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Predictions of one-dimensional protein structures such
as secondary structures and contact numbers are useful
for predicting three-dimensional structure and impor-
tant for understanding the sequence-structure relation-
ship. Here we present a new machine-learning method,
critical random networks (CRNs), for predicting one-
dimensional structures, and apply it, with position-spe-
cific scoring matrices, to the prediction of secondary
structures (SS), contact numbers (CN), and residue-wise
contact orders (RWCO). The present method achieves,
on average, Q

3
 accuracy of 77.8% for SS, and correlation

coefficients of 0.726 and 0.601 for CN and RWCO,
respectively. The accuracy of the SS prediction is com-
parable to that obtained with other state-of-the-art
methods, and accuracy of the CN prediction is a signifi-
cant improvement over that with previous methods. We
give a detailed formulation of the critical random net-
works-based prediction scheme, and examine the context-
dependence of prediction accuracies. In order to study
the nonlinear and multi-body effects, we compare the
CRNs-based method with a purely linear method based
on position-specific scoring matrices. Although not supe-
rior to the CRNs-based method, the surprisingly good
accuracy achieved by the linear method highlights the
difficulty in extracting structural features of higher
order from an amino acid sequence beyond the informa-
tion provided by the position-specific scoring matrices.
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Predicting the three-dimensional structure of a protein
from its amino acid sequence is an essential step toward
achieving a thorough bottom-up understanding of complex
biological phenomena. Recently, much progress has been
made in developing so-called ab initio or de novo structure
prediction methods1. In the standard approach to de novo

structure predictions, a protein is represented as a physical
object in three-dimensional (3D) space, and the global mini-
mum of free energy surface is sought with a given force-
field or a set of scoring functions. In the minimization
process, structural features predicted from the amino acid
sequence may be used as restraints to limit the conforma-
tional space to be sampled. Such structural features include
so-called one-dimensional (1D) structures of proteins.

Protein 1D structures are 3D structural features projected
onto strings of residue-wise structural assignments along
the amino acid sequence2. For example, a string of second-
ary structures is a 1D structure. Other 1D structures include
(solvent) accessibilities3, contact numbers4 and recently in-
troduced residue-wise contact orders5. The contact number,
also referred to as the coordination number or Ooi number6,
of a residue is the number of contacts that the residue
makes with other residues in the native 3D structure, while
the residue-wise contact order of a residue is the sum of
sequence separations between that residue and contacting
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residues. We have recently shown that it is possible to re-
construct the native 3D structure of a protein from a set of
three types of native 1D structures, namely secondary struc-
tures (SS), contact numbers (CN), and residue-wise contact
orders (RWCO)5. Therefore, these 1D structures contain
rich information regarding the corresponding 3D structure,
and their accurate prediction may be very helpful for pre-
dicting 3D structure.

Previously, we have developed a simple linear method of
predicting contact numbers from the amino acid sequence4.
Use of a multiple sequence alignment was shown to im-

prove the accuracy of prediction, achieving an average cor-
relation coefficient of 0.63 between predicted and observed
contact numbers per protein. There, we used an amino acid
frequency table obtained from the HSSP7 multiple sequence
alignment.

In this paper, we build on the previous method by intro-
ducing a new framework called critical random networks
(CRNs), and apply it to the prediction of secondary struc-
tures and residue-wise contact orders in addition to contact
numbers. In this framework, a state vector of large dimen-
sion is associated with each site of a target sequence. The
state vectors are connected via random nearest-neighbor
interactions. The value of the state vector is determined by
solving an equation of state. Then a 1D quantity of each site
is predicted as a linear function of the state vector of the site
as well as the corresponding local PSSM segment. This
approach was inspired by the method of echo state networks
(ESNs) which has been recently developed and successfully
applied to complex time series analysis8,9. Unlike ESNs
which treat an infinite series of input signals in one direc-
tion (from the past to the future), CRNs treat finite systems
incorporating both up- and downstream information at the
same time. Also, the so-called echo state property is not
imposed on a network, but the system is instead set at a crit-
ical point of the network. As the input for the CRNs-based
prediction, we employ position-specific scoring matrices
(PSSMs) generated by PSI-BLAST10. With the combination
of PSSMs and CRNs, accurate predictions of SS, CN and
RWCO have been achieved.

