrangian decorrelation time
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scale. Note that non-Gaussian turbulence is not considered in (5a) and (6). It was
demonstrated that models that include non-Gaussian turbulence do not outperform
those with a Gaussian turbulence assumption (Wilson and Sawford, 1996).

By releasing an ensemble of particles and using (3) to (6), we calcu-
late the trajectories of particles and the transition probability density function,
P(xi, t | xio, to). In conjunction with (2), the concentration C(xi, t) can then be
calculated when a source strength is specified. Notice that coefficients a and b are
functions of the Eulerian velocity statistics (i.e., Ui and Vij ) and Lagrangian time
scale. Hence for driving the Lagrangian stochastic model, flow statistics need to be
specified a priori. In this study, the flow statistics were determined from direct field
measurements.

2.2. CONSTRUCTING THE INTEGRATED PROBABILITY DENSITY FUNCTION

(PDF) MATRIX

From a given scalar concentration profile and P calculated from the Lagrangian
model, (2) can be used for estimating scalar source and sink strength (the inverse
problem). In practice, scalar concentrations are not continuously measured within
the canopy space but in discrete layers, thus this inverse problem must be solved
discretely and an integrated probability density function (PDF) matrix is construc-
ted. Suppose the canopy source is divided into m layers (source from the ground is
included in the lowest layer) and each layer has a uniform source density, Sj , over
its depth, �zj , where j = 1, . . . , m. Also, suppose the concentration measurement,
Ci , is available in n layers, where i = 1, . . . , n. The integrated PDF matrix, Mij is
defined as the concentration at the ith concentration-layer produced by placing a
unit source strength at the j th source-layer through the whole horizontal (x) source
domain. Since the source strength is unity, the concentration is the integration of
the transition probability density function over x and time. Mathematically, Mij , is
defined as

Mij =
∫ ∞

−∞

∫ t

−∞
P(x, zi, t | x0, zj , t0) dt0 dx0.

Once Mij is known, the source profile can be solved by

Ci =
m∑

j=1

Mij Sj�zj , (7)

which is the discrete form of (2). Notice that in a one-dimensional Lagrangian
frame of reference, Mij is readily obtained by integrating over the time domain
only, and is termed as the dispersion matrix in Raupach (1989b). However, the
measured concentration, Ci , may not only result from the scalar sources and sinks
within the canopy. Hence a background scalar concentration must be deduced as
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well. Generally, the background concentration need not be readily available or
conveniently defined. For carbon dioxide, the measured concentration above the
forest canopy might be treated as a reasonable background concentration. However,
this is not the case for temperature under non-neutral conditions. To overcome this
problem, we set a reference layer (in theory, it can be any layer, but in practice,
it is better to set the reference layer between the highest and lowest measured
concentration-layer) and (7) is revised to

Ci − Cr =
m∑

j=1

(Mij − Mrj)Sj�zj , (8)

where subscript r denotes the reference layer. If n = m + 1, then (8) will provide
a unique solution for m layers of source-sink profile (since one layer is used for
reference and contains no additional information). If n > m + 1, then (8) can
also be conveniently solved by the singular value decomposition (SVD) technique
(Press et al., 1992). Let M denote the n × m integrated PDF matrix, Mij − Mrj , C
denote the vector, Ci −Cr , and S denote the vector, Sj�zj , where j = 1, 2, . . . , m,
i = 1, 2, . . . , n + 1, and the (n + 1)th layer is the reference layer. The solution for
S by SVD is

S = R · Q · DT · C, (9)

where D is an n × m column orthogonal matrix, Q is an m × m diagonal matrix
with positive or zero elements (i.e., the singular values), R is an m × m column
orthogonal matrix, and M = D · Q · RT . Another method to solve (8) when n >

m + 1 is the least-squares solution by Raupach (1989b), where S is determined by
solving the following m linear equations for Sk,

m∑
k=1

AjkSk = Bj, (10)

Ajk =
n∑

i=1

(Mij − Mrj)�zj (Mik − Mrk)�zk, (11a)

Bj =
n∑

i=1

(Ci − Cr)(Mij − Mrj)�zj . (11b)

Once the source strength is computed, the scalar flux F(x, z) can be determined
by

F(x, z) = w(x, z)C(x, z), (12)
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where C(x, z) is calculated by (2) using the source strength distribution solved by
(8), and w is a Lagrangian velocity at (x, z). For one-dimensional stationary flows
or cases where advection by the mean wind is negligible, F can be calculated from

F(z) = F(0) +
∫ z

0
S(z) dz. (13)

2.3. WARLAND AND THURTELL (2000) MODEL

Following Taylor’s (1912) dispersion theory and assuming steady Gaussian ho-
mogeneous turbulence, Warland and Thurtell (2000) recently proposed a one-
dimensional integrated PDF matrix, Nij , to link concentration gradient and source
strength as

dCi

dzi

=
m∑

j=1

NijSj�zj , (14)

where i and j are concentration- and source-layer indices, respectively, as dis-
cussed in Section 2.2. Warland and Thurtell’s model is analytical and the advantage
of using it to solve the inverse problem is that a reference layer is not necessary. In
(14), Nij is a function of the Lagrangian turbulent dispersion and is calculated as

