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Abstract This study focuses on the potential improvement of environmental
variables modelling by using linear state-space models, as an improvement
of the linear regression model, and by incorporating a constructed hydro-
meteorological covariate. The Kalman filter predictors allow to obtain accurate
predictions of calibration factors for both seasonal and hydro-meteorological
components. This methodology can be used to analyze the water quality be-
haviour by minimizing the effect of the hydrological conditions. This idea is
illustrated based on a rather extended data set relative to the River Ave basin
(Portugal) that consists mainly of monthly measurements of dissolved oxygen
concentration (DO) in a network of water quality monitoring sites. The hydro-
meteorological factor is constructed for each monitoring site based on monthly
precipitation estimates obtained by means of a rain gauge network associated
with stochastic interpolation (Kriging). A linear state-space model is fitted for
each homogeneous group (obtained by clustering techniques) of water moni-
toring sites. The adjustment of linear state-space models is performed by using
distribution-free estimators developed in a separate section.
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1 Introduction

The administration of hydrologic resources has been deserving a special promi-
nence in the context of domestic and international politics in order to solve
the complexity and the uncertainty of the problems associated with a world-
wide and local scale of sustainable administration (environmental, social, and
economical) of natural water resources.

The river basin, which is the primordial unity of water resources planning
and management, is usually submitted to pressures and changes due to human
activities. At a river basin scale there is a need to establish a methodology for
systematic data monitoring, for the characterization of surface water quality
and for the correct analysis of collected data (Vega et al 1998). Surface water
quality monitoring has as its main objective the characterization of water
resources, as well as the monitoring of its space-time evolution in order to
achieve an appropriate administration.

A river is a system comprising both the main course and its tributaries,
carrying the one-way flow of a significant load of matter in dissolved and par-
ticulate phases from both natural and anthropogenic sources (Shrestha and
Kazama 2007). This study focuses on a rather extended data set relative to
the River Ave’s basin in Northwest Portugal and consists mainly of monthly
measurements of physical-chemical and microbiological variables in a network
of water quality monitoring sites and of monthly precipitation in a rain gauge
network of meteorological monitoring sites. The River Ave’s hydrological basin
has an approximate area of 1400 Km2 (from its source in Serra da Cabreira
to its mouth in Vila do Conde), it’s 101 Km in length and its average flow at
the mouth is of about 40 m3/s. Its main adjacent streams are the River Este
(flowing from the North) and the Rivers Selho and Vizela (from the South).
In the last thirty years, the River Ave’s hydrological basin, with the exception
of its upstream areas, has been subjected to a growing rhythm of untreated
effluents discharges from industrial activities, namely from the textile sector
strongly implanted in this region. All this situation is instrumental for the
water quality deterioration, resulting in inappropriate water for several uses:
human consumption, industrial use, recreational uses, fishing and irrigation,
thus posing a serious danger for public health (Oliveira et al 2005). The River
Ave differs from the other Northern region rivers not only because of its high
pollution levels but also due to the large space-time variability of pollutants
concentration. The water quality measurements failed to comply with the ob-
jectives of minimum quality for surface waters prescribed by the Portuguese
legislation. The Central Administration, through the Regional Directory for
the Northern Environment and Natural Resources (DRAN) and the Insti-
tute of Water (INAG) monthly monitored the surface water quality along the
River Ave and its main streams since 1988 by means of a monitoring net en-
compassing 20 water monitoring sites that in 1998 was redimensioned in order
to comply with the new legislation. This network has been constantly restruc-
tured since 2007, in order to implement its chemical status monitoring (2007)
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and, more recently, its ecological status monitoring (2009), as stipulated by
the Water Framework Directive (Machado et al 2010).

Multivariate statistical analysis has been widely applied in water quality
assessment and sources apportionment of water over the last years (Wunderlin
et al. 2001; Simeonov et al. 2003; Shrestha and Kazama 2007). In several
works, multivariate statistical analyses are applied to sets of water quality
variables, usually quantitative analytical data consisting of physico-chemical
variables. If the goal is to investigate water quality evaluation in its time-
space variations as in Helena et al. (2000), or the natural and anthropogenic
origins of contaminants in surface or ground water as in Ato et al. (2010),
the most suitable and applied approach is the principal components analysis
(Liu et al. 2003; Lischeid 2009; Varol and Sen 2009). In some practical studies,
there is data available from a group of sample sites, usually water monitoring
sites, which is useful to perform several statistical methodologies: for instance,
correlation analysis parametric and non-parametric tests (Elhatip et al. 2008).

When a predict model is needed, the linear regression has been the most
applied approach (e.g. Gonçalves and Alpuim 2011; Renwick et al. 2009). How-
ever, statistical models with fixed effects are unlikely to yield a good predic-
tive accuracy, particularly in situations where the predictor and predictand
relationship changes over time (Kokic 2010). This issue has been previously
acknowledged in environmental data: Costa and Alpuim (2011) consider state-
space models in the calibration of radar precipitation measures and Charles et
al. (2004) and Greene et al. (2008) have taken hidden Markov Chain models
to represent an evolving climate system in statistical downscaling. Costa and
Gonçalves (2011) proposed a methodology which combines the analysis of a set
of sample sites–which were obtained by means of clustering procedures–with
the adjustment of predict regression models and state-space models, in particu-
lar considering trends and seasonal components. However, it was demonstrated
that state-space models improved the predictions accuracy in comparison with
the linear regression models.

In this study, a linear state-space model is proposed for modelling con-
tinuous physical and chemical monitoring data. The model was applied to
dissolved oxygen concentrations levels (DO) (mg/l) in 8 monitoring sites in
the River Ave’s basin over a 12-year period (1998-2009). Adequate dissolved
oxygen is necessary for good water quality and it is one of the most important
variables in the assessment of river water quality and pollution grade.

The proposed methodology starts by using a multivariate statistical approach–
cluster analysis–to classify the water quality monitoring sites into homoge-
neous space-time groups based on the DO quality variable which was selected
and considered relevant to characterize the water quality. In a recent work,
Costa and Gonçalves (2011) show that a set of water quality monitoring sites
can be modelled by applying cluster techniques that minimize the number of
models.

One of the problems faced by meteorologists and hydrologists that study
spatial rainfall patterns is the interpolation of data from irregularly spaced
rain gauges in order to determine mean area rainfalls or to characterize rainfall
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variability within a region or catchment (Dirks et al 1998; Ciach and Krajewski
2006). Many hydrological and ecological studies recognize the importance of
characterizing the time-space variability of precipitation in a geographical area
(Goodrich et al 1995), for it is essential to estimate the hydrological balance.
Water quality in a given location is the reflex of the dominant conditions in
the source basin of that location, namely the hydro-meteorological factors.
The behaviour of the space-time quality variable is associated with the flow
variation (variable dilution effect), which in turn is generally related to the
seasonal rainfall variation.

We present the problem of area precipitation measurement in order to es-
timate a hydro-meteorological factor that will be used in the modelling of the
surface water quality of river basins, particularly for the dissolved oxygen vari-
able. A hydro-meteorological factor is constructed for each quality monitoring
site (totalling 8 sites) based on the analysis of the space-time behaviour of the
precipitation (monthly total) observed in a rain gauge network constituted by
a total of 19 meteorological sites located in the area of the River Ave’s basin,
between 1931-2009. A geostatistical approach and ordinary Kriging method
was chosen with the main goal of identifying models which estimate monthly
average rainfall in a sub-basin associated with a water quality monitoring site
where there are no observed values. Through stochastic interpolation (Krig-
ing) it is estimated the mean area rainfall during each month in the area of
influence of each water quality monitoring site: this covariate will integrate a
hydro-meteorological component that is crucial in any water quality modelling
process.

