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Predicting scour depth at seawalls using GP and ANNs

Ali Pourzangbar, Aniseh Saber, Abbas Yeganeh-Bakhtiary and

Lida Rasoul Ahari
ABSTRACT
Accurate prediction of maximum scour depth is important for the optimum design of seawall

structure. Owing to the complex interaction of the incident waves, sediment bed, and seawalls, the

prediction of the scour depth is not an easy task to accomplish. Undermining the recent

experimental and numerical advancement, the available empirical equations have limited accuracy

and applicability. The aim of this study is to investigate the application of robust data-mining methods

including genetic programming (GP) and artificial neural networks (ANNs) for predicting the

maximum scour depth at seawalls under the broken and breaking waves action. The performance of

GP and ANNs models has been compared with the existing empirical formulas employing statistical

measures. The results indicated that both the GP and ANNs models functioned significantly better

than the existing empirical formulas. Furthermore, the capability of GP was used to produce

meaningful mathematical rules, and an analytical formula for predicting the maximum scour depth at

seawalls under breaking and broken waves’ attacks was developed by utilizing GP.
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INTRODUCTION
Coastal protection structures such as seawalls and break-

waters are constructed to protect harbors and coasts

against attack from waves and to provide a self-sheltered

area. The malfunction of coastal structures can result in

major socio-economic and environmental problems such

as coastal inundation and flooding. The design and construc-

tion of coastal protection structures are very costly and time-

consuming, and they require skilled labor, therefore, the

optimum design of such structures is essential. Scour at sea-

walls is one of the most important aspects of the stability of

the structure. Oumeraci () and Lillycrop & Hughes

() claim that scour can cause significant structural

instability which can lead to structural failure. Hence, pre-

dicting scour depth at seawalls is of great importance in

the coastal engineering discipline. The incident wave
climate, geomorphological properties of sediment bed, and

structural configurations are key parameters in the predic-

tion of the scour depth at seawalls.

Several studies have been conducted on the non-break-

ing wave-induced scour at coastal structures (e.g., De Best

et al. ; Xie , ; Sumer & Fredsøe ; Sumer

et al. ; Lee & Mizutani ); conversely, there are

few studies available on the broken wave-induced scour.

For the case of the non-breaking wave, it is shown that the

scour and sediment deposition patterns in front of the

coastal structures are governed by the action of standing

waves. However, broken wave-induced scour patterns are

different from those of non-breaking waves (Tsai et al. ).

Fowler () conducted laboratory studies to investigate

scour at the toe of a vertical seawall under the action of
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broken waves. He reported that the scour depth of mono-

chromatic wave terrain exceeded the scour depth

associated with the irregular wave terrain, and developed

an empirical formula for predicting the maximum scour

depth at seawalls by using the irregular wave data set as

follows:

Smax

H0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:72

htoe

L0
þ 0:25

s
(1)

where Smax is the maximum scour depth, and H0 and L0 are,

respectively, the wave height and length at the deep water

condition, and htoe is water depth at the toe of the seawall.

The above formula was developed based on laboratory

tests with constant structure configuration and bed slope,

single type of bed sediment, and limited relative water

depth at the toe of the seawall (htoe/L0< 0.15); therefore,

the formula is limited to a small range of data.

Later, Sutherland et al. () performed laboratory

measurements to study scour at seawalls with sloping and

vertical structure and suggested an empirical formula for

predicting the scour depth at seawalls based on Iribarren

number, Ir, as:

Smax

Hsi
¼ 1:3Ir þ 0:169 (2)

in which,

Ir ¼ tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hsi=Lp

p (3)

where Hsi is the incident significant wave height, Lp the

spectral peak wavelength, and β is the bed slope. This

study showed that with the increase of Iribarren number

and bed slope, the relative scour depth increases. It was

also indicated that for the broken wave-induced scour,

unlike the non-breaking case, the wall slope affects the rela-

tive scouring depth adversely. The above empirical formula

considers the effects of bed slope, as well as the wave steep-

ness and the type of wave breaking; however, the formula

does not account for the relative water depth at the toe of

the seawall structure, the bed sediment properties, wall

slope, and structure configuration.
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Comparing the results of Fowler () with Sutherland

et al. () shows that the relative scour depth increases

with the increase in the relative water depth at the toe for

htoe/Lp� 0.12, and decreases with an increase in the relative

water depth for htoe/Lp� 0.12. It is also evident that the

scour depth due to plunging breaker is larger than that of

spilling breaker.