Nij = −(1 − exp((−((zi − zj )
2)/(2�z2

j )))

2σwiLi(1 − exp(−(π/2)1/2(zi − zj )/((Li + Lj)/2)))

− (1 − exp((−(zi + zj )
2)/(2�z2

j )))

2σwiLi(1 − exp(−(π/2)1/2(zi + zj )/((Li + Lj)/2)))
(15a)

for zi > zj ,

Nij = −(1 − exp((−(zi + zj)
2)/(2�z2

j )))

2σwiLi(1 − exp(−(π/2)1/2(zi + zj )/((Li + Lj)/2)))
(15b)

for zi = zj , and

Nij = −(1 − exp((−((zi − zj )
2)/(2�z2

j )))

2σwiLi(1 − exp(−(π/2)1/2(zj − zi)/((Li + Lj)/2)))

− (1 − exp((−(zi + zj )
2)/(2�z2

j )))

2σwiLi(1 − exp(−(π/2)1/2(zi + zj )/((Li + Lj)/2)))
(15c)

for zi < zj . In (15), L is a Lagrangian length scale defined as σwtL. If pro-
files of tL and σw are known, then (14) in conjunction with (15) can be used to
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solve both the forward and inverse problems. Strictly speaking, the σwi should be
a constant σw and the Li and Lj should be equal to the homogeneous L. Warland
and Thurtell adapt their model to inhomogeneous turbulence by choosing σwi at
the field point zi and L to be the average of Li and Lj . Since canopy turbulence
is highly inhomogeneous, the success of this model depends on whether we can
apply a homogeneous solution to inhomogeneous flows. Field tests conducted on
the LNF (Denmead, 1995; Leuning et al., 2000; Siqueira et al., 2000) suggest that
such an approximation is valid (LNF is also derived under the same assumption).

3. Experiments

The experimental site is located at the Blackwood division of Duke Forest, near
Durham, North Carolina (35◦98′ N, 79◦8′ W, elevation = 163 m). The site is a
uniform-age managed loblolly pine forest that extends 1 km in the north-south dir-
ection and 0.6 km in the east-west direction and is surrounded by hardwood forests
on east and west sides. The tree stands are originally grown from seedlings planted
at 2.4 m by 2.4 m spacing in 1983 following clear cutting and burning. A typical
leaf area density profile, normalized by the canopy height (h), is shown in Figure
1a, where three peaks are evident and the maximum leaf area density occurs at
6.5 m from the forest floor. Total leaf area index for the stand was 3.1 m2 m−2 at the
time of the experiments. Topographic variations within the stand are small (terrain
slope changes <5%). This site is equipped with seven walkup towers, which are
parts of the on-going Forest-Atmosphere Carbon Transfer (FACTS) experiment.
Further details about the site can be found in Ellsworth et al. (1995).

Carbon dioxide and heat dispersion experiments were carried out to examine
the model performance in predicting scalar source-sink and flux. Velocity statistics
were also measured for driving the two Lagrangian models.

3.1. CO2 DISPERSION EXPERIMENT

This CO2 dispersion experiment was conducted at the prototype walkup tower of
the FACTS project. To characterize the turbulent structure of the canopy flow at
this site, five Campbell Scientific sonic anemometers (CSAT3) were installed at
heights of 4.2, 6.0, 9.7, 13.0, and 16.0 m, respectively, on the tower to measure the
three velocity components (u, v, and w) between May 25 and June 11, 1997. The
mean canopy height was 13 m. The sampling frequency was 10 Hz and sampling
period was 30 min. Figures 1b–f show the normalized profiles of mean wind speed,
U/Uh (Uh is U measured at the canopy top), Reynolds stress, −〈u′w′〉/u2∗ (u′
and w′ are the fluctuations of u and w from the mean, 〈 〉 denotes time average,
and u∗ is friction velocity at the canopy top), horizontal velocity variance, σu/u∗,
vertical velocity variance, σw/u∗, and Lagrangian time scale, tLu∗/h (here tL is a
parameterization), as a function of normalized height, z/h, respectively. In Figure
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Figure 1. (a) The measured leaf area density, normalized by the canopy height (h), in units of m2

m−2, as a function of normalized height (z/h). (b) Mean horizontal velocity (U ) profile normalized
by the mean velocity measured at the canopy top (Uh). (c) Profile of Reynolds stress (−〈u′w′〉) nor-
malized by the friction velocity (u2∗) measured at the canopy top. (d) Same as (c), but for normalized
horizontal velocity variance, σu/u∗. (e) Same as (c), but for normalized vertical velocity variance,
σw/u∗. (f) Normalized Lagrangian time scale (tLu∗/h) profile as a function of normalized height
(z/h). In parts (a)–(e), ‘squares’ denote measurements and ‘solid line’ denotes the profile used in the
model.