Finally, for each cluster, a linear state-space model was fitted to modelling
the DO concentration quality variable by taking into account the seasonal
variation throughout the year and the estimated hydro-meteorological factor.
The results demonstrate the effectiveness and advantages of modelling water
quality variables according to this approach, allowing to identify two different
components as a seasonal and a hydro-metereological factor.

2 Data set description

Northern Environment and Natural Resources (DRAN) and the Institute of
Water (INAG) monthly monitor surface water quality along the River Ave and
its main adjacent streams with a net of monitoring sites that comprises more
than 23 variables to assess river water quality: industry, domestic wastewa-
ter, agriculture, wastewater treatment plants. In total, eight water monitoring
sites are considered in this study: five located in the River Ave’s mainstream–
Cantelães (CANT), Taipas (TAI), Riba d’Ave (RAV), Santo Tirso (STI),
and Ponte Trofa (PTR)–and Golães (GOL), Ferro (FER), and Vizela Santo

Adrião (VSA) in the adjacent stream River Vizela. These eight monitoring
sites result from the restructuring of the water quality monitoring network in
1998, which implied the closure of other previous sites, and so the data set
reports to the period between May 1998 and December 2009. Table 1 summa-
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Table 1 Minimum, maximum, mean, standard deviation and missing data rate of water
quality variable DO concentration at the 8 monitoring sites in the River Ave’s basin

Monitoring
Site

CANT TAI RAV STI PTR GOL FER VSA

Minimum 7.4 6.6 1.8 1.7 2.4 7.3 7.3 7.2
Maximum 12.8 11.72 11.7 12.0 11.7 11.7 11.7 12.4
Mean 9.86 9.32 8.40 8.13 7.94 9.58 9.59 9.67
Standard
deviation

1.06 1.13 1.82 2.16 1.92 1.05 1.08 1.13

Missing
data rate

7.1% 8.6% 0.7% 1.4% 2.1% 8.6% 5.0% 8.6%

rizes basic statistics for the monthly measurements of the DO water quality
variable at the 8 monitoring sites during the above-mentioned period.

DO concentration is an important indicator since most aquatic fauna and
flora need oxygen to survive. The river system both produces and consumes
oxygen. If more oxygen is consumed than it is produced, dissolved oxygen
levels decline and some sensitive animals and plants could disappear. DO is
measured in milligrams per liter. Milligrams per liter (mg/l) is the amount
of oxygen in a liter of water and it is the same as ”parts per million” or
ppm. Dissolved oxygen concentration is probably the most important factor
in assessing the health of a water body, but other factors outside the water
managers direct control also determine a water body’s health to a variable
extent. Organic pollution is the most common type of pollution in this basin
and, consequently, a frequent problem is a deficit of DO concentration. This
problem is aggravated by the existence of a sequence of small dams in the
River Ave and in its main adjacent rivers (Costa and Gonçalves 2011).

3 Cluster analysis

Taking into account previous works based on hydrological river basins (Shresta
and Kazama 2007; Costa and Gonçalves 2011), a cluster analysis (CA) was
performed for grouping monitoring sites with similar water quality character-
istics in time, based on the DO concentration levels. Furthermore, this type
of analysis allows reducing the number of models in the modelling process.

CA is a group of multivariate techniques whose primary purpose is to
assemble objects based on their characteristics. Hierarchical agglomerative
clustering is the most common approach, providing intuitive similarity re-
lationships between any given sample and the entire data set, and is typically
illustrated by a dendrogram (McKenna 2003).

In this study, hierarchical agglomerative CA was performed on the raw data
set by means of Ward’s method. Ward’s method uses a variance approach to
evaluate the distances between clusters, in an attempt to minimize the sum of
squares (SS) of any two clusters that can be formed at each step. As these types
of algorithms operate on dissimilarities, our first task is to build a dissimilarity
matrix based on some measure of dissimilarity that can be applied to any two
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Fig. 1 Dendrogram showing clustering monitoring sites according to DO characteristics
based on Ward’s method

monitoring sites i and j. In this case, the main problem is that, for all locations,
there are no observations for all months under study. Therefore, let us consider
xit the value of the DO quality variable measured at location i in time t. The
Euclidean distance at this time instant between sites i and j is given by the
expression

distij(t) = |xit − xjt| .

We use the dissimilarity measure that corresponds to the average of this dis-
tance over all months t where there is observed value of the DO quality variable
with measurements in the two sites, i.e.

dij =
1

#Mij

∑

t∈Mij

|xit − xjt| , i, j = 1, . . . , 8,

where Mij is the set of all months with DO measured in both sites i and j.
Hence, this dissimilarity measure is simply a variant of the average Euclidian
distance adjusted to our situation, where the number of sampled sites differs
on a monthly basis. This methodology was based on the previous work of
Gonçalves and Alpuim (2011).

The monitoring sites dendrogram obtained by means of Ward’s method
is shown in Figure 1. It has a cophenetic correlation coefficient of 0.85 (i.e.,
the correlation between the actual dissimilarities as recorded in the original
dissimilarity matrix, and the dissimilarities which can be found in the dendro-
gram).

Two well-differentiated clusters were observed and the results confirm pre-
vious knowledge about the effluents discharge according to the economic activ-
ities located along the River Ave’s basin. Also, the effects of these discharges in
water quality vary according to natural and geographical/economical reasons.
Cluster I is composed by monitoring sites CANT, TAI, GOL, FER, and VSA.
There is a set of locations which have the best water quality indicators (the
highest values obtained from the DO concentration), including sites situated
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Fig. 2 Spatial distribution of 19 meteorological monitoring sites in the River Ave basin and
its discretization in 368 points

upstream the Rivers Ave and Vizela (CANT corresponds to the source of River
Ave); these monitoring sites receive pollution mostly from domestic wastewa-
ter and from agricultural and manure discharges. In Cluster II, comprised of
the three monitoring sites RAV, STI, and PTR located in the River Ave near
the most polluted area of the Ponte Trofa and Santo Tirso Municipalities,
there is a growing urban population and a high concentration of industrial
activity, and it is also where the Ave receives similarly polluted waters from
its adjacent rivers (Selho and Vizela), and, consequently, these sites present
the worst water quality.

The results of CA confirm the expected behaviour of space-time dynamics
of DO concentration observed in the 8 monitoring sites.

4 The hydro-meteorological factor

A hydro-meteorological factor is constructed and will be used as a covariate
in the modelling process. This covariate will integrate a hydro-meteorological
component that is recognized as crucial in any water quality modelling pro-
cess. One covariate is constructed for each water monitoring site based on the
estimate of the monthly mean precipitation of its influence region.

Figure 2 shows the region corresponding to the River Ave’s hydrological
basin (approximately 1400 Km2), which is discretized in 368 points (each point
corresponding to cell centers of 2 Km x 2 Km), and the 19 meteorological
stations located in this hydrological basin.