At the same time, Tsai et al. () carried out exper-

iments to study the scour depth at the toe of seawalls on a

steep beach slope under the action of broken waves. Tsai

et al.’s () laboratory measurements indicated that the

scour depth increases with the increase in the steepness of

incident wave, however, the increase in the relative water

depth at the toe results in the reduction of scour depth.

The latter finding fits well with Sutherland et al.’s ()

results. The relation between relative scour depth at seawalls

(Smax/H0) and the breaker type has been investigated by Tsai

et al. (), and the findings indicate that plunging breaker

scour depth is higher than that of spilling breaker or that of

non-breaking waves. Equations (4) and (6) are the empirical

relations developed by Tsai et al. () for prediction of

relative scour depth in terms of Iribarren number and the

relative water depth at the toe of seawall, respectively:

Smax

H0
¼ 0:92Ir � 0:18 (4)

in which,

Ir ¼ tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0=L0

p (5)

Smax

H0
¼ 0:231

sinh 2πhtoe=L0ð Þ½ �1:35
(6)

Tsai et al.’s () formulas, similar to Sutherland

et al.’s (), are not capable of predicting the maximum

scour depth by considering all of the effective parameters

in the scour processes. The existing regression-based

equations available for predicting scour depth at seawalls

are generally limited in applicability, due to experimental

conditions and parameters tested. Therefore, large uncer-

tainties are associated with the existing relations which

inevitably increase the safety factor and construction cost.
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Hence, a comprehensible model for scour depth prediction

is essential.

In recent years, numerical models have been employed

to predict the scour depth around coastal structures. Gisla-

son et al. (), Chen (), and Hajivalie et al. ()

developed numerical models to study the scour in front of

breakwaters under non-breaking wave action. The appli-

cation of numerical models is mainly limited, due to

mathematical complexity of modeling scour parameters

and time intensity of simulation runtime. Soft computing

methods such as artificial neural networks (ANNs),

ANFIS and genetic programming (GP) do not have the com-

plexity of numerical models, therefore they have been

employed for the prediction of scour depth (e.g., Kambekar

& Deo ; Azamathullah et al. ; Azamathulla et al.

, ; Guven et al. ; Kazeminezhad et al. ;

Etemad-Shahidi & Ghaemi ; Zanganeh et al. ;

Azamathulla a, b; Guven & Azamathulla ;

Yeganeh-Bakhtiary et al. ; Pourzangbar et al. ).

Although in several studies soft computing methods

were employed to predict the scour depth at hydraulic struc-

tures, there is no study available yet which employed soft

computing methods to predict the scour depth at seawalls

under the broken waves’ attack. The main purpose of this

study is to develop a robust model for the prediction of

scour depth at seawalls under the breaking and broken

waves’ attack. Hence, the capabilities of GP and ANN

were tested for developing an accurate and comprehensive

predictive model.

GP developed by Koza () is a generalized form of

genetic algorithm (GA) (Goldberg ). The main advan-

tage of the GP models is the capability of providing

meaningful mathematical expressions. Recently, GP has

been employed successfully in suspended sediment model-

ing (Aytek & Kisi ), determination of the most

effective parameters (Pourzangbar ), seawater level fore-

casting (Ghorbani et al. ), short-term water table depth

fluctuations’ prediction (Shiri & Kisi ), horizontal

intakes in open channel flow (Azamathulla & Ahmad

), and reservoir operation (Fallah-Mehdipour et al.

). In the current study, the models are trained and

tested by applying the data from Fowler (), Sutherland

et al. (), and Tsai et al.’s () experimental data sets.

To verify the developed models, the predicted results were
://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
compared with those of the measurements and empirical

relations.
GP AND ANN DEVELOPMENT

Genetic programming

GP, first developed by Koza (), is a robust method

employed for prediction, classification, and function finding.

GP is a generalized form of genetic algorithms (Goldberg

); however, there are differences between GP and GA,

due to the nature of data representation and final solutions.

In GP, the individuals are non-linear chromosomes with

different sizes and shapes (called parse trees); however,

the individuals have linear structures and fixed size in GA.

Moreover, unlike GA and the soft computing methods like

ANNs, there is no presumptive structure about the relation-

ship between the independent and dependent variables in

GP, but the appropriate objective function and its coeffi-

cients and parameters can be determined for any given

data set. During the training step, the outcome of GP is

called solution, and it is in the form of a parse tree or a math-

ematical expression, is continually evolving and never fixed.