Currently, almost all the accurate methods for one-dimen-
sional structure predictions combine some kind of sophisti-
cated machine-learning approach such as neural networks
and support vector machines with PSSMs. The method pre-
sented here is no exception. This trend raises the question as
to what extent the machine-learning approaches are effec-
tive. In this study, we address this issue by comparing the
CRNs-based method with a purely linear method based on
PSSMs. Although not as good as the CRNs-based method,
the linear predictions are of surprisingly high quality. This
result suggests that, although not insignificant, the effect of
the machine-learning approaches is relatively of minor im-
portance while the use of PSSMs is the most significant in-
gredient in one-dimensional structure prediction. The prob-
lem of how to effectively extract meaningful information

from the amino acid sequence beyond that provided by
PSSMs requires yet further study.

Materials and methods

Definition of 1D structures

Secondary structures (SS). Secondary structures were

defined by the DSSP program11. For three-state SS predic-
tion, the simple encoding scheme was employed. That is, α
helices (H), β strands (E), and other structures (“coils”) de-
fined by DSSP were encoded as H, E, and C, respectively.
For SS prediction, we introduce feature variables (yi

H, yi
E,

yi
C) to represent each type of secondary structure at the i-th

residue position, so that H is represented as (1, −1, −1), E as

(−1, 1, −1), and C as (−1, −1, 1).
Contact numbers (CN). Let Ci,j represent the contact

map of a protein. Usually, the contact map is defined so that
Ci,j=1 if the i-th and j-th residues are in contact by some
definition, or Ci,j=0, otherwise. As in our previous study, we
slightly modify the definition using a sigmoid function.
That is,

Ci,j= 1/{1+ exp[w(ri,j− d)]} (1)

where ri,j is the distance between Cβ (Cα for glycines) atoms
of the i-th and j-th residues, d=12 Å is a cutoff distance, and
w is a sharpness parameter of the sigmoid function which is
set to 34,5. The rather generous cutoff length of 12 Å was
shown to optimize the prediction accuracy4. The use of the
sigmoid function enables us to use the contact numbers in
molecular dynamic simulations5. Using the above definition

of the contact map, the contact number of the i-th residue of
a protein is defined as

ni= Ci,j. (2)

The feature variable yi for CN is defined as yi=ni/log L

where L is the sequence length of a target protein. The nor-
malization factor log L is introduced because we have ob-
served that the contact number averaged over a protein
chain is roughly proportional to log L, and thus division by
this value removes the size-dependence of predicted contact
numbers.

Residue-wise contact orders (RWCO). RWCOs
were first introduced in Kinjo and Nishikawa5. Using the
same notation as for contact numbers (see above), the RWCO

of the i-th residue in a protein structure is defined by

oi= |i− j |Ci,j. (3)

The feature variable yi for RWCO is defined as yi=oi/L
where L is the sequence length. Due to a similar reason
as for CN, the normalization factor L was introduced to
remove the size-dependence of the predicted RWCOs (the
RWCO averaged over a protein chain is roughly propor-
tional to the chain length).

∑

∑
j: |i−j | >2

j: |i−j | >2
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Linear regression scheme

The input to the prediction scheme we develop in this
paper is a position-specific scoring matrix (PSSM) of the
amino acid sequence of a target protein. Let us denote the
PSSM by U= (u1, ..., uL) where L is the sequence length of
the target protein and ui is a 20-vector containing the scores
of 20 types of amino acid residues at the i-th position:
ui= (u1,i, ..., u20,i)

t.
When predicting a type of 1D structure, we first predict

the feature variable(s) for that type of 1D structure [i.e.,
yi=yi

H, etc. for SS, ni/log L for CN, and oi/L for RWCO], and
then the feature variable is converted to the target 1D struc-
ture. Prediction of the feature variable yi can be considered
as a mapping from a given PSSM U to yi. More formally, we
are going to establish the functional form of the mapping F
in =F(U, i) where  is the predicted value of the feature
variable yi. In our previous paper, we showed that CN can
be predicted to a moderate degree of accuracy by a simple
linear regression scheme with a local sequence window4.
Accordingly, we assume that the function F can be decom-
posed into linear (Fl) and nonlinear (Fn) parts: F=Fl+Fn.