1, ‘squares’ denote ensemble-averaged measurements over more than 90 sampling
runs and ‘solid lines’ denote the profiles used for driving the Lagrangian models.
The formulations of these profiles are summarized in Appendix A. Note that these
flow statistical profiles are consistent with several literature values summarized in
Raupach et al. (1996).

The CO2 concentration and flux measurements were sampled on September
19, 1994. The mean canopy height at that time was 13 m. The CO2 concentration
profiles were measured using a LICOR 6252 gas analyzer at six levels, which were
1 m, 3 m, 6 m, 9 m, 12 m, and 19.5 m above the ground, sequentially. Concentration
measurements at each level required 1.25 min dwell time in order to purge the
existing air and for the gas analyzer to determine the one-minute average CO2

concentration. These CO2 concentration time series were combined to construct
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Figure 2. (a) Time variation of mean CO2 concentration measurements (ppm) as a function of height
(m). (b) Same as (a), but for mean air temperature (◦C).

20-min averages and each level was sampled for approximately 3 min with 1 min
at the beginning, 1 min at the middle, and 1 min at the end of each 20-min interval.

An eddy-correlation system consisted of a Campbell Scientific (CA27) one-
dimensional sonic anemometer and a fast-response LICOR 6262 CO2/H2O gas
analyzer was available at 9 m to measure the CO2 flux. The three velocity com-
ponents at the canopy top (14 m) were also measured using a Gill ultrasonic
anemometer. The velocity measurements were rotated so that U is aligned along
the mean longitudinal wind direction at the canopy top. Along the mean wind direc-
tion, the forest leading edge is 100 m from this tower. The sampling frequency and
period were 10 Hz and 20 min, respectively. This data set was also used by Katul
et al. (1997) to investigate LNF and Katul and Albertson (1999) to investigate their
Eulerian closure inverse model.

The measured CO2 concentration (in unit of ppm) profile as a function of time
and height is shown in Figure 2a. Notice that, from about 1000 to 1600, photosyn-
thesis and turbulent transport are stronger, hence CO2 concentrations were lower
and well mixed compared to other times of day.



PREDICTING SCALAR SOURCE AND FLUX 123

3.2. HEAT DISPERSION EXPERIMENT

To assess the vertical distribution of sensible fluxes, Hs, inside the canopy, this
experiment was conducted between April 19–23, 2000 at another tower within the
same pine stand, now part of the Duke AmeriFlux monitoring site (Katul et al.,
1999). Along the mean wind direction, the forest leading edge is 560 m from this
tower. The mean canopy height at that time was 14 m. Simultaneous mean air
temperature (θ) profiles and velocity statistics were measured through the canopy.
The mean air temperature was measured at 8 levels (1.5, 3.5, 5.5, 7.5, 9.5, 11.5,
13.5, and 15.5 m) using shielded Copper Constantan thermocouples (20 gauge,
diameter = 0.812 mm). The sampling frequency and duration were 10 Hz and 30
min, respectively. The measured mean air temperature (in ◦C) profile as a function
of time and height is shown in Figure 2b. Due to instrument maintenance, there
were gaps in the measurements. Hence, we were not able to provide continuous
time of day, but run number. The run numbers 1 to 5 were measured from 1330 to
1600, Day 110, the run numbers 6 to 35 were measured from 0830 to 2300, Day
111, and the run numbers 36 to 79 were measured from 0830 to 2300, Day 112.

The velocity statistics and heat fluxes were simultaneously measured at 3.0, 4.9,
8.6, 10.9, 12.2, and 15.5 m above the ground surface using six Campbell Scientific
sonic anemometers (CSAT3). The sampling frequency was 10 Hz and the sampling
period for each run was 30 min. Heat flux measurements during transition periods
were unsteady and unsuitable for assessing model performance since the key model
assumption (steady state) was clearly violated. Hence these unsteady heat flux
measurements were filtered out for testing model predictions. The 30-min velocity
statistic profiles for U/Uh, −〈u′w′〉/u2∗, σu/u∗, and σw/u∗ are shown run-by-run
in Figures 3a to 3d, respectively. The ensemble-averaged velocity statistic profiles
over these sampling runs are similar to those in Figure 1 and are not repeated here
again. This similarity is expected since these velocity measurements were carried
out at the same forest though not on the same tower. The formulations for these
ensemble-averaged profiles are also listed in Appendix A. Further details about
this experiment can be found in Siqueira et al. (2000).

Run-by-run velocity statistic profiles through the canopy were simultaneously
available along with mean temperature and heat flux measurements. Hence, this
experiment provides a unique opportunity to examine the differences between two
types of simulations, one carried out by driving the model with the run-by-run
velocity profiles and the other produced by driving the model with the ensemble-
averaged velocity profiles.
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Figure 3. (a) Run-by-run variation of measured U/Uh profile. (b) Same as (a), but for −〈u′w′〉/u2∗.
(c) Same as (a), but for σu/u∗. (d) Same as (a), but for σw/u∗.