The GP model has two components: (1) the functional set of

operators such as arithmetic operations (� , þ, ×, ÷), logical

functions, mathematical functions (
ffiffiffi
x

p
, tan x, sin h x, x2, …)

and domain specific functions; and (2) the independent and

dependent variables and the random coefficients and the

constant values referred to as the terminal set.

GP must accomplish the process of evolution consisting

of a step-by-step procedure as below:

1. Creating an initially selected random population of the

models (solutions) by randomly picking up the defined

variables and operations.

In this step, GP produces a certain number of models

(referred to as the initial population) by randomly combin-

ing the independent variables, constants, and defined

operations.

2. Evaluating the fitness of each model (solution or individ-

ual) by using a fitness function like root mean square

error (RMSE) and selecting out the parents (the individ-

uals who deserve to yield offspring (new solutions)).
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The process of parent selection includes various selec-

tion methods, two of which are: ranking in which the

models are selected based on their fitness values and

better performances, and tournament which is selecting

the fittest models as the parents by randomly picking up a

certain number of models for special times.

3. Producing new individuals by applying the GP operators

to the parents.

The most famous operations used in GP are as shown

below:

• Crossover: This operation produces two offspring by

replacing the two parts (the crossover fragments) of two

parents. In other words, the former offspring is produced

by replacing the crossover fragment of the first parent

with the crossover fragment of the second one (Koza

).

• Mutation: This operation causes a random change in the

structure of a parent. In other words, an offspring is
Figure 1 | Flowchart of GP (Koza 1992).

om http://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
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produced by removing a random part of a parent (the

function or the terminal referred to as the mutation

point) and inserting another randomly generated sub-

tree at that point.

• Reproduction: It has an effect on one parent and pro-

duces a child. Reproduction is responsible for keeping a

parent in the new population without alteration.

4. Repeating the production of offspring by following steps 2

and 3 up to a certain number (the generation number) and

replacing the new offspring with the previous ones.

5. Iterating the mentioned process (steps 2 to 4) until the ter-

mination condition, e.g., the maximum number of

generation or fitness function performance, is satisfied

(Ferreira ).

The implementation procedure of GP is represented in

Figure 1. For more information, a good explanation of var-

ious concepts of GP can be found in Koza ().

In order to solve a problem using GP, the user must

accomplish the following preparatory steps.
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• Determining the set of terminals that correspond to the

independent and dependent variables.

• Determining the set of functions, which is rather challen-

ging since the inappropriate function set may change the

problem entity, therefore the function set is based on the

previous investigations and existing equations in this

study.

• Defining the fitness measure, which evaluates how good a

particular evolved model can solve the problem. (In this

study, RMSE has been chosen as the fitness function.)

• Determining the controlling parameters, such as the

chromosomal architecture, the genetic operators’ rates,

and the genes linking function.

These parameters can be used to control the run. One of

the main problems related to the GP application is called

bloat phenomenon. During bloat phenomenon, the program

size (depth of parse trees) starts growing without any corre-

sponding improvement in the model fitness. The bloat

phenomenon results in the nested models that are hard to

interpret and are computationally expensive. The nested

models may give no sense about the physical basis of the

studied phenomenon (Poli & McPhee ). Applying parsi-

mony pressure coefficient to the GP models may be

regarded as a proper method to the limitation of the parse

tree depth as described by Poli & McPhee ().

• Choosing the termination condition for terminating a run

and accepting the result. (According to Koza (), a
Table 1 | Characteristics of employed GP

Parameter Description of parameter

P1 Function set

P2 Number of chromosomes

P3 Head size

P4 Number of genes

P5 Linking function

P6 Fitness function

P7 Mutation rate

P8 One-point and two-point recombinati

P9 Gene transposition

P10 Constants per gene

P11 Range of constants

://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
specified maximum number of generations or specified

perfect level of performance can be the most proper cri-

terion to stop the current run.)

The functional set and the operational parameters used in

the GP modeling during this study are presented in Table 1.

Other parameters are the default values of version 4.0.954

(Enterprise Edition) of GeneXpro Tools () software appli-

cation, which is used in this study to evolve the GP models.

Artificial neural networks

ANNs are the new versions of the parallel information pro-

cessing systems that simulate the human brain behavior to

provide a random mapping between an input vector and an

output one. Similar to the human brain, which is composed

of more than 10 billion interconnected cells (called neurons),

ANNs are composed of a certain number of computational

elements called neurons (the detailed information of ANN

structure and modeling process is available in the Appendix,

available with the online version of this paper).