The linear part is expressed as

Fl(U, i)= Dm,aua,i+m (4)

where M is the half window size of the local PSSM segment
around the i-th residue, and {Dm,a} are the weights to be
trained. To treat N- and C-termini separately, we introduced
the “terminal residue” as the 21st kind of amino acid resi-
due. The value of u21,i+m is set to unity if i+m<0 or i+m<L,
or to zero otherwise. The “terminal residue” for the central
residue (m=0) serves as a bias term and is always set to
unity.

To establish the nonlinear part, we first introduce an N-
dimensional “state vector” xi= (x1,i, ..., xN,i)

t for the i-th se-
quence position where the dimension N is a free parameter.
The value of xi is determined by solving the equation of
state which is described in the next subsection. For the
moment, let us assume that the equation of state has been
solved, and denote the solution by xi . The state vector can
be considered as a function of the whole PSSM U (i.e.,
xi =xi (U)), and implicitly incorporates nonlinear and long-
range effects. Now, the nonlinear part Fn is expressed as a
linear projection of the state vector:

Fn(U, i)= Ekxk,i (U) (5)

where {Ek} are the weights to be trained.
In summary, the prediction scheme is expressed as

= Dm,aua,i+m+ Ekxk,i (U) (6)

Regarding ui–M, ..., ui+M and xi  as independent variables,
Eq. 6 reduces to a simple linear regression problem for which

the optimal weights {Dm,a} and {Ek} are readily determined

by using a least squares method. For CN or RWCO predic-
tions, the predicted feature variable can be easily converted
to the corresponding 1D quantities by multiplying by log L

or L, respectively. For SS prediction, the secondary struc-
ture  of the i-th residue is given by =arg maxs {H,E,C}yi

s.

Critical random networks and the equation of state

We now describe the equation of state for the system of
state vectors. We denote L state vectors along the amino
acid sequence by X= (x1, ..., xL) RN×L, and define a non-
linear mapping gi: R

N×L → RN for i=1, ..., L by

gi(X)= tanh[βW(xi–1+ xi+1)+αVui] (7)

where β and α are positive constants, W is an N×N block-
diagonal orthogonal random matrix, and V is an N×21 ran-
dom matrix (a unit bias term is assumed in ui). The hyper-
bolic tangent function (tanh) is applied element-wise. We
impose the boundary conditions as x0=xL+1=0. In this equa-
tion, the term containing W represents nearest-neighbor in-
teractions along the sequence. The amino acid sequence
information is taken into account as an external field in the
form of αVui. Next we define a mapping G: RN×L → RN×L by

G(X)= (g1(X), ..., gL(X)). (8)

Using this mapping G, the equation of state is defined as

X=G(X). (9)

That is, the state vectors are determined as a fixed point of
the mapping G. More explicitly, Eq. 9 can be expressed as

xi= tanh[βW(xi–1+ xi+1)+αVui], (10)

for i=1, ..., L. That is, the state vector xi of the site i is
determined by the interaction with the state vectors of the
neighboring sites i−1 and i+1 as well as with the ‘external
field’ ui of the site. The information on the external field at
each site is propagated throughout the entire amino acid
sequence via the nearest-neighbor interactions. Therefore,
solving Eq. (10) means finding the state vectors that are
consistent with the external field as well as the nearest-
neighbor interactions, and each state vector in the obtained
solution {xi} self-consistently embodies the information on
the entire amino acid sequence in a mean-field sense.

For β<0.5, it can be shown that G is a contraction map-
ping in RN×L (with an appropriate norm defined therein).
And hence, by the contraction mapping principle12, the
mapping G has a unique fixed point independently of the
strength α of the external field. When β is sufficiently
smaller than 0.5, the correlation between two state vectors,
say xi and xj, is expected to decay exponentially as a func-
tion of the sequential separation | i− j |. On the other hand,
for β>0.5, the number of fixed points varies depending on
the strength of the external field α. In this regime, we cannot
reliably solve the equation of state (Eq. 9). In this sense,
β=0.5 can be considered as a critical point of the system X.
From an analogy with critical phenomena of physical sys-

ŷi ŷi

a 1=

21

∑
m M–=

M

∑

k 1=

N

∑

ŷi
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tems13 (note the formal similarity of Eq. 10 with the mean
field equation of the Ising model), the correlation length
between state vectors is expected to diverge, or become
long when the external field is finite but small. We call the
system defined by Eq. 10 with β=0.5 a critical random net-
work (CRN).

