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Abstract. Our objective in this paper is to estimate spine curvature in
DXA scans. To this end we first train a neural network to predict the
middle spine curve in the scan, and then use an integral-based method to
determine the curvature along the spine curve. We use the curvature to
compare to the standard angle scoliosis measure obtained using the DXA
Scoliosis Method (DSM). The performance improves over the prior work
of Jamaludin et al. 2018. We show that the maximum curvature can be
used as a scoring function for ordering the severity of spinal deformation.

1 Introduction

Scoliosis is a disease that appears as an abnormal sideways curvature of the
spine often presenting in childhood and affecting up to 3% of children [6]. In
its severe form, the disease can cause lifelong disability and pain, however most
cases of mild scoliosis present no symptoms and stabilize over time [1,11]. This
uncertainty over whether an initial mild curve will stabilize, resolve or progress
presents some challenges for effective clinical management. Therefore, our long-
term goal is to develop new software tools to assist clinicians in managing such
patients, and in particular to predict prognosis.

X-ray imaging is the standard for diagnosing and monitoring scoliotic pa-
tients, however, since the disease presents in childhood, the radiation burden
is far from ideal, especially if used repeatedly. An alternative approach is to
use DXA imaging, which requires a far low dosage of radiation. DXA is more
commonly used for measuring bone mineral density (BMD) when osteoporosis
is suspected, and occasionally used to detect vertebral fractures ([2][3]) but re-
cently it has been shown to be an accurate method for diagnosis of scoliosis [12];
and techniques to automate the technique of [12] have been proposed [9].

In order to assess whether a patient’s disease is progressing, stabilising or
resolving it is necessary to measure the scoliotic curvature accurately. However,
[12] focussed on the problem of the binary classification task where patients are
identified as having scoliosis or not, measured by as at least one curve having a
scoliotic angle of greater than 6 degrees. This angle threshold was also adopted



in [9]. The original motivation for introducing the threshold was as a conser-
vative allowance for the fact the DXA scans are taken with the patient lying
down, rather than standing, so that the curvature of the spine may be reduced.
However, there is a growing interest in so-called micro-curves, that is scoliotic
curves that are below the 6 degree threshold but might be very early indications
of problematic spines.

In this paper, we extend the work of [9] and make a number of contributions.
First, we propose a novel algorithm to accurately predict the curvature and angle
of the spine curve. This involves a combination of a state-of-the-art deep learn-
ing architecture with methods from classical integral geometry. We develop and
validate the algorithm on one of the largest DXA databases available comprising
7,645 subjects, and compare the performance to expert defined ground-truth,
and to two alternative baseline algorithms. Finally, we show that the resulting
curvature prediction can be used to define a score function for ordering severity
of scoliosis in DXA scans. An example is shown in Fig. 1.

Fig. 1: Severity of scoliosis: DXA scan samples ordered by maximum curvature of
the spine i.e. the number on top of each scan. Scans with curvature around 1 are at
the normal end of the spectrum, while curvatures above 1 and increasing are more
scoliotic. In this example, the three samples on the left are normal scans and the three
samples on the right have scoliosis.

In the following we describe several possible methods to predict severity of
scoliosis from DXA: (i) a baseline method to directly regress the angle using
a CNN (Section 2); (ii) predicting the angle by an automated version of the
manual method of [12] (Section 3); and (iii) measuring curvature of the spine
(Section 4). We predict angles since angle-based measures are widely used by
the medical community for scoliosis measurement but as aforementioned we are
advocating the use of curvature since that is the underlying symptom of scoliosis.
The dataset used is similar to that used in [9] and as such we also compare the



network we used in this work to predict tasks in [9] such as: (i) scoliosis, (ii) body
positioning error, and (iii) number of curves. These tasks are used as pre-training
for the regression network in Section 2.

2 The Classification & Angle Regression Network

The goal is to predict from a given scan the angle of the largest curve of the
spine. Since the number of scans annotated with angle measurements is small,
around 927, we pre-train the regression network with several classification tasks
that exist in the dataset.