Rogers & Dowla () proposed the following criteria

for the determination of hidden layer neurons’ number:

NH � 2NL þ 1 (7a)

NH � NTR=⌊NL þ 1⌋ (7b)

whereNH stands for the number of hidden layer neurons,NL

is the number of input parameters (here NL¼ 5), and NTR
Setting of parameter

þ, � , × , ÷ ,
ffiffiffi
x

p
, ex, x2,

ffiffiffi
x3

p
, tanx, sinhx

30

8

3

Addition

RMSE

0.044

on 0.3

0.1

2

�10 to 10
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stands for the number of training data sets (here NTR¼ 31).

According to Equations (7a) and (7b), the number of hidden

layer neurons must be less than five neurons (NH< 5) for

the current study.

Feed-forward network with standard back propagation

algorithm is the most commonly used neural network in

many studies (Jain & Deo ). In this study, a three-layer

feed-forward network with Levenberg–Marquardt back

propagation training algorithm is employed for the prediction

of scour depth at seawalls under the broken waves’ action.

The optimized network was achieved by decreasing gradient

weight and bias learning function. The learning rate and the

iteration, resulting from the trial-and-error process, were

0.01 and 1,000, respectively. The log-sigmoid function was

also employed in the optimumnetwork as a transfer function.
EFFECTIVE PARAMETERS

By reviewing previous studies of the scour at seawalls due to

the broken waves’ action, it can be concluded that the

broken wave-induced scour at seawalls mainly depends on

three distinctive groups of parameters: the incident wave

characteristics, the bed sediment properties, and the seawall

(structure) configuration. The functional relationship

between the maximum scour depth and influential

parameters can be given as Equation (8):

Smax ¼ f(H0, L0, htoe, d50, Gs, Ufm, P, α, β, ν) (8)

where d50, Gs are the sediment mean diameter and the

specific gravity of sediment, respectively, ν stands for the

fluid kinematic viscosity, P is the structure permeability

index, α is the seawall slope in degree, and Ufm is the

shear velocity at the undisturbed bed calculated by:

Ufm ¼ Um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:15fw

p
(9)

where Um is the maximum wave orbital velocity at the bed

just above the wave boundary and fw is the wave friction

coefficient.

Regarding the dimensional analysis, the dimensionless

form of the effective parameters (Equation (8)) can be
om http://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
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expressed as:

Smax

H0
¼ f Cr,

Hb

L0
,
d50

H0
, Irb,

hb

L0
,
htoe

L0

� �
(10)

where Cr is the reflection coefficient, and Hb/L0, hb/L0, and

htoe/L0 are the normalized breaking wave height, the nor-

malized water depth at the breaking point, and the relative

water depth at the toe of the structure, respectively,

d50/H0 is the normalized mean diameter of bed sediment,

and Irb is the breaking surf similarity parameter given

by Irb ¼ tanβ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hb=L0

p
. The dimensionless parameters

reviewed in Equation (10) account for the effects of inter-

actions among the bed sediment, the broken wave, and the

seawall during the scour process, and they are used for

developing the GP and ANN models. The reflection coeffi-

cient in Equation (10) considers the effects of seawall

configurations (i.e., permeability and front wall slope) on

the scour. For seawalls with a small reflection coefficient,

unlike the non-breaking wave-induced scour, the scour

depth is larger than that of structures with large wave reflec-

tion (Sutherland et al. ; Tsai et al. ). The surf

similarity parameter describes the impacts of the wave

breaking type on the scour depth. The scour depth due to

plunging breaker is larger than that of spilling breaker or

non-breaking waves (Sutherland et al. ; Tsai et al. ).

It is indicated that the pattern of sediment erosion and

deposition is significantly affected by the mode of sediment

transport. Also, in the case of the broken wave-induced scour,

thewavebreaking and turbulence result in suspended sediment

transport. Therefore, the characteristics of the brokenwave and

turbulence are more dominant than the wave shear stress or

Shields parameter (Sutherland et al. ). The normalized

water depths at the toe (htoe/L0), the breaking point (hb/L0),

and the normalized breaking wave height (Hb/L0) indicate

the interaction between the broken wave and bed sediment.
RESULTS AND DISCUSSION

Available experimental data

The key mechanism of breaking wave-induced scour is com-

pletely different from that of non-breaking wave-induced
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scour. In other words, in order to have a physically sound

prediction, only the breaking waves’ data set must be uti-

lized for scour due to breaking waves. Therefore, in this

paper, only breaking waves’ data set is used for developing

models with ANN and GP.