The equation of state (Eq. 10) is parameterized by two
random matrices W and V, and consequently, so is the pre-
dicted feature variables . Following a standard technique
of statistical learning such as neural networks14, we may
improve the prediction accuracy by averaging  obtained
by multiple CRNs with different pairs of W and V. This
averaging operation reduces the prediction errors due to the
random fluctuations in the estimated parameters. We em-
ploy such an ensemble prediction with 10 sets of random
matrices W and V in the following. The use of a larger num-
ber of random matrices for ensemble predictions improved
the prediction accuracies slightly, but the difference was
insignificant.

Numerics

Here we describe the value of the free parameters used,
and a numerical procedure to solve the equation of state.

The half window size M in the linear part of Eq. 6 is set to
9 for SS and CN predictions, and to 26 for RWCO predic-
tions. These values were found to be optimal in preliminary
studies4,15. Regarding the dimension N of the state vector, we
have found that N=2000 gives the best result after some
experimentation, and this value is used throughout. Using a
state vector with a dimension as large as 2000, it is expected
that various properties of amino acid sequences can be
extracted and memorized. If the dimension is too large,
overfitting may occur, but we did not find such a case up to
N=2000. Therefore, in principle, the state vector dimension
could be even larger (but the computational cost becomes a
problem).

Each element in the N×21 random matrix V in Eq. 10 is
obtained from a uniform distribution in the range [−1, 1]
and the strength parameter α is set to 0.01. Here and in the
following, all random numbers were generated by the
Mersenne twister algorithm16. The N×N random matrix W is
obtained in the following manner. First we generate a ran-
dom block diagonal matrix A whose block sizes are drawn
from a uniform distribution of integers 2 to 20 (both inclu-
sive), and the values of the block elements are drawn from
the standard Gaussian distribution (zero mean and unit vari-
ance). By applying singular value decomposition, we have
A=UΣV t where U and V are orthogonal matrices and Σ is a
diagonal matrix of singular values. We set W=UV t which is
orthogonal as well as block diagonal.

To solve the equation of state (Eq. 10), we use a simple
functional iteration with a Gauss-Seidel-like updating scheme.

Let ν denote the stage of iteration. We set the initial value of
the state vectors (with ν=0) as

= tanh[αVui]. (11)

Then, for i=1, ..., L (in increasing order of i), we update the
state vectors by

← tanh[ +αVui]. (12)

Next, we update them in the reverse order. That is, for i=L,
..., 1 (in decreasing order of i),

← tanh[ +αVui].
(13)

We then set ν←ν+1, and iterate Eqs. (12) and (13) until
{xi} converges. The convergence criterion is

< 10–7 (14)

where || ⋅ ||  denotes the Euclidean norm. Convergence is
typically achieved within 100 to 200 iterations for one pro-
tein.

Preparation of training and test sets

We use the same set of proteins as used in our preliminary
study15. In this set, there are 680 protein domains selected
from the ASTRAL database17, each of which represents a
superfamily from one of all-α, all-β, α/β, α+β or “multi-
domain” classes of the SCOP database (release 1.65, Dec-
ember 2003)18. Conversely, each SCOP superfamily is repre-

sented by only one of the protein domains in the data set.
Thus, no pair of protein domains in the data set are expected
to be homologous to each other. For training the parameters
and testing the prediction accuracy, 15-fold cross-validation
is employed. The set of 680 proteins is randomly divided
into two groups: one consisting of 630 proteins (training
set), and the other consisting of 50 proteins (test set). For
each training set, the regression parameters {Dm,a} and {Ei}
are determined, and using these parameters, the prediction
accuracy is evaluated for the corresponding test set. This
procedure was repeated 15 times with different random
divisions, leading to 15 pairs of training and test sets. In this
way, there is some redundancy in the training and test sets
although none of the pair of these sets share proteins in
common. But this raises no problem since our objective is to
estimate the average accuracy of the predictions. A similar
validation procedure was also employed by Petersen et al.19

In total, 750 (=15×50) proteins were tested with which the
averages of the measures of accuracy (see below) were cal-
culated.