The data is available under Cartesian (X, Y ) co-ordinates (X - distance
to meridian (km) and Y - distance to the perpendicular (km)) coincident with
those of the military maps under a 1/25000 scale. The River Ave’s hydrological
basin is situated between the co-ordinates X = 147 Km to East, X = 209 Km
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Fig. 3 The limits of the hydrological basins as defined by the water quality monitoring
sites (WMS)

to West, Y = 475 Km to South and Y = 521 Km to North. The adopted mea-
suring unit is the millimeter (mm). The average density of each monitoring site
is of about one site for every 73 Km2, which the World Meteorological Organi-
zation considers enough to rigorously define the space-time rainfall variability
in this kind of temperate-climate region, and to define the average precipi-
tation values occurred in the basin. In the Northwest of Portugal summer is
dry and winter is mild with plenty of rain. So, the highest levels of precipita-
tion take place between October and March: this represents 75% of the yearly
precipitation.

Firstly, for each water monitoring site, the monthly mean area precipitation
was computed in its influence region based on the average point prediction.
Our main goal is to identify models which estimate monthly average rainfall in
places where there are no observed values (in the monitoring points of water
quality), with the help of the rainfall spatial distribution in other locations,
from a set of rain gauges. Due to the large rainfall space-time variability,
the precise evaluation, in real time, of mean area estimates poses a difficult
problem. To accomplish this, we propose a Kriging stochastic methodology.
In general, geostatistical methods are statistical techniques developed to in-
terpolate spatially autocorrelated variables, where the spatial coordinates may
either identify geographical location or a position in a generic two-dimensional
space. Goovaerts (2000) compared seven techniques used to map monthly data
for the Algarve region in Southern Portugal and concluded that geostatisti-
cal Kriging methods are better than traditional simple techniques (Thiessen,
inverse square distance, regression). In particular, Kriging is a method for
optimizing the estimation, under certain conditions, of a quantity that is dis-
tributed in space and measured at a network of points (Journel and Huijbregts
1978; De Marsily 1986; Isaaks and Srivastava 1989; Rossi et al. 1992; Chokmain
and Ouarda 2004).
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Figure 3 shows the River Ave’s hydrological basin with the influence ar-
eas delineated, and this methodology overlaps the areas of the 20 hydrological
sub-basins (linked to the 20 water quality sampling sites). In this context, the
influence regions of each water monitoring site were defined by the INAG (Por-
tuguese Institute of Water) technicians and they are corroborated by the re-
gion’s topography and the land’s drainage dynamics. We defined a neighbour-
hood around each water quality monitoring site in order to estimate monthly
measurements of rainfall averages in the area to finally apply a stochastic in-
terpolation method: Kriging. Although the study of the 20 sub-basins of water
quality monitoring points has been performed, we only present the sub-basin
of River Ave associated to the 8 water monitoring sites studied in this work:
CANT, TAI, GOL, FER, VSA, RAV, STI, and PTR. Considering that Ai is
the area of a sub-basin, the Ai, i = 1, ..., 8, region was regularly discretized by
a set of given points: CANT 8, TAI 29, GOL 13, FER 29, VSA 15, RAV 7,
STI 5, and PTR 32.

4.1 Kriging

A geostatistical approach/ordinary Kriging method was chosen with the main
goal of identifying models which estimate monthly average rainfall in a sub-
basin associated with a given water quality monitoring site where there are no
observed values (Nicolau and Rodrigues 2000). These estimates are based on
rain gauges located in their respective drainage areas. We considered that the
values of precipitation recorded throughout time are approximate replicas of
the same process, which is valid if the temporal correlation is weak. For this
reason, in this study, the observed values of precipitation throughout the years
were separated according to the twelve months of the year. For every month
of the year, the spatial continuity of precipitation was analyzed to take into
account the temporal component (the several months observed between 1931
and 2009).

The modelling of rainfall for each month (1931-2009) reduces significantly
the well-known right skewed of this type of data. No-transformation of rainfall
data was also considered in several works, for instance in Mirás-Avalos et al.
(2007), in which is performed ordinary Kriging for mapping monthly rainfall
data in Galicia (NW Spain), close to River Ave’s hydrological basin (NW
Portugal).

One objective of spatial data analysis is to predict the value Z(s0) of an
observation at an unsampled site s0 from the data Z(s1), ..., Z(sn) at the sam-
pled sites s1, ..., sn. Kriging is perhaps the most popular approach to spatial
prediction (Cressie 1989; Rathbun 1998). In Kriging, in our case, the spa-
tial interpolation is obtained by a linear combination of the observed val-
ues of the 19 known points sj (meteorological stations), j = 1, ..., 19 and

Zt(s0) =
∑19

j=1 λjZt(sj), t = 1, 2, ..., T (months). If we would like to have
monthly measurements, Zt(s), at any given location s in a certain area A (in
particular, in our case, a sub-basin area Ai, i = 1, ..., 20 associated to the
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20 water quality monitoring sites), we could obtain the monthly mean area
precipitation through the integral

Zt(A) =
1

|A|

∫

A

Zt(s)ds

where the integral is in the mean square sense and |A| stands for the area of
A. The Kriging estimator evaluates this integral as a linear combination of the
measurements of the 19 available monitoring sites,

Ẑt∗(A) =
19∑

j=1

λA,jZt∗(sj)

with the coefficients vector of λ = (λA,1, λA,2, ..., λA,19)
T satisfying the relation∑19

j=1 λA,j = 1.
The method used for the calculation of the empirical semivariogram is

the method of moments (Matheron 1963), modified for a random space-time
process {Z(s, t) : s ∈ IR2, t = 1, ..., T}. The process, in our case, will be a
random spatial process {Z(s) : s ∈ IR2} which is isotropic and second-order
stationary. The sampling processes are {Zt(si) : i = 1, ..., n, t = 1, ..., T}, i.e.
data collected at n point locations on A (n = 19 meteorological monitoring
points) in the region considered in IR2, for T equally spaced time instants
(T months). The semivariogram is obtained by averaging the several empir-
ical semivariograms for each time instant, a procedure that corresponds to
considering the space-time process as a collection of T independent temporal
replicates of a purely spatial process {Z(s) : s ∈ A}, in which case the purely
spatial semivariogram γ̂

Z
(h) characterizes all the space-time variability. Under

such hypothesis, two realizations corresponding to two different but close time
instants may differ substantially, since they are independent, although their
spatial variability pattern remains the same (Kyriakidis and Journel 1999; Sev-
erino and Alpuim 2005). This is a usual mode of estimating the semivariogram
in meteorological applications. Henceforth, the final estimator, the empirical
semivariogram, is given by

γ̂
Z
(h | l) =

1

2T |N(h|l)|

T∑

t=1

∑

(i,j)∈N(h|l)

[(Zt(si)− Zt(sj)]
2 (1)

with N(h|l) = {(i, j) : ‖si − sj‖ − ‖h‖ ≤ l; 1 ≤ i ≤ j ≤ n} and |N(h|l)| =
#N(h|l).