The waves’ regularity only affects the amount of maxi-

mum scour depth, and it does not have any influence on the

scour physics. For instance, the maximum scour depths

associated with regular waves are larger than those of irregu-

lar waves (Sumer & Fredsøe ). Therefore, both regular

and irregular waves are used to develop predictive models

in this paper. In brief, in this paper, only the breaking/

broken waves’ data set is used for developing models. This

data set includes the regular and irregular waves.

According to previously mentioned statements, in this

study, the broken or breaking waves data sets of Fowler

(), Sutherland et al. (), and Tsai et al. () were

used for developing both the ANN and GP models. Fowler’s

data set includes 18 tests with irregular waves and 4 tests

with regular waves for the vertical seawall (Fowler ).

Sutherland et al.’s data set contains 35 tests under irregular

waves’ attack for the vertical and inclined (1:2 slope) front-

wall slopes (Sutherland et al. ). Tsai et al. () per-

formed 25 tests for scour under regular wave conditions,

mainly for non-breaking waves on seawalls. In total, 41

data points related to the breaking/broken waves scour are

used to develop the models.

The data range of modeling parameters for training and

testing are presented in Table 2. The training data sets con-

tain 70% of the whole data (28 data points) and the

remaining 30% (13 data points) are employed for testing.
Table 2 | Ranges of the parameters employed to train and test the GP and ANN models

Parameters Train range Test range

Cr 0.260–0.576 0.270–0.576

Irb 0.057–0.870 0.061–0.780

Hb/L0 0.016–0.087 0.009–0.087

hb/L0 0.019–0.094 0.009–0.094

htoe/L0 �0.009–0.073 �0.009–0.055

D50/H0 0.0004–0.0016 0.0004–0.0016

Smax/Ho 0.125–0.782 0.194–0.803

://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
Model assessment

This paper presents both the GP and ANN approaches for

predicting the relative maximum scour depth (Smax/H0) at

seawalls. The models are developed by utilizing different

combinations of the governing parameters (Equation

(10)). The developed models indicated that the relative

scour depth was not sensitive to the normalized mean

diameter of the bed sediment (d50/H0); moreover, apply-

ing d50/H0 as the input parameter led to more complex

models with no considerable increase in accuracy. Thus,

the effect of sediment size on the relative scour depth is

negligible because the range of the sediment size is very

low (0.0004–0.0016) in the experimental data set utilized

for developing the ANN and GP models. All of the

parameters in Equation (10), except the normalized sedi-

ment size (d50/H0), were used for developing the GP

and ANN models.

To achieve the optimum ANN results, the number of

hidden layer neurons was determined by a trial-and-error

method (Table 3). The trial-and-error process revealed that

a hidden layer with four neurons results in the best perform-

ance of the ANN model. The performance of developed

ANN and GP models in predicting the relative scour

depth (Smax/H0) at seawalls was compared with the empiri-

cal relations proposed by Fowler () and Sutherland et al.

(). Statistical error parameters, such as correlation coef-

ficient (CC), RMSE, BIAS, and scatter index (SI) were

determined to evaluate the accuracy of the developed

model and compare it with the existing empirical

approaches. Equations (11)–(14) present the statistical
Minimum Average Maximum

0.260 0.397 0.576

0.057 0.272 0.870

0.016 0.044 0.087

0.009 0.048 0.094

�0.009 0.023 0.073

0.0004 0.0006 0.0016

0.125 0.450 0.803



Table 3 | Trial and error for determining the best number of hidden layer neurons of the employed ANN model

Hidden layer neurons’ number Data set CC RMSE SI BIAS

3 Training data set 0.855 0.096 21.57% �0.012

Testing data set 0.862 0.115 24.74% �0.070

All data sets 0.846 0.102 22.61% �0.029

4 Training data set 0.913 0.075 16.84% �0.010

Testing data set 0.885 0.102 21.93% �0.064

All data sets 0.895 0.084 18.58% �0.026

5 Training data set 0.726 0.135 30.28% 0.039

Testing data set 0.961 0.050 10.75% �0.009

All data sets 0.779 0.116 25.84% 0.025
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formulas used in this paper:

CC ¼
PN

i¼1 Oi �Om
� �

Pi � Pm
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Oi �Om
� �2

×
PN

i¼1 Pi � Pm
� �2q (11)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Pi �Oið Þ2
N

s
(12)

SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Pi �Oið Þ2=N
q

Om
× 100% (13)

BIAS ¼
PN

i¼1 Pi �Oið Þ
N

(14)
Figure 2 | Comparison between measured and predicted relative maximum scour depth (Sma
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where Oi and Pi represent the observed and predicted

values, respectively, N is the number of observed data, and

Pm and Om are the corresponding mean values of the pre-

dicted and observed parameters, respectively.