Preparation of a position-specific scoring matrix

To obtain the position-specific scoring matrix (PSSM) of
a protein, we conducted ten iterations of a PSI-BLAST10

search of a customized sequence database with an E-value
cutoff of 0.000520. The sequence database was compiled
from the DAD database provided by the DNA Data Bank of
Japan21, from which redundancy was removed by the pro-
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gram CD-HIT22 with a 95% identity cutoff. This database
was subsequently filtered by the program PFILT used in the
PSIPRED program23. We use the position-specific scoring
matrices (PSSM) rather than the frequency tables for the
prediction.

Measures of accuracy

For assessing the quality of SS predictions, we mainly
use Q3 and SOV (the 1999 revision)24. The Q3 measure
quantifies the percentage of correctly predicted residues,
while the SOV measure evaluates the segment overlaps of
secondary structural elements of predicted and native struc-
tures. Optionally, we use Qs and Qs

pre (with s being H, E, or
C) and Matthews’ correlation coefficient MC. The Qs is
defined by the percentage of correctly predicted SS type s
out of the native SS type s, and Qs

pre is defined by the
percentage of correctly predicted SS type s out of the pre-
dicted SS type s.

For CN and RWCO predictions, we use two measures for
evaluating the prediction accuracy. The first one is the co-
efficient of the correlation (Cor) between the observed (ni)
and predicted ( ) CN or RWCO4. The second is the RMS
error normalized to the standard deviation of the native CN
or RWCO (Dev A)4. While Cor measures the quality of rela-
tive values, Dev A measures that of absolute values of the
predicted CN or RWCO.

Note that the measures Q3, SOV, Cor and Dev A are
defined for a single protein chain. In practice, we average
these quantities for all the proteins in the test sets to esti-
mate the average accuracy of prediction. On the other hand,
per-residue measures, Qs, Qs

pre and MC, were calculated
using all the residues in the test data sets, rather than on a
per-protein basis.

Results

We examine the prediction accuracies for SS, CN, and
RWCO in turn. The main results are summarized in Table 1
and Figure 1. Finally, in order to examine the effect of non-
linear terms, we verify the results obtained using only linear
terms (Eq. 4).

Secondary structure prediction

The average accuracy of predicting secondary structures
achieved by the ensemble CRNs-based approach is Q3=

77.8% and SOV=77.3 (Table 1). This is comparable to the
current state-of-the-art predictors such as PSIPRED23. The
results in terms of per-residue accuracies (Qs and Qs

pre) are
listed in Table 2. The values of Qs suggest that the present
method underestimates α helices (H) and, especially, β
strands (E) compared to coils C. However, when a residue

Table 1 Summary of average prediction accuracies

Struct. Accuracy

SS Q
3
=77.8; SOV=77.3

CN Cor=0.726; Dev A=0.707
RWCO Cor=0.601; Dev A=0.881

Table 2 Summary of per-residue accuracies for SS predictions

measure H E C

Q
s

78.4 61.9 84.6
Q

s

pre 81.9 79.9 74.3
MC 0.704 0.636 0.602

n̂i

Figure 1 Histograms of accuracy measures obtained by ensemble
predictions using 10 critical random networks. (a) Q

3
 for secondary

structure prediction; (b) Cor for contact number prediction; (c) Cor for
residue-wise contact order prediction.
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is predicted as being H or E, the probability of the correct
prediction is rather high, especially for E (Qs

pre=79.9%).
The histogram of Q3 (Fig. 1a) shows that the peak of the
histogram resides well beyond Q3=80%, and that only 20%
of the predictions exhibit a Q3 of less than 70%. These
observations demonstrate the capability of the CRNs-based
prediction schemes.

Contact number prediction

Using an ensemble of CRNs, a correlation coefficient
(Cor) of 0.726 and normalized RMS error (Dev A) of 0.707
was achieved for CN predictions on average (Table 1). This
result is a significant improvement over the previous
method4 which yielded Cor=0.627 and Dev A=0.941. The
median of the distribution of Cor (Fig. 1b) is 0.744, in-
dicating that the majority of the predictions are of very high
accuracy.

We have also examined the dependence of prediction
accuracy on the structural class of target proteins (Table 3).
Among all the structural classes, α/β proteins are predicted
most accurately with Cor=0.757 and Dev A=0.668. The ac-
curacy for other classes does not differ qualitatively although

all-β proteins are predicted slightly less accurately.