4. Results and Discussion

4.1. CO2 DISPERSION SIMULATION

With the ensemble-averaged flow statistical profiles presented in Figure 1 and
measured CO2 concentration profiles shown in Figure 2a, the two-dimensional
Lagrangian stochastic dispersion model was used to predict the source-sink (ppm
s−1) and flux (ppm m s−1) profiles of CO2 as a function of height and time. The
predictions are shown in Figures 4a and 4b, respectively. Notice that large CO2

sinks occurred between 6 m to 9 m. Minor CO2 sinks and sources were computed
below 6 m. These results suggest that most of the photosynthesis occurred at leaves
above 6 m; however, CO2 uptake and release from leaves nearly balanced each
other below 6 m. These distributions are consistent with forward calculations of Lai
et al. (2000) in which the coupled photosynthesis-radiation model of the canopy
was used to compute these source-sink profiles. To further confirm the source-
sink calculations, the measured and predicted CO2 fluxes at 9 m (i.e., inside the
canopy) were compared in time series and scatter plots shown in Figures 5a and
5b. The ‘solid line’ in Figure 5a represents model prediction and the ‘squares’
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Figure 4. (a) Time variation of CO2 source-sink (ppm s−1) profile predicted by the two-dimensional
Lagrangian model. (b) Same as (a), but for CO2 flux (ppm m s−1).

denote measurements. In Figure 5b, the coefficient of determination, R2, is 0.42. It
is demonstrated that the model prediction reasonably captures the flux magnitude
and temporal evolution within the canopy.

Figures 6a and 6b are the same as Figures 4a and 4b, respectively, but the sim-
ulations were carried out using the one-dimensional Lagrangian analytical model
of Warland and Thurtell (2000). Notice that the modelled patterns of CO2 source-
sink and flux distributions are similar to those computed by the two-dimensional
model, but the absolute magnitudes are smaller. The maximum and average differ-
ences between simulations by the two models are 63% and 21% for source-sink
prediction and 53% and 16% for fluxes. These differences are not surprising given
the assumptions and the computational domains in the two models. Recall that the
two-dimensional model explicitly resolves the advective transport. These differ-
ences in absolute source and flux magnitudes can also be interpreted in terms of
source domain size differences. The predicted source-sink strength for the meas-
ured CO2 concentration profile is distributed over the entire source domain for the
one-dimensional model but is distributed within a limited source-sink area (limited
fetch) in the two-dimensional model. In this case, the fetch is 100 m. The difference
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Figure 5. (a) Time series comparison between measured and the two-dimensional Lagrangian model
predicted CO2 fluxes at 9 m. ‘Squares’ denote measurements and ‘solid line’ represents model
prediction. (b) Scatter plot of measured and the two-dimensional Lagrangian model predicted CO2
fluxes at 9 m. ‘Solid line’ denotes regression line and the coefficient of determination, R2 , is 0.42.

between the two models in flux estimations is smaller than that in source-sink
estimations because the source area (or footprint) for concentration is commonly
larger than that for flux at the same height (Rannik et al., 2000). Using the one-
dimensional model, Figures 7a and 7b show the comparisons between measured
and predicted CO2 fluxes at 9 m in time series and scatter plot, respectively. Notice
that Figure 7a has the same pattern as Figure 5a and the R2 value is 0.37 in Figure
7b, which is about the same as that by the two-dimensional model.

To further examine the importance of advection, the two-dimensional model
was run for this CO2 dispersion problem under the following conditions: u∗ = 0.38
(m s−1), which is a mean value over all runs, 26 point sources (two sources per
metre) each with unit source strength, and for different fetches: x = 100 m, 200 m,
300 m, and 400 m. Figure 7c shows the concentration gradient, dC/dz, as a func-
tion of z/h for different fetches. It is clear that for z/h > 0.15, dC/dz converged
very quickly. The biggest difference of dC/dz for different fetches happened at the
lowest level, but converged around x = 400 m with increasing fetch. Figure 7c
demonstrates that the advective effect is important for z/h less than 0.15 but can
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Figure 6. (a) Time variation of CO2 source-sink (ppm s−1) profile predicted by the one-dimensional
Lagrangian model. (b) Same as (a), but for CO2 flux (ppm m s−1).

be neglected for z/h > 0.15. This explains why there is little difference between
the predictions by the one- and two-dimensional models.