Figures 2 and 3 present the comparison between the

observed relative scour depth against the predicted values

of the developed GP and ANNs models, respectively. The

comparison between the outcomes of GP and ANNs

models (Figures 2 and 3) shows that the overall performance

of the GP model is better than that of the ANN model in

terms of statistical parameters (Table 4). Considering all

data sets, the CC of the GP model (0.912) is higher than

ANNs (0.895). For the relative scour depth higher than

0.7, both ANNs and GP models underestimate the scour

depth. This would be as a result of the lack of sufficient
x/H0) by GP for (a) test data set and (b) all data sets.



Figure 3 | Comparison between measured and predicted relative maximum scour depth (Smax/H0) by ANN for (a) test data set and (b) all data sets.

Table 4 | Performance indices of various approaches in prediction of relative scour depth

Model (Equation) Used data set CC RMSE SI BIAS

ANN Testing data set 0.885 0.102 21.93% �0.064

All data sets 0.895 0.084 18.58% �0.026

GP Testing data set 0.896 0.095 19.95% �0.023

All data sets 0.912 0.075 16.71% �0.0003

Fowler () data set 0.863 0.109 21.92% 0.023

Sutherland et al. () data set 0.924 0.078 18.50% �0.023

Fowler Fowler () data set 0.850 0.121 23.35% 0.031

All data sets 0.164 0.536 119.1% 0.369

Sutherland et al. () Sutherland et al. () data set 0.792 0.140 31.47% �0.071

All data sets 0.043 0.355 75.1% 0.049
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data points for this range. Empirical equations and soft com-

puting approaches use utterly different mechanisms for

developing their final results. Nevertheless, the same trend

was also observed in the prediction of the empirical for-

mulas (Figure 3). Thus, a lack of data points and their low

discrepancy for a larger amount of scour depths result in

various models’ underestimation.

Figure 4 indicates the performance of empirical formulas

(Fowler () and Sutherland et al.’s () proposed

equations) in prediction of all data sets utilized in this paper

(collected from published literature). The figure reveals that

the Fowler () formula overestimates the relative scour

depth and themain drawback of Sutherland et al.’s () for-

mula is its approximately constant prediction (0.37) for a
://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
large range of the relative scour depth (0.20–0.80). In other

words, this figure shows that these empirical equations are

not applicable for data sets which are beyond their exper-

imental data. This is because of the use of limited input

parameters and limited range of data sets.

Figure 5 illustrates the performance of each of the

models of Fowler (), Sutherland et al. (), and the

GP model for the prediction of data sets of Fowler and

Sutherland et al. Considering Fowler’s () data set,

Figure 5 demonstrates that the GP model outperforms Fow-

ler’s formula in prediction of maximum scour depth.

Similarly, the GP model performs significantly better than

Sutherland et al.’s () formula in prediction of Suther-

land et al.’s experimental data set. The results reveal that



Figure 4 | Comparison between measured and predicted relative maximum scour depth (Smax/H0) for all data sets by (a) Fowler (1992) and (b) Sutherland et al. (2006).

Figure 5 | Comparison between measured and predicted relative maximum scour depth (Smax/H0) by GP and empirical equations for (a) Fowler (1992) data set and (b) Sutherland et al.

(2006) data set.
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the empirical formulas are capable of predicting the relative

scour depth for a limited data range with a fair accuracy;

nevertheless, the empirical formulas do not make an accu-

rate prediction for scour depth beyond the range of their

experimental data sets. The statistical error parameters

(Table 4) confirm the higher accuracy of developed ANNs

and GP predictions in comparison with the empirical for-

mulas. In summary, the empirical formulas failed to

predict the relative scour depth for the conditions beyond

the range of their experimental data sets; nevertheless, the

presented approaches (the GP and ANNs models) per-

formed well for a large range of data. Besides higher

accuracy, the key advantage of GP is the capability of
om http://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
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producing accurate and meaningful mathematical

expression which can be easily used for predicting the rela-

tive scour depth at seawalls for different ranges of

parameters. The developed GP model (Equation (15)) for

predicting relative scour depth is as follows:

Smax

H0
¼ tan

htoe=L0

Cr � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp (� 0:31� (htoe=L0)

p
( )

þ (hb=L0) Hb=L0ð Þ
exp (20:34cr2)½ �2

þ 0:79
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:68þ Irb

3
p

� tan

ffiffiffiffiffiffi
hb

L0

3

s !( )
(15)
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To understand the physical trend of the GP evolved

equation (Equation (15)), a parametric evaluation with vary-

ing input parameters is very necessary (Kazeminezhad et al.