Residue-wise contact order prediction

For predicting RWCO, the average accuracy was such
that Cor=0.601 and Dev A=0.881. Although these figures
appear to be poor compared to those of the CN prediction
described above, they are yet statistically significant. The
distribution of Cor appears to be rather dispersed (Fig. 1c),
indicating that the prediction accuracy strongly depends on
the characteristics of each target protein. In a similar man-
ner as for CN, we also examined the dependence of predic-
tion accuracy on the structural class of target proteins (Table
4). In this case, we have found a notable dependence of
accuracy on structural class. The best accuracy is obtained
for α+β proteins with Cor=0.629 and Dev A=0.832. For
these proteins, the distribution of Cor also shows a good
tendency in that the fraction of poor predictions is relatively

small (e.g., 14% for Cor<0.5). Interestingly, all-β proteins
also show good accuracies but all-α proteins are particularly
poorly predicted. These observations suggest that the cor-
relation between the amino acid sequence and RWCO is
strongly dependent on the structural class of the target
protein. However, the rather dispersed distribution of Cor

for each class (Table 4) also suggests that there are more
detailed effects of the global context on the accuracy of
RWCO prediction.

Purely linear predictions with PSSMs

Almost all the modern methods for predicting 1D struc-
tures make use of PSSMs in combination with some kind
of machine-learning technique such as feed-forward or
recurrent neural networks or support vector machines. The
present study is no exception. Curiously, machine-learning
approaches have become so widespread that no attempt ap-
pears to have been made to test simplest linear predictors
based on PSSMs. In this subsection, we present results of
1D predictions using only the linear terms (Eq. 4) but with-
out CRNs. In this prediction scheme, the input is a local
segment of a PSSM generated by PSI-BLAST, and a feature
variable is predicted by a straight forward linear regression.

As can be clearly seen in Table 5, the results of the linear
predictions are surprisingly good although not as good as
with CRNs. For example, in SS prediction, the purely linear
scheme achieved Q3= 75.2% which is lower than that of
the CRNs-based scheme by only 3.6 percentage points.
Although this is of course a large difference in a statistical
sense, there may not be a discernible difference as far as
individual predictions are concerned. (However, the im-
provement in the SOV measure obtained by using CRNs is
quite large, indicating that the nonlinear terms in CRNs are
indeed able to extract cooperative features.) It is widely ac-
cepted that the upper limit of accuracy (Q3) of SS prediction
based on a local window of a single sequence is less than

Table 3 Summary of CN predictions for each SCOP classa

rangeb (Cor)
SCOP classc

a b c d e

(−1, 0.5] 8 6 3 14 1
(0.5, 0.6] 19 25 8 19 1
(0.6, 0.7] 29 29 22 54 3
(0.7, 0.8] 62 66 76 85 10
(0.8, 0.9] 43 38 57 67 3
(0.9, 1.0] 1 0 0 1 0
total 162 164 166 240 18

average Cor 0.721 0.712 0.757 0.728 0.722
average Dev A 0.715 0.726 0.668 0.717 0.705
a The number of occurrences of Cor for the proteins in the test sets,

classified according to the SCOP database; average values of Cor
and Dev A are also listed for each class.

b The range “(x, y]” denotes x<Cor≤y.
c a: all-α; b: all-β; c: α/β; d: α+β; e: multi-domain.

Table 4 Summary of RWCO predictions for each SCOP classa

range (Cor)
SCOP class

a b c d e

(−1, 0.5] 58 31 46 34 6
(0.5, 0.6] 29 37 31 56 4
(0.6, 0.7] 41 27 33 65 5
(0.7, 0.8] 24 47 40 72 3
(0.8, 0.9] 10 22 16 13 0
total 162 164 166 240 18

average Cor 0.549 0.620 0.595 0.629 0.564
average Dev A 0.981 0.869 0.857 0.832 0.957
a See Table 3 for notations.

Table 5 Summary of prediction accuracies using only linear terms

Struct. Accuracy

SS Q
3
=75.2; SOV=72.7

CN Cor=0.701; Dev A=0.735
RWCO Cor=0.584; Dev A=0.902
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70%25. Therefore, more than 5 percentage points of the in-
crease in Q3 is brought about simply by the use of PSSMs.