The models of spatial continuity (a model for each of the 12 months of
the year), as were inferred from the monthly precipitation values, assume the
hypothesis of homogeneity of the processes in the region under study (for a
certain fixed time t∗). Under this hypothesis, two observations in the same
location but in different times are independent and the spatial variability pat-
tern remains the same. The empirical semivariograms of the 12 months were
obtained by using the estimator defined in (1). For each month, the empiri-
cal semivariograms were calculated for the tolerance l in order to define the



Water quality variable modelling with linear state-space models 11

Table 2 Values of the empirical semivariogram estimates in June: N∗(‖h‖) represents the
number of observation pairs from which the semivariogram estimate γ̂

Z
(‖h‖) was obtained

(‖h‖) N∗(‖h‖) γ̂
Z
(‖h‖) (‖h‖) N∗(‖h‖) γ̂

Z
(‖h‖)

0.00 770 0.000 28.50 504 660.364
4.50 116 457.589 31.50 271 624.402
7.50 397 564.012 34.50 150 628.204
10.50 409 513.998 37.50 233 795.387
13.50 327 487.421 40.50 126 887.671
16.50 578 569.138 45.50 146 1028.605
19.50 463 551.720 50.80 120 949.893
22.50 617 632.481 59.80 123 1539.302
25.50 195 582.702
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Fig. 4 Graphical representation of the estimated semivariogram with the Gaussian model
adjustment

sets N(h) and, therefore, the number of data pairs that are needed to esti-
mate γ̂

Z
(h | l). The only case presented here is the most efficient model using

l = 3 Km tolerance. For instance, of the 12 months of the year it is only pre-
sented the semivariogram corresponding to the month of June (Table 2 shows
the resulting estimates of the empirical semivariogram for this month). The
least squares adjustments to several stationary models have been performed
with an additional condition, enforcing the adjusted variances (the models sill
value) to be equal to the empirical variance, since this is known to be the best
estimator. The semivariogram model that has best performed has been the
Gaussian with a nugget effect, for June in particular, as shown in Table 3.
The graphical representation of the semivariogram model is shown in Figure
4. The estimated semivariogram model to describe the spatial continuity of
the process in June is postulated in Eq. (2):

γ
Z
(h) =





0, h = 0

440.537 + 96.5

(
1− exp

(
−

(
‖h‖

2770.083

)2
))

, h 6= 0
. (2)
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Table 3 Least squares adjustment results obtained with the several models: SSE denotes
the residual sum of squares (June)

Model SSE Nugget effect Range Sill
Exponential 2.847×105 278.680 168.959 2931.940
Gaussian 1.250×105 440.537 96.500 2770.083
Rational Quadratic 1.529×105 432.931 90.644 2777.689
Spherical 2.508×105 290.660 286.260 2919.961

Table 4 Area precipitation estimates (in mm) in the neighbourhood of the water quality
monitoring site of Golães during the month of June

1998 1999 2000 2001 2002 2003 2004 2005
30.86 19.40 14.26 6.66 38.47 50.65 14.34 8.21

2006 2007 2008 2009
29.82 98.74 29.94 61.15

In order to assess the quality of the semivariogram fitting, we performed a
cross-validation procedure as follows: we selected a given rain gauge monitor-
ing site at, say, s0, based on data from the other 18 sites, then we fitted new
semivariograms and estimated the ordinary Kriging (point) to obtain point
estimates of Zt(s0) across time, and finally we evaluated the corresponding
residuals (differences between estimated and true values of Zt(s0)). This pro-
cedure was repeated for each of the 19 monitoring sites.

As mentioned above, the area Ai of the sub-basin associated to Golães was
discretized by a set of 13 points in the region Ai included in the area A of
the River Ave’s hydrological basin. The estimator of the mean area precipita-
tion Ẑt∗(Ai) is a linear combination of the values observed in the rain gauge
monitoring sites which influence the total drained area in month t∗, that is,
Ẑt∗(Ai) =

∑19
j=1 λAi,jZt∗(sj), and the value of ordinary Kriging estimation

error variance is σ2
ok = 397.891.

Table 4 shows the mean area precipitation estimates for the water monitor-
ing site of Golães for the month of June, during the specific period of 1998-2009
that is relevant for this study.

4.2 Hydro-meteorological factor computation

The precipitation amount of the sub-basin Ai associated to the water moni-

toring site i, with i = 1, 2, ..., 8, in month t is estimated by p
∗(i)
t = Ẑt(Ai)×ai,

where ai is the sub-basin’s area in Km2. For re-scale purposes, it is considered

the proportional value p
(i)
t = p

∗(i)
t ×10−3. This construction reflects that larger

areas have larger amounts of drained precipitation. On the other hand, if the
goal is to obtain a prediction model for DO concentration in a month t, the
hydro-meteorological factor should not incorporate the precipitation amount
of the current month, but only the past information. Indeed, the precipitation
effect on the river flow not only depends on the recent rainfall but also on the
previous months rainfall.
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Thus, it is considered a hydro-meteorological factor based on the precip-
itation amount of the sub-basin in time t − 1 and t − 2. For simplicity, for
each time t and for cluster i is taken a convex linear combination of the values
p
(i)
t−1 and p

(i)
t−2. Moreover, in order to attenuate extremes values, it is taken the

logarithm of the convex linear combination, i.e.,

h
(i)
t = log

(
k1p

(i)
t−1 + (1− k1)p

(i)
t−2

)
.

The constant k1 was found by numerically maximizing the linear corre-
lation coefficient between the hydro-meteorological factor and the DO con-
centration variable. This procedure indicated the value k1 = 0.7. Thus, the
hydro-meteorological factor is taken as follows,

h
(i)
t = log

(
0.7 p

(i)
t−1 + 0.3 p

(i)
t−2

)
.

5 The linear state-space model

In order to model a water quality variable Yt based on a hydro-meteorological
factor ht and on a component as seasonality st (or trend), in view of the stan-
dard regression analysis this relationship can be performed by the equation
Yt = αht +βst + et. However, this model does not accommodate changes over
time neither eventual autocorrelations, even if they are weak. Indeed, water
quality variables are influenced by meteorological conditions that may persist
from one month to another (Alpuim and El-Shaarawi 2009). For instance, Fig-
ure 5 shows partial autocorrelations of residuals of standard linear regression of
DO concentration with covariates ht and st. Indeed, it is verified a significant
autocorrelation in residuals.

On the one hand, the linear state-space model may be considered a stan-
dard linear regression model whose coefficients may vary over time. On the
other hand, the proposed model provides the possibility of identifying and
separating two structural components that are significant to explain the tem-
poral evolution of a water quality variable. This approach is illustrated with
the DO concentration in a hydrological basin with homogenous groups of water
monitoring sites.

Suppose there are measures of the water quality variable at time points
t = 1, 2, ..., T and the river basin has k clusters of sample sites where cluster i
has ki water monitoring sites, with i = 1, 2, .., k. The observation equation for
clusters i is:

Yt = [ht|st]βt + et (3)

βt = µ+Φ
(
βt−1 − µ

)
+ ǫt (4)

where the measurement equation, Eq. 3, relates to the observable water qual-
ity variable Yt = [Y1,t Y2,t · · · Yki,t ]

′ in the ki sites in cluster i with the
vector of unobservable variables, βt = [βh,t βs,t ]

′, called states. The ki × 2



14 A. Manuela Gonçalves, Marco Costa

Fig. 5 PACF and ACF of residuals of the standard linear regression in Golães and Santo

Tirso

matrix At = [ht|st] is a matrix of known values and accommodates the hydro-
meteorological factor and the seasonal component. Thus, matrices ht and st are
column matrices with the form ht = [h1,t h2,t · · · hki,t ]

′ and st = 1ki
st. For

simplicity, the seasonal coefficients are taken by the mean of the monthly aver-
ages of water quality variable inside each cluster. The error term et is a white
noise ki × 1 vector, called the measurement error, with a covariance matrix
Σe, which may be a diagonal covariance matrix Σe = diag{σ2

1 , σ
2
2 , · · · , σ

2
ki
},

for simplicity.
The state process {βt} follows a stationary VAR(1) according to Eq. 4,

the state equation, with a mean given by the 2 × 1 vector µ. To secure the
stationarity of the state equation, it is assumed that the eigenvalues of the
autoregressive matrix Φ are inside the unit circle, i.e.,

|λi(Φ)| < 1 for all λi such that |Φ− λiI| = 0
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and εt is a white noise vector with covariance matrix E(ǫǫ′) = Σǫ. Further-
more, the noises e and ǫ are serially uncorrelated, i.e., E(etǫ

′
r) = 0 for all t

and r.