2.1 Classification as Pre-training

We pre-train the network on three different classification tasks: (i) a binary
classification of scoliosis vs. non-scoliosis, where an angle of 6◦ and above is
labelled as scoliosis and vice versa, (ii) a binary classification of body positioning
error which is dependant on the straightness of the whole body in the DXA scan,
and (iii) the number of curves of a scoliotic spine (only on cases with scoliosis).
The number of curves is divided into three different classes: no curve (normal
spine); one curve, i.e. a “C” shaped spine; and more than one curve, which
includes the classical “S” shaped spine with two curves or more. As noted in
the introduction, the 6◦ binary cut-off was suggested in several works using
DXA to measure scoliosis namely in [12], [5], and [6]. The network is based on
a ResNet-50 but takes in two distinct inputs: (i) the raw DXA scan, and (ii)
the soft segmentation mask produced by the segmentation network of [9]. The
soft segmentation mask outputs for each row or scanline, the score for which
each pixel is most likely to belong to the middle point of one of six body parts.
The two input streams are merged after Conv1 via addition. See Fig. 2 for an
overview of the network

Classification loss: As in [9], we use a multi-task balanced loss which can be
expressed as minimizing a combination of the softmax log-losses of the three
classification tasks:

Lt = −

N
∑

n=1



yc(xn)− log

Ct
∑

j=1

eyj(xn)



 (1)

where t corresponds to each classification task, with t ∈ {1 . . . 3}, x is the input
scan, Ct which corresponds to the number of classes in task t, yj is the jth

component of the classicication output, and c is the true class of xn. The loss for
each classification is also balanced with the inverse of the frequency of the class
to emphasize the contribution of the minority class e.g. only 8% of the scans
have scoliosis.



Fig. 2:Classification CNN: The network is a modified ResNet50 [8] but with multiple
inputs. The inputs are (1) raw DXA scan, and (2) soft segmentation masks where each
mask corresponds to the midcurve of a specific body part. From left to right, the
segmented body parts are: (1) head, (2) spine, (3) pelvic cavity, (4) pelvis, (5) right
leg, and (6) left leg. The classification outputs are a binary scoliosis prediction (Sco),
a binary positioning error prediction (Pos), and a multi-class prediction of the number
of curves (NOC).

2.2 Regression

The same network architecture is used for regression of the angle, where now
instead of three classification outputs in Fig.2, we have two outputs for the
regression – the angle and its uncertainty.

Following [10], in training we assume a Laplace distribution of the measure-
ments with a regression loss that is the negative log-likelihood of the Laplace
distribution:

L =
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where for each sample n we predict both the target angle ŷn and the uncertainty
σ2
n; yn in the ground truth angle. To ensure positivity of σ2

n, we employ a softplus
non-linearity to the output of the network.

3 Predicting the Scoliotic Angle via Geometry

The standard way to measure scoliosis in whole body DXA was first introduced
in [12] and was called the DXA scoliosis method (DSM). The angle measurement
part of DSM is a modified Ferguson method since the standard Cobb method
cannot be used due to the low resolution of the DXA scans. We automate this
process by following and modifying DSM, as illustrated in Fig. 4.

Normal spine line: The method starts by identifying the normal spine line
which acts as a reference line to measure the actual spine curve against. In [12],
the normal spine line must cross the centre point of the spine at the level of the
first rib and ends at the centre of the spine at the fifth lumbar vertebra (L5).
We approximate the spine curve by using the soft segmentation produced in [9].
Each row in the soft segmentation output of the network is a probability map of
where the midpoint of a certain body part is; the pixel with the highest score is
the predicted midpoint (see Fig. 2). The automated normal spine line is drawn
from the midpoints of the 3rd and 97th percentiles of the soft segmentation mask
for the spine. Fig. 3 shows the automated normal spine line.

Measuring the angle: The soft segmentation output is used to draw the
predicted middle spine curve. For each middle spine curve, the apex of a curve
is defined as the point furthest away from the line which lies in between two
intersections of the middle spine curve and the normal spine line. The angle is
predicted as the inner angle of the apex minus 180◦. There can exist multiple
curves for a given scan, only the maximum angle is used.

4 Measuring Curvature via an Integral method

Scoliosis is essentially a measure of curvature of the spine and as such we propose
to directly measure curvature instead of the angle. Measuring curvature via
differential based methods is extremely unreliable especially in our dataset. [7]
describes an integral based curvature estimator using digital shapes; we adapt
and simplify the method of [7] for curvature measurement here. In short, we
compare the two areas for a given shape e.g. a circle centred on the spine curve.
An example of the shape on the middle spine curve can be seen in Fig. 5. The
estimate of the curvature is defined as:

κ = Areamax/Areamin (3)

When the spine curve is completely straight, the ratio between the two areas
is 1 (see Fig. 6).



Fig. 3: Automated normal spine line obtained from the soft segmentation.

4.1 Mapping the curvature to the angle

Curvature is not directly comparable to the measured angle provided in the
ground truth annotation. To map the detected curvature to an angle measure-
ment, we train a simple fully-connected neural network regressor that takes in
the max curvature of a given spine and outputs a continuous number. We assume
that the max curvature corresponds to the max angle for a given spine measured
at the apex of the curve as in the manual method. The regressor was trained
via the same loss discussed in Section 2.2 and details of the network are given
in Fig. 7.