4.2. HEAT DISPERSION SIMULATION

The heat dispersion experiment provided six levels of measured sensible heat flux;
hence, a more rigorous examination of the model performance is possible. With the
ensemble-averaged flow properties shown in Figure 1 and measured temperature
profiles presented in Figure 2b, the two-dimensional Lagrangian stochastic model
was used to predict the source-sink (W m−1) and flux (W m−2) profiles of heat
as a function of height and time. The predictions are shown in Figures 8a and 8b,
respectively. Using Warland and Thurtell’s (2000) one-dimensional model, Figures
9a and 9b present the same profiles as in Figures 8a and 8b, respectively. These
figures show that, for high sun angles, the top canopy layers are strong heat sources
while the remaining layers are heat sinks. Notice the differences between Figure
8a and 9a and Figures 8b and 9b are smaller than those for the CO2 dispersion
experiment. The maximum and average differences are 38% and 14% for source-
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Figure 7. (a) Time series comparison between measured and the one-dimensional Lagrangian model
predicted CO2 fluxes at 9 m. ‘Squares’ denote measurements and ‘solid line’ represents model
prediction. (b) Scatter plot of measured and the one-dimensional Lagrangian model predicted CO2
fluxes at 9 m. ‘Solid line’ denotes regression line and the coefficient of determination, R2, is 0.37. (c)
Concentration gradient profile (dC/dz) as a function of normalized height (z/h) for different fetches:
x = 100, 200, 300, and 400 m.
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Figure 8. (a) Variation of heat source-sink (W m−1) profile predicted by the two-dimensional
Lagrangian model. (b) Same as (a), but for heat flux (W m−2).

sink predictions and 21% and 14% for fluxes. These results also demonstrate that
the advective effect becomes less and less when the fetch is longer (in this case the
fetch is 560 m).

Figure 10a shows the time variation of eddy-correlation measured sensible heat
flux profiles within the forest canopy. Comparison between predicted sensible heat
flux profiles (Figures 8b and 9b) and the measurements (Figure 10a) show that the
two models captured the major events. Figure 10b shows the sensible heat flux
(Hs) gradient comparison between the averaged flux measurements and averaged
model predictions at the six measurement layers. It is demonstrated that the pre-
dictions match with the measurements. To further examine the model performance,
scatter plots of measured sensible heat fluxes versus the two-dimensional and one-
dimensional model predictions are shown in Figures 10c and 10d, respectively. The
coefficient of determination (R2) is 0.84 for both of the two model predictions.
These comparisons show that both the two models capture the flux measurements
well.
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Figure 9. (a) Variation of heat source-sink (W m−1) profile predicted by the one-dimensional
Lagrangian model. (b) Same as (a), but for heat flux (W m−2).

4.3. EFFECTS OF VELOCITY STATISTICAL PROFILES

Flow statistics are required for driving both the Lagrangian stochastic and ana-
lytical models. Generally, individual run-by-run velocity statistic profiles are not
available and ensemble-averaged velocity statistic profiles (averaged over many
sampling runs) are used. As earlier stated, the ensemble-averaged profile does not
explicitly resolve the effects of local atmospheric stability on flow properties but
the individual run-by-run profile does. The heat dispersion experiment provides a
unique opportunity to evaluate whether any improvement in model performance is
achieved by using individual run-by-run flow statistics to drive the models. Recall,
for each sampling run of the heat dispersion experiment, velocity measurements
were conducted simultaneously with mean temperature and sensible heat flux.
Using the individual run-by-run velocity statistics profile shown in Figure 3, the
two-dimensional Lagrangian stochastic model was used to predict the heat source-
sink and flux profiles shown in Figures 11a and 11b. Comparison between Figures
8b, 10a, and 11b shows that using the run-by-run velocity profiles to drive the
model does not improve the predictions of heat fluxes. Using Warland and Thur-
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Figure 10. (a) Variation of measured heat flux (W m−2) profile. (b) Comparison between meas-
ured and predicted sensible heat fluxes (Hs ) as a function of normalized height (z/h). ‘Square’
denotes measurement, ‘Plus’ denotes the two-dimensional model prediction, and ‘Circle’ denotes
the one-dimensional estimation. (c) Scatter plot of measured and the two-dimensional Lagrangian
model predicted heat fluxes. ‘Solid line’ denotes regression line and the coefficient of determination,
R2, is 0.84. (d) Scatter plot of measured and the one-dimensional Lagrangian model predicted heat
fluxes. ‘Solid line’ denotes regression line and the coefficient of determination, R2, is 0.84.
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Figure 10. Continued.

tell’s (2000) one-dimensional model driven by the run-by-run velocity profiles,
Figures 12a and 12b present predicted heat source-sink and flux profiles, respect-
ively. As in the two-dimensional model, Figure 12b does not show any marked
improvement when compared to Figure 9b, where the calculations were carried out
with ensemble-averaged velocity statistic profiles shown in Figure 1. One explan-
ation is that the individual run-by-run velocity profiles do not faithfully represent
the proper spatial averaging of flow field. However, the ensemble-averaged profiles,
by the ergodic hypothesis (Monin and Yaglom, 1971), may closely converge to the
spatially averaged profile. An immediate consequence is that detailed accounting
for atmospheric stability in the velocity statistics profiles may not be the crit-
ical factor needed to improve source-sink estimations inferred from concentration
measurements.