The LSS model consists of equations (3)-(4) and comprises a simplified
formulation of a regression model with varying coefficients (Pagan 1980; Ley-
bourne 2006) which includes a seasonal component. Indeed, the seasonal com-
ponent could be included by adding new states in the vector state as in Bengts-
son and Cavanaugh (2008). However, this approach considerably increases the
complexity of the model and the matrices computations, and so the benefits are
unclear. Moreover, the LSS model considered in this work enables to separate
two sources of variability: one based on meteorological conditions and another
on a structural component which is supposed to be more stable over time.
This formulation reveals the temporal dynamic of these two factors, allowing
a monthly monitoring of the water quality variable evolution. For simplicity,
the seasonal coefficients st for each cluster are taken as known and equal to
the monthly means of observations.

Usually, time series modelling takes into account, beyond seasonality, a
trend component, which may be linear or otherwise. Nevertheless, the DO
concentration does not present a strong trend over time, although in some
water monitoring sites, mainly in more polluted clusters, there seems to be
a slight linear trend. However, state-space approach is able to accommodate
this behaviour because it can be interpreted as a local linear model. Indeed,
the state-space model associated with the Kalman filter produces predictions
of slopes in a real-time procedure, at each time, for covariates. Considering
the seasonal coefficients as covariates, if there exists a trend, even weak, it is
expected that the Kalman filter predictions of its slope come to be greater or
lower than one. Thus, Kalman filter predictions allow signaling and monitoring
possible changes in the structure evolution.

Moreover, it is known that meteorological conditions may interfere with
water quality variables. Thus, the incorporation of the hydro-meteorological
factor in the modelling process may contribute to separate this factor from a
structural component associated with other factors, such as industries activity
or an improved treatment of industrial waters. The LSS model may be an
efficient real-time procedure of water quality monitoring by analyzing these
two components separately.

For modelling purposes, it is necessary to predict states at each time t. As
states are unobservable variables, their predictions are obtained by means of
the Kalman filter algorithm (Harvey 1996). Assuming that parameters of a
state-space model are known, the Kalman filter recursions give the best linear
predictors to filter, forecast, and smooth the prediction of vector of states.

Let β̂t|t−1 represent the predictor of βt based on the information up to
time t − 1 and let Pt|t−1 be its mean square error (MSE). As the orthogonal
projection is a linear estimator, the predictor for the next variable, Yt, is given
by

Ŷt|t−1 = Atβ̂t|t−1 (5)
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when, at time t, Yt is available, the prediction error or innovation, ηt =

Yt − Ŷt|t−1, is used to update the estimate of Yt, through the equation

β̂t|t = β̂t|t−1 +Ktηt (6)

where Kt is called the Kalman gain matrix and is given by

Kt = Pt|t−1A
′
t

(
AtPt|t−1A

′
t +Σe

)−1
. (7)

Furthermore, the MSE of the update predictor β̂t|t verifies the relationship
Pt|t = Pt|t−1 − KtAtPt|t−1. In turn, at time t, the forecast for the state

vector βt+1 is given by the equation β̂t+1|t = µ + Φ(β̂
t|t − µ) with MSE

matrix Pt+1|t = ΦPt|tΦ
′ +Σǫ.

5.1 Parameters estimation

The vector of unknown parameters Θ = {µ,Φ,Σe,Σǫ} must be estimated
from the data. In many applications, the state-space models parameters are
estimated by maximum Gaussian likelihood via the Newton-Raphson method
(Harvey 1996) or, more often, by the EM algorithm (Shumway and Stoffer
1982). However, environmental data may deviate from Gaussian distribution
and these methods may lead to poor estimates, as it is recognized by Anag-
nostou and Krajewski (1998) in the context of precipitation data. Even in
cases where Gaussian distribution of errors is reasonable, the use of numerical
methods to maximize the log-likelihood function may be a difficult and com-
plex task. This problem may occur because the log-likelihood function may
be a complex shape with possible multiple critical points, and in these cases
numerical iterative methods could not converge.

In this paper, parameters are estimated by distribution-free estimators
based on the generalized method of moments. Costa and Alpuim (2010) pro-
posed consistent distribution-free estimators for univariate state-space models
which in this work are generalized to a multivariate type of model (3)-(4).
Costa and Alpuim (2010) show, by using Monte Carlo studies, that the Gaus-
sian maximum likelihood estimation produces a low rate of estimates within
the space parameter in comparison to distribution-free estimators, mainly
when the sample size is small. This result is a very relevant property from
the practical point of view and has thus motivated its generalization. Ad-
ditionally, the missing values are not a problem to the proposed estimators
because they depend only on the lags between observations. More details of
the distribution-free estimators construction are presented in the appendix.

Firstly, it is considered models of type (3) - (4) where the vector of states
has the same dimension of the vector of the observations: for instance, 2, i.e.,
models with two water monitoring sites. The mean vector µ can be easily
estimated by the method of moments:

µ̂ = n−1
n∑

t=1

A−1
t Yt. (8)
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The autoregressive matrixΦ is estimated by the covariance structure of process
{A−1

t
Yt} based on the autocovariance function of the process βt by

Φ̂ =

(
ℓΦ∑

k=1

Γ̂ k+1Γ̂
′

k

)(
ℓΦ∑

k=1

Γ̂ kΓ̂
′

k

)−1

(9)

where Γ̂ k = n−1
∑n−k

t=1

[(
A−1

t+kYt+k − µ̂
) (

A−1
t Yt − µ̂

)′]
. The choice of ℓΦ

was discussed in the original paper and is used in this paper as well. Particu-
larly, it is suggested to take ℓΦ = 45, 80, 60, 50 according to sample dimensions
n = 50, 100, 200, 500. As the data set has samples of dimension 140, it is con-
sidered ℓΦ = 80.

The state noise covariance matrix is based on relation Σβ = ΦΣΦ′ +Σε
that is valid in a VAR(1) stationary process, whereΣβ is the covariance matrix
of the vector of states. To estimate Σǫ it is considered the estimator

vec
(
Σ̂ε

)′∗
=

(
Γ̂ 1∆̂

′∗

1

)(
∆̂

∗

1∆̂
′∗

1

)−1

(10)

where matrix∆∗
1 is obtained from the matrix ∆̂1 =

[
I4 − (Φ̂⊗ Φ̂)′

]−1 (
I2 ⊗ Φ̂

)′

summing up its two and three columns. This estimator results from (13) con-
sidering kΦ = 1, following the suggestion of Costa and Alpuim (2010).

The observation noise covariance matrix Σe is based on sample mean
square error of the process {A−1

t Yt}, i.e., Γ 0. Defining Γ 0 as

Γ 0 =
1

n

n∑

t=1

[(
A−1

t Yt − µ
) (

A−1
t Yt − µ

)′]

the estimator of Σe is given by

vec
(
Σ̂e

)′
= n

[
vec

(
Γ̂ 0

)′
− vec

(
Σ̂β

)′]
[

n∑

t=1

(
A−1

t ⊗A−1
t

)′
]−1

where

vec
(
Σ̂β

)
=
[
I4 − (Φ̂⊗ Φ̂)

]−1

vec
(
Σ̂ε

)

and with the adjustment to the covariance matrix’s symmetry, similar to Σǫ
(see the development in the appendix).