5 Dataset & Training Details

The dataset is from the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort that recruited pregnant women in the UK. The DXA scans
of the subjects were obtained from two different time points; when the subjects
were 9 and 15 years of age. This difference in acquisition period and the varia-
tion of height between different individuals results in a difference of scan heights.
Fig. 8 shows the variation of scan heights in the dataset.

In all, there are 7, 645 unique subjects in the dataset, most of which have
two scans, which totals to 12, 040 scans. Most scans are annotated with several
annotations which include labels such as body positioning error, and angle mea-
surement of the curves of the spine. Angle measurements were only annotated for



Fig. 4: Spine angle construction. Left: example of the soft segmentation of the spine
overlaid with the predicted normal spine line (yellow) and middle spine curve (red).
Middle: the spine line and curve overlaid on top of the actual DXA scan. Right: close up
view of the spine line and curve now with the intersections; there are three intersections
resulting in two curves. The ground truth angle for this particular case is 35◦, while
the measured angles are 33.8◦ and 18.1◦.

scans with curves deemed to be close to scoliotic or larger. The label distribution
of the different classification tasks is given in Table 1 while the frequency of the
angle of the biggest curve of the spine is shown in Table 2. We use a 80:10:10
(train:test:validation) random split to train the CNN both for the pre-training
on the classification task and the angle regression, on a per patient basis (about
9.6k:1.2k:1.2k scans). A single subject and all of its scans can only appear in one
of the training, validation or test sets. Two different random splits were used
and we show the mean and standard deviation of the performance at test time
for the two splits.

Pre-processing: The scans are normalized such that both the head and feet
are roughly in the same region for all the scans regardless of age and original



Normal Abnormal

Positioning
10147
(84.3%)

1893
(15.7%)

Scoliosis
9563

(92.0%)
814

(8.0%)
0 1 >1

NOC
9435

(91.1%)
768

(7.4%)
159

(1.5 %)

Table 1:Distribution of classification labels: There are three different classification
tasks: (i) scoliosis, (ii) positioning error, and (iii) number of curves (NOC). There are
12,040 scans but fewer labels, since not all scans have labels for all three tasks.

Angle 0◦ 1◦ – 4◦ 5◦ 6◦ 7◦ 8◦ 9◦ 10◦ 11◦ 12◦ 13◦ 14◦ 15◦ 16◦+
Frequency 9450 28 85 116 146 144 113 81 60 45 18 16 12 63

Table 2: Distribution of annotated angle in the dataset: There are 12,040 scans
but only 927 were annotated; any scan annotated as 6◦ and above are labelled as
scoliosis. Cases marked as 0◦ are unreliable as they may actually have a small curvature,
but since they were deemed to be below the scoliosis cut-off, they were marked down
as 0◦ during the annotation process. As such, only scans with > 0◦ are used in our
validation experiments. Only the angle of the largest curve for a given scan is shown
here; a scan can have multiple curves. In all, we have 814 scoliotic and 113 non-scoliotic
cases.



Fig. 5: Curvature via area of a circle. The circle is centred on the spine curve and the
curvature is measured via the ratio of the left and right areas of the circle. The circle
is moved from the top part of the spine curve to the end, and curvature is calculated
at each point.

Fig. 6: When the circle is centred on a curve, the areas are not equal (AreaA 6= AreaB),
but if the circle is centred on a straight line the areas are equal (AreaA = AreaB).

Fig. 7: Network architecture that maps angle from curvature. Each fully-connected
(FC) layer is followed by a ReLU activation and batch normalization.

height of the scans. First, empty spaces on top of the head and below the feet are
also removed. Then, the scans are resized and cropped isotropically to prevent
distortion and to keep the aspect ratio the same as the original. The dimensions
of the scans after normalization is 416× 128 pixels while the raw dimensions of
the scans vary from 173× 128 to 411× 128 pixels.

Training Details: Both the classification and regression networks are optimized
via Adaptive Moment Estimation (Adam) from scratch. The hyperparameters
are; batch size of 128; beta1 0.9; beta2 0.999; initial learning rate is 0.0001 and



Fig. 8: Height Normalization: The top row shows examples of scans prior to height
normalization for both time points (the first five examples are from 9 year old subjects
while the last four are from 15 year old subjects), while the bottom row shows the
height normalized scans.

lowered by a factor of 10 as the loss plateaus. The network were trained via
PyTorch using an NVIDIA Titan X GPU. We employ several training augmen-
tation strategies: (i) translation of ±24 pixels in the x-axis, (ii) translation of
±24 pixels in the y-axis, and (iii) random horizontal flipping. At test time, the
final prediction is calculated from the average prediction of an image and its flip.