). To perform this, variation of the relative maximum

scour depth against the reflection coefficient (Cr) and the

relative water depth at the toe for (htoe/L0) was investigated.

Figures 6 and 7 show the variation trend of Smax/Ho against

Cr, hb/L0, and htoe/L0, Irb, respectively, when the other input

parameters contributing to Equation (15) have fixed

amounts. Figure 6(a) indicates the Smax/Ho variation when

Cr varies from 0.270 to 0.561 when the hb/L0, htoe/L0,
Figure 6 | Variation of the predicted scour depth, using the GP evolved model (Equation (15)):

0.016, and 0.258, respectively, and (b) against hb/L0 for Cr, htoe/L0, Hb/L0, and Irb eq

Figure 7 | The variation of the predicted scour depth, using the GP evolved model (Equation (15

0.349, 0.061, 0.066, and 0.78, respectively, and (b) against Irb for Cr, htoe/L0, Hb/L0,

://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
Hb/L0, and Irb is equal to 0.017, 0.006, 0.016, and 0.258,

respectively. As expected, Figure 6(a) indicates a reduction

in the relative scour depth with an increase in the reflection

coefficient, which demonstrates that the proposed equation

(Equation (15)) is in line with the physical facts and the

results of the laboratory studies of Sutherland et al. ()

and Tsai et al. (). Similarly, the effect of the relative

water depth at the toe (htoe/L0) on the relative maximum

scour depth (Smax/Ho) has been investigated. To perform

this, the Cr, hb/L0, Hb/L0, and Irb were considered to be

0.349, 0.061, 0.066, and 0.78, respectively, and htoe/L0
(a) against the reflection coefficient for hb/L0, htoe/L0, Hb/L0, and Irb equal to 0.017, 0.006,

ual to 0.4, 0.037, 0.039, and 0.066, respectively.

)): (a) against the relative water depth at the toe (htoe/L0) for Cr, hb/L0, Hb/L0, and Irb equal to

and hb/L0 equal to 0.27, 0.006, 0.016, and 0.017, respectively.
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varies in the range of 0.015–0.071. As seen in Figure 7(a),

similar to the results of Fowler () and Sutherland et al.

(), the predicted relative scour depths resulting from

Equation (15) were reduced by increasing the relative

water depth at the toe. Thus, it is obvious that the proposed

equation (Equation (15)) is in line with the existing formulas

and the developed concepts.

In order to achieve the models’ reliability, a box plot

of various models’ discrepancy is very useful (Etemad-

Shahidi & Ghaemi ). As indicated in Figure 8, it was

found that the empirical equations of Fowler () and

Sutherland et al. () are more conservative when com-

pared with the soft computing evolved models. Moreover,

Figure 8 shows that the lower and upper quartiles of data

average in empirical equations have significantly different

numbers which indicate their uncertainty. This gap is not

as large as it is in soft computing models. Having larger

box height, the empirical formulas need larger safety fac-

tors to cover all the range of predicted scour depths.

Nevertheless, the soft computing evolved models are

more accurate and more reliable when compared to

empirical formulas.
Figure 8 | Box plot of evolved models and empirical formulas.

om http://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
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As mentioned earlier, the GP evolved equations are very

accurate and physically sound. Nevertheless, as indicated in

Equation (15), the GP models are mathematically compli-

cated, so their interpretation is not as easy as the empirical

formulas. The main reason for producing complicated

equations by GP is due to the GP concept. For evolving

models, GP uses a set of input parameters, operations, and

functions. The best combination of the mentioned variables

results in a GP final model. Moreover, ANN is like a black

box model. However, the GP and ANN models’ accuracy

and capability in predicting various phenomena have been

proven in many studies. The GP evolved model (Equation

(15)) is completely meaningful, in such a way that the vari-

ation trend of maximum scour depth against input

parameters are closely aligned with the experimental results

(Figures 6 and 7). Moreover, it is comparable with the exist-

ing empirical formulas from the viewpoint of accuracy,

applicability, and reliability. Regarding the mentioned fac-

tors, the GP evolved model (Equation (15)) can be seen as

a better option to the existing empirical equations and can

be complementary to them in predicting maximum scour

depth under the action of breaking waves.
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Sensitivity analysis

Sensitivity analysis and the determination of the relative sig-

nificance of the input parameters are important issues in

developing an accurate prediction model. Employing irrele-

vant or insignificant input parameters can lead to such

complex models that are very difficult to evaluate and inter-

pret. For sensitivity analysis, many studies have employed

the exclusion of parameters’ approach, where the signifi-

cance of each parameter was separately evaluated through

statistical measures (e.g., Etemad-Shahidi & Ghaemi ).