For Cluster I, the least polluted, it is possible to fit ten models, as this
cluster has five water monitoring sites. Because within a cluster its elements are
basically different due to the dimension of their influence area, it is considered
pairs of sites with the greatest differences in their influence area, namely:
Cantelães-Ferro, Cantelães-Taipas, Taipas-Golães, and Vizela Santo Adrião-

Taipas. For Cluster II, the most polluted cluster, and by adopting the same
methodology, two models are fitted to pairs Riba d’Ave-Santo Tirso and Santo



18 A. Manuela Gonçalves, Marco Costa

Table 5 Parameters estimates of linear state-space models for Clusters I and II

Cluster µ Φ Σǫ σ2
e

I ht -0.73 0.53 0.01 1.23 -0.09 CANT FER TAI GOL VSA
st 1.04 1.01 0.53 -0.09 0.01 0.46 0.91 0.36 0.26 0.86

II ht 0.02 0.27 -1.45 0.34 0.02 RAV STI PTR
st 1.01 -0.03 0.21 0.02 0.01 1.07 1.37 0.57

Tirso-Ponte Trofa. When for one parameter there is more than one estimate,
it is considered their average.

Table 5 presents the parameters estimates for the two clusters. As expected,
the expected mean value of seasonality coefficient is approximately one. The
expected mean value of time varying coefficient of the hydro-meteorological
factor varies around zero in Cluster II and −0.73 in Cluster I. As it be will
shown further on, the DO concentration is less dependent on meteorological
conditions in Cluster I than in Cluster II. Indeed, the calibration factor with a
mean value of −0.73 tends to decrease the effect of rainy months that do not
correspond to a significant improvement in water quality in the upstream water
monitoring sites. Moreover, in more polluted sites a mean of zero in calibration
factor of ht allows incorporating a precipitation impact on the water quality,
maybe for the dilution of pollutants.

Both autoregressive matrices µ for Clusters I and II have the eigenvalues
inside of unit circle that confirm the state process’s stationarity. In Cluster I
the covariance estimate is negative, while in Cluster II that estimate is positive.
The variance estimates of the calibration factor of the hydro-meteorological
covariates in Cluster I is greater than in Cluster II. This indicates that the
hydro-meteorological factor has more variability in Cluster I, which can be
interpreted as a less explicative covariate in comparison to Cluster II. Rela-
tively to the individual variances σ2, the estimation procedure shows that the
higher DO concentration variability not imputed to both seasonal and hydro-
meteorological components is present in sites STI and RAV, both in Cluster
II.

5.2 Model’s adjustment

Parameters estimates and the Kalman filter algorithm allow obtaining the
predicted values for DO concentration and mainly predicted values for the
calibration factors βh,t and βs,t. One-step Yt predictions (i.e. Ŷt|t−1 in each
water monitoring site) indicate the adjustment’s quality and they are obtained
by (5). For instance, Figure 6 shows observed values and one-step predictions
of two sites in each cluster. One-step predictions fit good to the data, as it is
illustrated in the same figure.

Table 6 shows the coefficients of determination (the square of the linear cor-
relation coefficient) between observed values of DO concentration and one-step
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Fig. 6 Observed values of DO concentration and one-step predictions in Ferro - FER and
Vizela Santo Adrião - VSA in Cluster I; Ponte Trofa and Santo Tirso in Cluster II

Table 6 Coefficients of determination of one-step predictions and filtered predictions

monitoring site CANT GOL FER VSA TAI RAV STI PTR

one-step predictions R2 0.49 0.49 0.46 0.55 0.57 0.62 0.61 0.60
filtered predictions R2 0.84 0.90 0.80 0.89 0.92 0.85 0.86 0.92

predictions and filtered predictions of DO concentration. It is very important
to assess the adjustment of filtered predictions Ŷt|t = Atβ̂t|t because one of
the contributions of the proposed model is its ability to separate a structural
component that accommodates a global behaviour (as the seasonality) from
another component associated to hydro-meteorological conditions, represented
in the hydro-meteorological covariate, which must be filtered in order to obtain
the best linear predictions. In the prediction point of view, models fit good
with coefficients of determination between R2 = 0.46 and R2 = 0.62, and the
best results are achieved in water monitoring sites that are more polluted.
Filtered predictions produce coefficients of determination between R2 = 0.80
and R2 = 0.92, which is a very good adjustment that will allow the analysis
of the model components.

The main advantage of state-space models is to allow obtaining more ac-
curate filtered predictions than the usual linear models by using the Kalman
filter recursions. Indeed, linear models were adjusted to both clusters data
by incorporating the seasonal and the hydro-meteorological covariates, which
produce RMSE of predictions similar to the RMSE of the one-step predictions
of SSM. For Cluster I, the linear model produces a RMSE of predictions of
0.84, whereas one-step predictions using the SSM produces a RMSE of 0.75.
Moreover, in Cluster II the linear model predictions have a RMSE of 1.25,
whereas the one-step predictions of SSM have a RMSE of 1.25. However, as
mentioned before, when the filtered predictions are considered, the adjustment
improves significantly since the coefficient of determination increases to values
close to 1. Thus, these results show the advantages of the application of the
Kalman filter equations in order to improve the predictions accuracy.



20 A. Manuela Gonçalves, Marco Costa

Fig. 7 Partial autocorrelations of residuals of fitted linear state-space models in Golães

and Santo Tirso

In addition, the model validation should also be assessed by means of resid-
uals analysis. Indeed, autocorrelation and partial autocorrelation functions
plots (Figure 7) indicate no statistically significant serial correlation of stan-
dardized residuals, thus suggesting that any serial correlation in the data was
adequately accounted for by the LSS models.

The two components included in the model (3)-(4) can be predicted by fil-
tering the calibration factors βh,t and βs,t. Indeed, the minimum mean square
linear estimator of βt based on observations up to and including time t is the

filtered prediction β̂t|t given by (6). Considering the parameters estimates pre-
viously obtained, the recursive equations of the Kalman filter are performed
and filtered predictions of βh,t and βs,t are computed at each time t for Clus-
ters I and II. Figure 8 represents filtered predictions for the analyzed period.
As expected, the more polluted cluster (Cluster II) is more affected by hydro-
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Fig. 8 Filtered predictions of the calibration factors of hydro-meteorological factor, h, and
seasonality, s

meteorological conditions because its calibration factor has higher values than
Cluster I. Moreover, as expected by parameters estimates in Table 5, there
is a different relationship between seasonal and hydro-meteorological factors
in the two clusters. Indeed, in the less polluted cluster (Cluster I) calibration
factors have a negative linear correlation, while in Cluster II (the more pol-
luted) calibration factors have a positive linear correlation. As in Cluster I,
the precipitation amount has a lower impact on the DO concentration, and
so it is reasonable to expect that the model tends to minimize the effect of
a significant hydro-meteorological factor amount, considering that the main
component of DO concentration is structural (the seasonal effect).

6 Conclusions

The analysis present in this paper allows to conclude that the hydro-meteorological
factor constructed on the basis of the precipitation measure in River Ave’s
basin improved the prediction accuracy. Besides, the linear state-space models,
associated with the Kalman filter procedure, allow to distinguish the impact of
the hydro-meteorological conditions from a structural component which can
incorporate exogenous factors with repercussion on the water quality vari-
able behaviour. This modelling approach can effectively integrate these dif-
ferent components, and their impacts can be measured and monitored. This
methodology could be further developed to better fulfil other applications re-
quirements: for instance, other water quality variables, exogenous variables
or components. Linear state-space models have a potential to outperform the
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usual linear regression model in terms of its ability to incorporate the tem-
poral dynamic inherent to the water quality monitoring procedure. For in-
stance, this approach could be used to assess water quality evolution, namely
in change point detection. Indeed, the analysis of calibration factors of the
structural component, such as the seasonality, could detect important changes
in the water quality variability and thus attenuate the effects of the hydro-
meteorological conditions.