A broad spectrum of numerical models ranging from Lagrangian stochastic
(based on Markov assumption), Lagrangian analytical (LNF and Warland and
Thurtell’s, both based on Taylor’s dispersion theory), and Eulerian (based on
turbulent flux budget equation) models are now available and field-tested with
comparable data. While these models are derived using different theoretical for-
mulations, the comparison between CO2 fluxes by LNF (Figure 6 in Katul et al.,
1997), Eulerian model (Figure 2 in Katul and Albertson, 1999) and Lagrangian
stochastic and analytical models (Figures 5 and 7 in this study) show that they tend
to produce very similar flux profiles (for the same data set). These models share
only the same CO2 concentration profiles. Hence, scalar concentration profiles
should be the dominant factor determining the accuracy of the inverse problems.

5. Conclusions

For the forest canopy scalar source-sink and flux estimations, the two-dimensional
Lagrangian stochastic model presented here and the one-dimensional Lagrangian
analytical model proposed by Warland and Thurtell (2000) are able to capture
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Figure 11. (a) Same as Figure 8a, but the two-dimensional model was driven with the run-by-run
velocity statistic profiles shown in Figure 3. (b) Same as Figure 8b, but the two-dimensional model
was driven with the run-by-run velocity statistic profiles shown in Figure 3.

key source-sink and flux variations in time and space. These simulations provide
detailed information for understanding the relationship between the biophysical
sources and sinks and the canopy microclimate. Our study demonstrated the
following:

1. The one-dimensional and two-dimensional models produce similar predic-
tions. The major disadvantage of the two-dimensional Lagrangian stochastic
model is its large computational time. For the case shown in Figure 8, this
stochastic model (random-walk particle trajectories) took a Sun-3000 work-
station more than 18 h to generate the results, while the one-dimensional
analytical model needed few seconds. Hence, for long-term estimation of
source-sink simulations, Warland and Thurtell’s model is recommended over
the two-dimensional model.

2. Good agreement between the two models further confirms the robustness of
applying a homogeneous solution to describing the inhomogeneity in canopy
turbulence. This fact is important to LNF and Warland and Thurtell’s (2000)
model.
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Figure 12. (a) Same as Figure 9a, but the one-dimensional model was driven with the run-by-run
velocity statistic profiles shown in Figure 3. (b) Same as Figure 9b, but the one-dimensional model
was driven with the run-by-run velocity statistic profiles shown in Figure 3.

3. Using run-by-run velocity statistics to drive the Lagrangian model does not
produce better scalar source-sink and flux predictions than using the ensemble-
averaged velocity statistics. This analysis suggests that accounting for local
stability effects on the velocity field may not substantially contribute to im-
provements in the source-sink estimations. Notice that Siqueria and Katul
(2002) showed that local stability effects on scalar field are important when
using a Eulerian approach to estimate source-sink profiles.

4. When using the two-dimensional Lagrangian stochastic, LNF, Eulerian, or
Warland and Thurtell’s model for predicting scalar source-sink distributions,
scalar concentration profile should be the dominant factor. Hence, fine res-
olution of concentration gradient measurements should be necessary for
improving model predictions.

Besides using first-order measurements (i.e., mean concentration) to predict
sources-sinks and fluxes, these quantities could be inferred from second-order
measurements (i.e., concentration variance). Following the early work by Novikov
(1963), Gifford (1982), and Lee and Stone (1983), Reynolds (1998c) proposed a
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two-particle trajectory Lagrangian model to link scalar source to its concentration
variance. Hence, Reynolds’s model also provides a mean to predict scalar sources-
sinks from second-order measurements. Future research effort should be devoted
to investigating how this ‘second-order measurements’ approach works for such
problems.
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Appendix A: Formulations for Velocity Statistical and Lagrangian Time
Scale Profiles

1. Mean velocity profile

U(z) = (u∗/k) ln((z − d)/zo) for z ≥ h

U(z)/U(h) = exp(a1(1 − z/h)) for z < h

2. Velocity covariance (Reynolds stress) profile

−〈uw〉 = −u2∗ for z ≥ h

−〈uw〉 = (a2z/h − a3)(−u2∗) for 0.45h ≤ z < h

−〈uw〉 = (0.45a2 − a3)(−u2∗) for z < 0.45h

3. Horizontal velocity variance profile

σu = a4u∗ for z ≥ h

σu = a4u∗ exp(a5(1 − z/h)) for z < h

4. Vertical velocity variance profile

σw = a6u∗ for z ≥ h

σw = a6u∗(0.5(a6 + a7)+
0.5(a6 − a7)(− cos(πz/h)))

for z < h

5. Lagrangian time scale profile

tL = max(a8u∗/h, k(z − d)u∗/σ 2
w).
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Here, a1, a2, a3, a4, a5, a6, a7, and a8 are constants, k (= 0.4) is Von Karman con-
stant, d (≈0.67h) is the zero-plane displacement, and z0 (≈0.1h) is the roughness
height. For CO2 dispersion experiment, a1 = −3, a2 = 1.79, a3 = 0.79, a4 = 2.0,
a5 = −2, a6 = 1.2, a7 = 0.07, and a8 = 0.3. For heat dispersion experiment,
a1 = −4, a2 = 1.79, a3 = 0.79, a4 = 2.0, a5 = −2, a6 = 1.15, a7 = 0.1, and
a8 = 0.1. In addition, measured mean vertical velocities (W ) were close to zero;
hence, W(z) = 0 was used in both experiments. These constants for the profiles
were chosen from trial and error to fit the measurements.