One of the major capabilities of GP is its inherent power

in determining the significant variables and gradually omit-

ting the input variables that do not contribute beneficially

to the models’ accuracy (Jayawardena et al. ). Several

models have been developed with different combinations

of input parameters to achieve the best GP output. The

sensitivity analysis of developed GP models indicated that

Smax/H0 is mostly affected by Cr and followed by hb/L0,

htoe/L0, Irb, and Hb/L0, respectively. To study the sensitivity

of the developed GP models, Liong et al.’s () approach

is implemented, where only one input parameter varies

while the others are constant and a variation of ±15, ±10,

±5 for each input parameter is considered at each stage.

The influence of the modification procedures on the pro-

posed formula for prediction of Smax/H0 is measured in

terms of average percentage change (APC) as:

APC ¼ 100
N

XN
i¼1

Smax=H0ð Þorg � Smax=H0ð Þmod

Smax=H0ð Þorg

( )
i

(16)

where (Smax/H0)org is the predicted relative scour depth pro-

posed by GP using the original values of the input variables,
Table 5 | Average percentage change (APC) in relative scour depth due to variation of variabl

Considered variable

Percentage change in variable (Equation (16))

� 15 � 10 � 5

Cr �10.399 �6.485 �3.076

Irb 2.312 1.532 0.762

Hb/L0 �0.457 �0.288 �0.136

hb/L0 �3.889 �2.548 �1.253

htoe/L0 �3.144 �2.109 �1.061

://iwaponline.com/jh/article-pdf/19/3/349/391424/jh0190349.pdf
and (Smax/H0)mod is the modified GP predicted relative

scour depth due to the variation of a particular variable

and N is the number of data points. The procedure is

repeated for all of the input variables. The significance of

input parameters resulting from sensitivity analysis is pre-

sented in Table 5.
SUMMARY AND CONCLUSION

This study explored the capabilities of GP and ANN

methods for predicting the broken wave-induced scour

depth at seawalls. The laboratory data sets of Fowler

(), Sutherland et al. (), and Tsai et al. () were

used for developing the models. Statistical error measures

were utilized for determining the performance of the GP

and ANN models and comparing it with the empirical for-

mulas. The result obtained clearly shows that the GP and

ANN models are more accurate when compared to the

empirical relations, while the relative scour depth proposed

by the GP model achieved higher accuracy than those of the

ANN predictions. In addition to higher accuracy, the main

advantage of GP, unlike ANNs, is to make predictions by

generating simple and meaningful mathematical expression,

which can be utilized in predicting the scour depth for a

wide range of data.

Further analyses of the results reveal that the effect of

the normalized mean diameter of sediment (d50/H0) on

the relative scour depth (Smax/H0) was negligible. Therefore,

the prediction models were developed utilizing the effective

parameters on the relative scour depth (Smax/H0) including

the relative water depth at the toe (htoe/L0), the reflection

coefficient (Cr), the relative water depth at the breaking
e values

Significance orderþ 5 þ 10 þ 15

2.897 5.765 8.763 1

�0.753 �1.498 �2.234 4

0.123 0.236 0.338 5

1.214 2.392 3.537 2

1.075 2.165 3.269 3
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point (hb/L0), the normalized broken wave height (Hb/L0),

and the breaking surf similarity parameter (Irb). The pro-

posed formula by GP fits well with the developed concepts

in laboratory studies. The significance of the input par-

ameters on the relative scour depth was evaluated with a

sensitivity analysis. The results of sensitivity analysis show

that the relative scour depth (Smax/H0) is mainly influenced

by the reflection coefficient, and the relative water depth at

the breaking point. Despite better performance of the GP

model in comparison to that of the ANN predictions of rela-

tive scour depth, both the GP and ANN models are

promising techniques for predicting the broken wave-

induced scour at seawalls. However, one of the obvious

limitations of this work is that quite a small data set was

used. It can be recommended to carry out studies with

larger data sets when they become available.
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