A Appendix

A.1 Distribution-free estimators for the mean and for the transition matrix

In the parameters estimation of state-space models were performed distribution-free esti-
mators developed from the original work by Costa and Alpuim (2010). However, in that
work it was proposed a distribution-free estimator for state-space models with univariate
observations. Thus, a straightforward generalization of these estimators is presented in order
to allow their application to a class of multivariate state-space models that largely covers
the present work’s needs.

To estimate the unknown parameters in the model

Yt = Htβt + et (11)

βt = µ+ Φ
(
βt−1 − µ

)
+ ǫt (12)

it is assumed a set of observations Yn = (Y1,Y2, . . . ,Yn), and regular matrices of known
constants H1,H2, . . . ,Hn are available. The mean vector µ can be easily estimated by the
method of moments, i.e., µ̂ = n−1

∑n

t=1
H−1

t Yt.
As variables Yt are not stationary, we are not under the usual conditions of the con-

sistency of generalized method of moments. Thus, it is necessary to establish additional
conditions to guarantee this consistency. By construction, the estimator µ̂ of the mean vec-
tor is unbiased, so we can guarantee its consistency by proving that var(µ̂) → 0 when
n → +∞, and thus establishing sufficient conditions. Covariance matrix of µ̂ is given by

var(µ̂) =
1

n2

n∑

t=1

n∑

s=1

E

[(
H−1

t
Yt − µ

) (
H−1

s Ys − µ
)
′

]

=
1

n2

n∑

t=1

n∑

s=1

E
[
(βt − µ) (βs − µ)′

]
+

1

n2

n∑

t=1

H−1

t
ΣeH

′−1

t
.

Applying the Kronecker product ⊗ and the operator vec, we get

vec
[
var
(
µ̂
)]

=
1

n2

[
n∑

t=1

n∑

s=1

Γβ(|t− s|)

]
+

1

n2

[
n∑

t=1

(
H−1

t
⊗H−1

t

)
]
vec (Σe) .

Under the stationarity conditions of process {βt}, the first parcel is an Op, seeing that∑+∞

k=−∞
Γ (k) < ∞, (e.g., Hamilton, 1994, p. 279). To guarantee that

1

n2

[
n∑

t=1

(
H−1

t
⊗H−1

t

)
]
vec (Σe)

n−→+∞

−→ 0
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it is sufficient to admit the additional condition |h−1
t,(i,j)

| < c for all t = 1, 2, .., i, j = 1, 2, ...,m

and for some positive constant c, where h−1
t,(i,j)

represents the (i, j) element of H−1

t
matrix.

The autoregressive matrix Φ is estimated by means of covariance structure of process
{H−1

t
Yt}. We see that

Γ
H−1Y

(k) = E

[(
H−1

t+k
Yt+k − µ

) (
H−1

t
Yt − µ

)
′

]

= Γβ(k) = Γ k.

In a VAR(1) process, the relation Γ k = ΦΓ k−1 is valid, for k = 1, 2, .... Thus, we

proposed the autoregressive matrix estimator Φ̂ based on the least squares method of these
equations by taking k = 1, 2, ..., ℓΦ. Thus, we have

Φ̂ =

(
ℓΦ∑

k=1

Γ̂ k+1Γ̂
′

k

)(
ℓΦ∑

k=1

Γ̂ kΓ̂
′

k

)−1

where Γ̂ k = 1
n

∑n−k

t=1

[(
H−1

t+k
Yt+k − µ̂

) (
H−1

t
Yt − µ̂

)
′

]
.

By construction, the autoregressive matrix estimator is consistent, since Γ̂ k is a consis-
tent estimator of Γ k. Whereas we have proposed a consistent estimator to µ, we consider

that the mean vector µ is known. To analyse the consistency of Γ̂ k we have

Γ̂ k =
1

n

n−k∑

k=1

[
(βt+k − µ+H−1

t+k
et+k)(βt − µ+H−1

t
et)

′
]

=
1

n

n−k∑

k=1

[
(βt+k − µ)(βt − µ)′ + (βt+k − µ)e′tH

′−1

t +

+e′
t+k

H′−1

t+k
(βt − µ)′ + e′

t+k
H′−1

t+k
e′tH

′−1

t

]
.

Under the previously established condition, the last three parcels converge in probability
to a null matrix. Indeed, by defining the second parcel as A = [Aij ]i,j=1,2,...,m and, with
some algebraic manipulation, we have

Aij =
1

n

n−k∑

t=1

(
(βt,(i) − µi)

m∑

s=1

et,(s)h
−1
t,(s,j)

)

and considering σe,(r,s) = cov(et,(r), et,(r)), the variance is given by

var(Aij) = σ2
βi

m∑

r=1

m∑

s=1

σe,(r,s)

(
1

n2

n−k∑

t=1

h−1
t,(r,j)

h−1
t,(s,j)

)

If the additional condition |h−1
t,(i,j)

| < c is valid, this parcel tends to 0 when n → +∞. In a

similar way, we defined the third parcel by B = [Bij ]i,j=1,2,...,m with elements given by

Bij =
1

n

n−k∑

t=1

(
(βt,(j) − µj)

m∑

s=1

et+k,(s)h
−1
t+k,(i,s)

)

with variance

var(Bij) = σ2
βj

m∑

r=1

m∑

s=1

σe,(r,s)

(
1

n2

n−k∑

t=1

h−1
t+k,(i,s)

h−1
t+k,(i,r)

)
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Again, we guarantee that Bij = Op through the same condition |h−1
t,(i,j)

| < c. As we shall

see, this condition is a sufficient condition, as the last parcel also tends to a null matrix.
Indeed, if we denote the last parcel as C = [Cij ]i,j=1,2,...,m, we have

Cij = et,(j)

m∑

r=1

et+k,(r)h
−1
t+k,(i,r)

h−1
t,(i,r)

with variance given by

var(Cij) = σ2
ej

1

n2

n−k∑

t=1

m∑

r=1

m∑

s=1

h−1
t+k,(i,r)

h−1
t,(i,r)

h−1
t+k,(i,s)

h−1
t,(i,s)

σe,(r,s).

These results allow us to conclude that if |h−1
t,(i,j)

| < c, the estimator Γ̂ k is consistent

to Γ , when we replace the mean vector µ by a consistent estimator.

A.2 Distribution-free estimators to noise variances

The estimation of covariance matrices of errors terms et and εt is an important and difficult
step at the same time. At times, the recursive procedures applied to the obtained Gaussian
likelihood estimates diverge or produce non-positive semidefined matrices. Sometimes, these
problems occur when the initial solution is not as close to estimates as necessary. We propose
an estimator to Σε based on covariance structure of a VAR(1) stationary process.
We know that the relation Σβ = ΦΣΦ′ + Σε is valid in a VAR(1) stationary process, or

by applying the Kronecker product ⊗ and the operator vec

vec
(
Σβ

)
= [Im2 − (Φ⊗ Φ)]−1 vec (Σε) .