References

Ayotte, K. W., Finnigan, J. J., and Raupach, M. R.: 1999, ‘A Second-Order Closure for Neutrally
Stratified Vegetative Canopy Flows’, Boundary-Layer Meteorol. 90, 189–216.

Borgas, M. S., Flesch, T. K., and Sawford, B. L.: 1997, ‘Turbulent Dispersion with Broken
Reflexional Symmetry’, J. Fluid Mech. 332, 141–156.

Coppin, P. A., Raupach, M. R., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion within a
Model Plant Canopy. Part II: An Elevated Plane Source’, Boundary-Layer Meteorol. 35, 167–
191.

Denmead, O. T., 1995, ‘Novel Meteorological Methods for Measuring Trace Gas Fluxes’, Phil.
Trans. Roy. Soc. Lond. A 351, 383–396.

Ellsworth, D. S., Oren, R., Huang, C., Phillips, N., and Hendrey, G. R.: 1995, ‘Leaf and Canopy
Responses to Elevated CO2 in a Pine Forest under Free-Air CO2 Enrichment’, Oecologia 104,
139–146.

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans,
R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jenson, N-O.,
Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrief, J., Moors, E.,
Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Sukyer, A., Tenhunen, J., Tu, K., Verma,
S., Vesala, T., Wilson, K., and Wofsy, S.: 2001a, ‘Gap Filling Strategies for Long Term Energy
Flux Data Sets, A Short Communication’, Agric. For. Meteorol. 107, 71–77.

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans,
R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jenson, N-O.,
Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrief, J., Moors, E.,
Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Sukyer, A., Tenhunen, J., Tu, K., Verma,
S., Vesala, T., Wilson, K., and Wofsy, S.: 2001b, ‘Gap Filling Strategies for Defensible Annual
Sums of Net Ecosystem Exchange’, Agric. For. Meteorol. 107, 43–69.

Gifford, F. A.: 1982, ‘Horizontal Diffusion in the Atmosphere: A Lagrangian Dynamical Theory’,
Atmos. Environ. 16, 505–512.

Kaiser, J.: 1998, ‘Climate Change – New Network Aims to Take the Worlds CO2 Pulse Source’,
Science 281, 506–507.

Katul, G. G. and Albertson, J. D.: 1998, ‘An Investigation of Higher-Order Closure Models for a
Forested Canopy’, Boundary-Layer Meteorol. 89, 47–74.

Katul, G. G. and Albertson, J. D.: 1999, ‘Modeling CO2 Sources, Sinks, and Fluxes within a Forest
Canopy’, J. Geophys. Res. 104, 6081–6091.

Katul, G. G. and Chang, W. H.: 1999, ‘Principal Length Scales in Second-Order Closure Models for
Canopy Turbulence’, J. Appl. Meteorol. 38, 1631–1643.

Katul, G. G., Hsieh, C. I., Bowling, D., Clark, K., Shurpali, N., Turnipseed, A., Albertson, J., Tu,
K., Hollinger, D., Evans, B., Offerle, B., Anderson, D., Ellsworth, D., Vogel, C., and Oren, R.:



PREDICTING SCALAR SOURCE AND FLUX 137

1999, ‘Spatial Variability of Turbulent Fluxes in the Roughness Sublayer of an Even-Aged Pine
Forest’, Boundary-Layer Meteorol. 93, 1–28.

Katul, G. G., Leuning, R., Kim, J., Denmead, O. T., Miyata, A., and Harazono, Y.: 2001, ‘Estimating
CO2 Source/Sink Distributions within a Rice Canopy Using Higher-Order Closure Models’,
Boundary-Layer Meteorol. 98, 103–125.

Katul, G. G., Oren, R., Ellsworth, D., Hsieh, C. I., Philips, N., and Lewin, K.: 1997, ‘A Lagrangian
Dispersion Model for Predicting CO2 Sources, Sinks, and Fluxes in a Uniform Loblolly Pine
(Pinus Taeda L.) Stand’, J. Geophys. Res. 102, 9309–9321.

Kurbanmuradov, O. and Sabelfeld, K.: 2000, ‘Lagrangian Stochastic Models for Turbulent Disper-
sion in the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 97, 191–218.

Lai, C. T., Katul, G. G., Oren, R., Ellsworth, D., and Schäfer, K.: 2000, ‘Modeling CO2 and Water
Vapor Turbulent Flux Distributions within a Forest Canopy’, J. Geophys. Res. 105, 26333–26351.