Similar observations also hold for CN and RWCO predic-
tions (Table 5). In the case of CN prediction, we have previ-
ously obtained Cor=0.555 by a simple linear method with
single sequences4. Therefore, the effect of PSSMs is even
more dramatic than SS prediction. This may be due to the
fact that the most conspicuous feature of amino acid se-
quences conserved among distant homologs (as detected by
PSI-BLAST) is the hydrophobicity of amino acid residues26,
which is closely related to contact numbers. Of course, the
improvement with the use of PSSMs is largely made pos-
sible by the recent increase in amino acid sequence data-
bases27.

The significance of criticality

The condition of criticality (β=0.5 in Eq. 10) is expected
to enhance the extraction of the long-range correlations of
an amino acid sequence, thus improving the prediction
accuracy. To confirm this point, we tested the method by
setting β=0.1 so that the network of state vectors is not at
the critical point any more (otherwise the prediction and
validation schemes were the same as above). The prediction
accuracies obtained by these non-critical random networks
were Q3=76.7% and SOV=76.6 for SS, Cor=0.716 and Dev

A=0.719 for CN, and Cor=0.589 and Dev A=0.897 for
RWCO. These values are inferior to those obtained by the
critical random networks (Table 1), although slightly better
than the purely linear predictions (Table 5). Therefore,
compared to the non-critical random networks, the critical
random networks can indeed extract more information from
the amino acid sequence and improve the prediction accura-
cies.

Discussion

Comparison with other methods

Regarding the framework of 1D structure prediction, the
critical random networks are most closely related to bidirec-
tional recurrent neural networks (BRNNs)28, in that both can
treat an entire amino acid sequence rather than only a local
window segment. The main differences are the following.
First, network weights between input and hidden layers as
well as those between hidden units are trained in BRNNs,
whereas the corresponding weights in CRNs (random
matrices V and W, respectively, in Eq. 10) are fixed. Second,
the output layer is nonlinear in BRNNs but linear in CRNs.
Third, the network components that propagate sequence in-
formation from the N-terminus to C-terminus are decoupled
from those in the opposite direction in BRNNs, but they are
coupled in CRNs.

Regarding the accuracy of SS prediction, BRNNs29 and
CRNs exhibit comparable results of Q3≈78%. However, a
standard local window-based approach using feed-forward
neural networks can also achieve this level of accuracy23.

Thus, the CRNs-based method is not a single best predictor,
but may serve as an addition to consensus predictions.

Although BRNNs have been also applied to CN predic-
tion30, contact numbers are predicted as 2-state categorical
data (buried or exposed) so the results cannot be directly
compared. Nevertheless, we can convert CRNs-based real-
value predictions into 2-state predictions. By using the same
thresholds for the 2-state discretization as Pollastri et al.30

(i.e., the average CN for each residue type), we obtained
Q2= 75.6% per chain (75.1% per residue), and Matthews’
correlation coefficient MC=0.503 whereas those obtained by

BRNNs are Q
2
=73.9% (per residue) and MC=0.478. There-

fore, for 2-state CN prediction, the present method yields
more accurate results.

Since the present study is the very first attempt to predict
RWCOs, there are no alternative methods to compare with.
However, the comparison of CRNs-based methods for SS
and CN predictions with other methods suggests that the ac-
curacy of the RWCO prediction presented here may be the
best possible result using any of the statistical learning
methods currently available for predicting 1D structures.

Possibilities for further improvements

In the present study, we employed the simplest possible
architecture for CRNs in which different sites are connected
via nearest-neighbor interactions. A number of possibilities
exist for the elaboration of the architecture. For example,
we may introduce short-cuts between distant sites to treat
non-local interactions more directly. Since the prediction
accuracies depend on the structural context of target pro-
teins (Tables 3 and 4), it may be also useful to include more
global features of amino acid sequences such as the bias of
amino acid composition or the average of PSSM compo-
nents. These possibilities are to be pursued in future studies.

Conclusion

We have developed a novel method, CRNs-based regres-
sion, for predicting 1D protein structures from the amino
acid sequence. When combined with position-specific scor-
ing matrices produced by PSI-BLAST, this method yields
SS predictions as accurate as the best current predictors, CN
predictions far better than previous methods, and RWCO
predictions significantly correlated with observed values.
We also examined the effect of PSSMs on prediction ac-
curacy, and showed that most improvement is brought by
the use of PSSMs although the further improvement due to
the CRNs-based method is also significant. In order to
achieve qualitatively better predictions, however, it seems
necessary to take into account other, more global, informa-
tion than is provided by PSSMs.
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