By applying the vec operator to the equation Γ k = ΦΓ k−1, with k = 1, 2, ..., we have:

vec (Γ k) = vec
(
ΦkΣβ

)

=
(
Im ⊗ Φk

)
vec
(
Σβ

)

=
(
Im ⊗ Φk

)
[Im2 − (Φ⊗ Φ)]−1 vec (Σε)

or

vec (Γ k)
′ = vec (Σε)

′
[
Im2 − (Φ⊗ Φ)′

]
−1 (

Im ⊗ Φk
)
′

.

Note that the matrix Σε is symmetric, that is, vec (Σε)
′

1,(j−1)m+i−1 = vec (Σε)
′

1,im+j

with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ i. Thus, we constructed a line matrix vec (Σε)
′∗,

with m + m(m − 1)/2 columns, that we got from vec (Σε)
′ by removing the elements

vec (Σε)
′

1,im+j , with 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ i.
By applying the same methodology to the matrix ∆k defined as

∆k =
[
Im2 − (Φ⊗ Φ)′

]
−1 (

Im ⊗ Φk
)
′

,

we summed the columns (two by two) with the index im + j and (j − 1)m + i − 1, with
1 ≤ i ≤ m − 1 and 1 ≤ j ≤ i, thus obtaining a new matrix ∆∗

k
with m + m(m − 1)/2

columns.
The estimator for Σε is constructed via the least squares method applied to equations

vec (Γ k)
′ = vec (Σε)

′∗ ∆∗

k
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with k = 1, 2, ..., ℓε. Thus, we obtained the estimator

vec
(
Σ̂ε
)′∗

=

(
ℓε∑

k=1

Γ̂ k∆̂
′
∗

k

)(
ℓε∑

k=1

∆̂
∗

k∆̂
′
∗

k

)−1

. (13)

The consistency of Σ̂ε is guaranteed under the same conditions of the consistency of

∆̂k. As we have seen, a sufficient condition for this is |h−1
t,(i,j)

| < c.

In order to estimate the covariance matrix Σe, we defined

Ψ =
1

n

n∑

t=1

[(
H−1

t Yt − µ
) (

H−1
t Yt − µ

)
′

]
.

Therefore, we had the expectation

E(Ψ) =
1

n

n∑

t=1

E

[(
βt − µ+H−1

t et
) (

βt − µ+H−1
t et

)
′

]

= Σβ +
1

n

n∑

t=1

(
H−1

t ΣeH
′
−1
t

)
.

By applying the vec operator, and with some algebraic manipulation, we got

vec
(
Σ̂e
)′

= n

[
vec
(
Ψ̂
)′

− vec
(
Σ̂β

)′]
[

n∑

t=1

(
H−1

t ⊗H−1
t

)
′

]
−1

.

As the matrix Σe is symmetric, it is necessary to adopt the same procedure as in the esti-
mation of Σε. Thus, we estimated the m+m(m− 1)/2 elements of the covariance matrix.

If we have a consistent estimator to Σβ, for example given by the proposed estimators

to Φ and Σε, the consistency of Σ̂e boils down to the limit of variance of each element of

vec(Υ ) = nvec(Ψ̂)′[
∑n

t=1
(H−1

t ⊗H−1
t )′]−1. The variance of the (i, j) element of Υ is given

by

n2a2ijvar

[
1

n

n∑

t=1

(
βt,i − µi −

m∑

k=1

h−1
t,(i,k)

et,k

)(
βt,j − µj −

m∑

k=1

h−1
t,(j,k)

et,k

)]

where h−1
t,(i,j)

represents the (i,j) element of the matrix H−1
t and aij the (i, j) element of

the matrix [
∑n

t=1
(H−1

t ⊗H−1
t )′]−1.

For simplicity, we adopt βt,i − µi = β∗

t,i
. If we take in account that the states βt are

uncorrelated to noise es for all t and s, the previous expression can be decomposed into four
parcels. The first parcel has the form

a2ijvar

(
n∑

t=1

β∗

t,iβ
∗

t,j

)
+ a2ijvar

(
n∑

t=1

β∗

t,i

m∑

s=1

h−1
t,(j,s)

et,s

)
+

+a2ijvar

(
n∑

t=1

β∗

t,j

m∑

k=1

h−1
t,(i,k)

et,k

)
+ a2ijvar

[
n∑

t=1

(
m∑

k=1

h−1
t,(i,k)

et,k

m∑

s=1

h−1
t,(j,k)

et,s

)]

The first parcel can be decomposed into

a2ijvar

(
n∑

t=1

β∗

t,iβ
∗

t,j

)
= a2ij

n∑

t=1

var(β∗

t,iβ
∗

t,j) +

n∑

t=1

n∑

s=1

s 6=t

cov(β∗

t,iβ
∗

t,j , β
∗

s,iβ
∗

s,j)
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but we can write

var(β∗

t,iβ
∗

t,j) = cov(β2
t,i, β

2
t,j) + σ2

βi
σ2
βj

− γ2
ij .

In order for this parcel to be an Op, it is sufficient to admit the additional regularity
conditions, such as cov(βt,iβt,jβs,iβs,j) for all t and s, that do not depend on time.

The cross terms have a similar structure. For example, the first term can be computed
by,

a2ijvar

(
n∑

t=1

β∗

t,i

m∑

s=1

h−1
t,(j,s)

et,s

)
= a2ij

n∑

t=1

var

(
m∑

k=1

h−1
t,(i,k)

β∗

t,jet,k

)

= a2ij

n∑

t=1

m∑

k=1

h−2
t,(i,k)

σ2
βj

σ2
ek

= a2ijσ
2
βj

m∑

k=1

σ2
ek

n∑

t=1

h−2
t,(i,k)

.

So, if we admit that the elements of matrix H−1
t are limited as c1 < |h−1

t,(i,j)
| < c2, where

c1 and c2 are positive constants, it follows that this term is an Op. In addition to these

conditions on h−1
t,(i,j)

, if we ensure that the vector of error et is stationary of fourth-order,

then we conclude that the last parcel of variance of the (i, j) element of Υ is an Op, too.
Thus, under the additional stationarity conditions of fourth-order on the vector of dis-

turbances and the above restrictions on the elements of the matrices H−1
t , the proposed

distribution-free estimator to Σe is consistent.
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28 A. Manuela Gonçalves, Marco Costa

36. Renwich JA, Mullan AB, Porteous A (2009) Statistical downscaling of New Zealand
climate. Weather and Climate 29:24-44

37. Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modelling
and interpreting ecological spatial dependence. Ecol Monogr 62:277-314

38. Severino E, Alpuim T (2005) Spatiotemporal models in the estimation of area precipi-
tation. Environmetrics 16:773-802

39. Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou
M, Kouimtzis TH (2003) Assessment of the surface water quality in Northern Greece. Wat
Res 37:4119-4124

40. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate
techniques: A case study of the Fuji river basin, Japan. Environ Modell Softw 22:464-475

41. Shumway R, Stoffer D (1982) An approach to time series smoothing and forecasting
using EM algorithm. J Time Ser Anal 3:253-264

42. Varol M, Sen B (2009) Assessment of surface water quality using multivariate statistical
techniques: a case study of Behrimaz Stream, Turkey. Environ Monit Assess 159:543-553

43. Vega M, Pardo RE, Barrado & Debán (1998) Assessment of seasonal and polluting
effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581-
3592

44. Wurderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern
recognition techniques for the evaluation of spatial and temporal variations in water qual-
ity. A case study: Suquia river basin (Cordoba-Argentina). Wat Res 35:2881-2894