Lee, J. T. and Stone, G. L.: 1983, ‘The Use of Eulerian Initial Conditions in a Lagrangian Model of
Turbulent Diffusion’, Atmos. Environ. 17, 2477–2481.

Leuning, R.: 2000, ‘Estimation of Scalar Source/Sink Distributions in Plant Canopies Using Lag-
rangian Dispersion Analysis: Corrections for Atmospheric Stability and Comparison with a
Multilayer Canopy Model’, Boundary-Layer Meteorol. 96, 293–314.

Leuning, R., Denmead, O. T., Miyata, A., and Kim, J.: 2000, Source/Sink Distributions of Heat,
Water Vapor, Carbon Dioxide, and Methane in a Rice Canopy Estimated Using Lagrangian
Dispersion Analysis’, Agric. For. Meteorol. 103, 233–249.

Massman, W. J. and Weil, J. C.: 1999, ‘An Analytical One-Dimensional Second-Order Closure
Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies
of Arbitrary Structure’, Boundary-Layer Meteorol. 91, 81–107.

Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, MIT Press, Cambridge, MA,
pp. 215–249, 769 pp.

Novikov, E. A.: 1963, ‘Random Force Method in Turbulence Theory’, Sov. Phys. J. Exp. Theor. Phys.
17, 1449–1454.

Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P.: 1992, Numerical Recipes in
FORTRAN, 2nd edn., Cambridge University Press, Cambridge, 963 pp.

Rannik, U., Aubinet, M., Kurbanmuradov, O., K. Sabelfeld, K. K., Markkanen, T., and Vesala,
T.: 2000, ‘Footprint Analysis Measurements over a Heterogeneous Forest’, Boundary-Layer
Meteorol. 97, 137–166.

Raupach, M. R.: 1989a, ‘A Practical Lagrangian Method for Relating Scalar Concentrations to
Source Distributions in Vegetation Canopy’, Quart. J. Roy. Meteorol. Soc. 115, 609–632.

Raupach, M. R.: 1989b, ‘Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions
from Concentration Profiles in Plant Canopies’, Agric. For. Meteorol. 47, 85–108.

Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, ‘Coherent Eddies and Turbulence in Vegetation
Canopies: The Mixing-Layer Analogy’, Boundary-Layer Meteorol. 78, 351–382.

Reynolds, A. M.: 1998a, ‘On the Formation of Lagrangian Stochastic Models of Scalar Dispersion
within Plant Canopies’, Boundary-Layer Meteorol. 86, 333–344.

Reynolds, A. M.: 1998b, ‘On Trajectory Curvature as a Selection Criterion for Valid Lagrangian
Stochastic Dispersion Models’, Boundary-Layer Meteorol. 88, 77–86.

Reynolds, A. M.: 1998c, ‘A Lagrangian Stochastic Model for the Trajectories of Particle Pairs and Its
Application to the Prediction of Concentration Variance within Plant Canopies’, Boundary-Layer
Meteorol. 88, 467–478.

Rodean, H.: 1996, Stochastic Lagrangian Models of Turbulent Diffusion, Meteorological Mono-
graphs, Vol. 26, No. 48, American Meteorological Society, 84 pp.

Sawford, B. L.: 1999, ‘Rotation of Trajectories in Lagrangian Stochastic Models of Turbulent
Dispersion’, Boundary-Layer Meteorol. 93, 411–424.

Siqueira, M. and Katul, G. G.: 2002, ‘Estimating Heat Sources and Fluxes in Thermally Stratified
Canopy Flows Using Higher-Order Closure Models’, Boundary-Layer Meteorol. 103, 125–142.



138 CHENG-I HSIEH ET AL.

Siqueira, M., Lai, C. T., and Katul, G.: 2000, ‘Estimating Scalar Sources, Sinks, and Fluxes in a
Forest Canopy Using Lagrangian, Eulerian, and Hybrid Inverse Models’, J. Geophys. Res. 105,
29475–29488.

Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’, Proc. Lond. Math. Soc. Ser. 2, 20, 196–
221.

Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in
Turbulent Flows’, J. Fluid Mech. 180, 529–556.

Warland, J. S. and Thurtell G. W.: 2000, ‘A Lagrangian Solution to the Relationship between a
Distributed Source and Concentration Profile’, Boundary-Layer Meteorol. 96, 453–471.

Wilson, J. D. and Flesch, T. K.: 1997, ‘Trajectory Curvature as a Selection Criterion for Valid
Lagrangian Stochastic Models’, Boundary-Layer Meteorol. 84, 411–426.

Wilson, J. D. and Sawford, B. L.: 1996, ‘Review of Lagrangian Stochastic Models for Trajectories
in the Turbulent Atmosphere’, Boundary-Layer Meteorol. 78, 191–210.

Wilson N. R. and Shaw, R. H.: 1977, ‘A Higher Order Closure Model for Canopy Flow’, J. Appl.
Meteorol. 16, 1198–1205.