6 Experiments & Results

We compare all the methods to predict angles from DXA scans which includes
the regression network in Section 2, the automated automated DSM in Section
3, and the curvature via integral geometry in Section 4.

6.1 Classification

First, since we pre-trained the regression network in Section 2 to classify cer-
tain tasks, we compare the performance to existing literature. We report better
performance owing to the deeper and modern network used, i.e. the ResNet50
[8], against the VGG-M [4] style network used in [9]. See Table 3. The biggest
improvement is in the prediction of the number of curves 72.6% → 77.3% which
might be correlated with the improvement of scoliosis prediction 90.5% → 94.2%
as these two tasks are closely linked i.e. more pronounced scoliosis or curvature
of the spine normally appear with more than one curves.



[9] ResNet50
Scoliosis 90.5± 1.5 94.2± 2.1
Body Positioning 80.5± 0.3 81.5± 1.1
Number of Curves 72.6± 1.2 77.3± 1.4

Table 3: Average Per-class Accuracy (mean ± std %): We compare against [9].

6.2 Comparing Angle Measurements

Fig. 9 shows scatter plots of the ground truth against the proposed methods. Sur-
prisingly, the correlation between the ground truth annotation and predictions
is similar for three different methods. The correlation is: 0.79 for the regression
network; 0.82 for the automated DSM; and 0.82 for the curvature method. How-
ever, it can be seen that the regression network (Section 2) struggles to predict
extreme scoliosis, > 40◦, and constantly over-predicts 0◦; possibly due to the
abundance of cases with micro-curves that were graded as “normal” during pre-
training. The other methods, namely automated DSM and curvature, do not
suffer from this problem.

Fig. 9: Scatter plot of all the angle annotated versus the three methods.

We also compare the angle prediction of each method against the ground
truth angle in Fig. 10.

The average error of all the methods are quite similar with: the curvature-
based method (mapping to the angle via a neural network) having an average
error of just 1.9◦; the regression network having 2.1◦; and the automated DSM
having 2.4◦. However, looking at proportion of error we can see a clear difference
where 95% of the data fall below 3.6◦ error for the curvature-based method while
the error is > 5.5◦ for the other methods.

For comparison, a manual method using ultrasound imaging to measure coro-
nal curvature in subjects with scoliosis reported intra-rater correlation coeffi-



Fig. 10: Comparing the three methods against ground truth on the test set. The x-axis
is the error in terms of angle between the prediction and the ground truth, while the
y-axis is the proportion of the test set. The curvature method works best with 95% of
the data having at most 3.6◦ error.

cients ranging from 0.84 to 0.93 with the standard error ranging from 1.6◦ to
2.8◦ [13].

6.3 Qualitative Evaluation

Curvature Heatmaps. Unlike a CNN as in [9] that can produce evidence
hotspots, we instead produce heatmaps of curvature by mapping the values to
the segmentation mask on a per scanline basis. This is done since there is no CNN
involved in producing the curvature of the line. The segmentation is the same
soft segmentation used in Section 2; examples can be seen in Fig. 2. We show
examples of scoliotic scans alongside their heatmaps in Fig.11. As expected, the
heatmaps are brighter on regions with high curvature and vice versa. In Fig.11,
we can see that these heatmaps highlight specific regions according to the type of
scoliosis i.e. a spine with thoracic scoliosis is brighter around the thoracic region
(upper spine) and similarly a spine with lumbar scoliosis is brighter around the
lumbar region (lower spine).



Fig. 11: Scoliosis Heatmaps: The left pair shows thoracic scoliosis, while the right
shows lumbar scoliosis. Each pair includes the input image and the image with the
heatmap overlaid.

Severity of Scoliosis. The maximum curvature can be interpreted as a form
of scoliosis score; since the curvature directly relates to the shape of the spine,
the larger the curvature the more likely that the scan has scoliosis. Fig.1 shows
scans on the test set alongside their curvature. This curvature can be used to
monitor disease progression of patients with scoliosis, where an increase of the
curvature across a period of time, i.e. a longitudinal study of the subject, would
mean the scoliosis is getting worse.

7 Conclusion

We have shown that there is a correlation between the curvature of the spine
measured automatically in DXA scans and the angles measured by clinical ex-
perts. We have also shown that measuring curvature is slightly more beneficial
in terms of regression performance in terms of angle and that we can reliably
use these detected curvature values to represent how scoliotic a spine is in DXA.
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