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Predicting secretory proteins with 
SignalP 

Henrik Nielsen 

Abstract 
SignalP is the currently most widely used program for prediction of signal peptides from amino acid 

sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily 

secreted. After a brief introduction to the biology of signal peptides and the history of signal peptide 

prediction, this chapter will describe all the options of the current version of SignalP and the details of the 

output from the program. The chapter includes a case study where the scores of SignalP were used in a novel 

way to predict the functional effects of amino acid substitutions in signal peptides. 
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1. Introduction 
A signal peptide (SP) is the N-terminal part of a protein that is targeted to the secretory pathway in both pro- 

and eukaryotes [1] (see, however, Note 1). In eukaryotes, a protein with an SP will be targeted to the 

endoplasmic reticulum (ER) membrane and be co-translationally translocated across the membrane. In 

prokaryotes, translocation takes place across the cytoplasmic membrane (inner membrane in Gram-negative 

bacteria), and the process can happen during or after translation. The SP-carrying protein is threaded through 

a protein complex known as the translocon, comprising the subunits SecY, E, and G in bacteria and Sec61 α, 

β, and γ in eukaryotes [2]. During translocation, the SP is cleaved off by an enzyme known as signal 

peptidase I or leader peptidase (Lep) in bacteria or signal peptidase complex in eukaryotes [3]. See Notes 2-4 

for exceptions to this general picture. 

It is important to stress that the presence of an SP does not necessarily mean that the protein is secreted to the 

extracellular environment—it only means that it enters the secretory pathway. In all kinds of organisms, the 

protein could have one or more transmembrane helices downstream of the SP and therefore be retained in the 

membrane [4]. In eukaryotes, the protein could also be retained in one of the compartments that belong to the 

secretory pathway: the ER, the Golgi apparatus, or the lysosome/vacuole [5]; or it could be anchored to the 

outer face of the cytoplasmic membrane by a glycophosphatidylinositol (GPI) group [6]. In Gram-negative 

bacteria, the protein could be retained in the periplasm, or be inserted into the outer membrane as a β-barrel 

transmembrane protein [7]. In Gram-positive bacteria, the protein could be attached to the cell wall [8]. 

SPs are generally described as having three regions: an N-terminal n-region of variable length characterized 

by positive charge, a central h-region of at least 7 hydrophobic residues, and a C-terminal c-region of 

typically 3-7 polar residues. Positions –1 and –3 relative to the cleavage site are occupied by small 

uncharged residues; in bacteria predominantly Alanine. SPs of Gram-positive bacteria tend to be longer than 

those of Gram-negative bacteria, which in turn tend to be longer than eukaryotic SPs [1]. 



The SP is among the earliest prediction targets for bioinformatic algorithms, with the first simple prediction 

methods being published already in the 1980’s [9–11]. In the early 1990’s, a few machine learning methods 

were published [12, 13], but SignalP version 1.0 [14, 15] was in 1996 the first machine learning method for 

SP prediction to be made into a publically available web server. SignalP 1.0 and 1.1 were based on artificial 

neural networks (ANNs), while SignalP 2.0 from 1998 [16] added a hidden Markov model (HMM) 

prediction in order to better distinguish between SPs and signal anchors (transmembrane helices close to the 

N-terminus). SignalP 3.0 from 2004 [17] introduced the D-score for better discrimination between SPs and 

other sequences and retained the HMM option, while SignalP 4.0 from 2011 [18] is again purely ANN-

based. While constructing SignalP 4.0, we did retrain the HMM part, but we found that it did not perform 

better than the ANNs in any of the performance parameters we tested. The most important new feature of 

SignalP 4.0 is the improved discrimination between signal peptides and transmembrane regions.  

SignalP was updated to version 4.1 in 2012 with an option to set the D-score cutoff values so that the 

sensitivity is the same as that of SignalP 3.0, and an option to set the minimum cleavage site position in the 

sequence (the minimum SP length). More details about these options are given in Section 3.1. In addition, 

the documentation on the website was completely rewritten, and a FAQ was added. 

Earlier versions of SignalP have repeatedly been reported as the best performing method in independent 

benchmarks [19–22]. SignalP 4 has not yet been independently evaluated, but in the SignalP 4.0 paper [18] 

we compared the performance to ten other methods and found that it was superior. The best competing 

methods were the combined SP and transmembrane helix predictors Phobius [23], Philius [24], and 

SPOCTOPUS [25]. Interestingly, the advantage of SignalP 4.0 over these three programs was larger for 

bacteria than for eukaryotes. This may be due to the fact that these three methods did not divide their training 

data into different organism groups but pooled them all together, resulting in methods that are optimized for 

the most abundant organism group in the data, the eukaryotes. 

The performance values for SignalP 3.0 and 4.0 and the ten competing methods can be found in Table E of 

the supplementary materials of the SignalP 4.0 paper, which is available on the SignalP web site (click on 

“Article abstracts” and then “Update to SignalP v. 4.0”). It should be noted that those values are calculated 

by cross-validation on a homology-reduced data set, i.e. they are the performances you should expect when 

submitting proteins that are unrelated to anything in the SignalP 4.0 data set. When submitting close 

homologs to proteins in the SignalP 4.0 data set, a higher performance should be expected (compare the 

aforementioned Table E with the table on the “performance” page of the website documentation). 

2. Materials 
1. Input data: Amino acid sequences in FASTA format. Note that any letters not corresponding to the 

twenty standard amino acids, e.g. ‘U’, ‘B’, or ‘Z’, will be converted to ‘X’ and treated as unknown 

amino acids. See also Notes 5 and 6. 

2. Website: SignalP 4.1 is available at http://www.cbs.dtu.dk/services/SignalP/, see Figure 1. The 

previous versions are also kept online; just click “version history” near the top of the page. 

3. Downloadable package: For those who prefer running SignalP on their own computers, there is an 

option to download a software package for command line use. The package is free for academic 

institutions, while there is a license fee for commercial users. Academic users can go to the page 

http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?signalp to fill out the details and accept the license, 

while commercial users are asked to contact software@cbs.dtu.dk. The package is available for 



Linux, IRIX, Darwin (Mac OS X), and from March 2016 also for Windows computers via the free 

Unix-like environments provided by Cygwin [26] or MobaXterm [27]. 

3. Methods 
Running SignalP with the default options is straightforward: On the website, you paste or upload the 

sequences and click “submit”; on the command line you write “signalp input.fasta”. The output 

will tell you, for each sequence, whether there is an SP predicted, and if yes, where the cleavage site is 

predicted to be. However, as seen in Figure 1, there are a number of options, of which especially “Organism 

group” and “Cutoff” are important to know about, and there are details of the output format that will help 

interpret the predictions.  

3.1. Options  
Organism group: It is important to choose the correct organism group— Eukaryotes, Gram-negative 

bacteria, or Gram-positive bacteria—otherwise, the predictive performance will suffer. In this context, 

Gram-positive bacteria are defined as the phyla Actinobacteria (high G+C Gram-positive bacteria) and 

Firmicutes. Gram-negative bacteria are defined as all bacteria having both a plasma membrane and an outer 

membrane—basically all other bacteria except for the phylum Tenericutes (Mycoplasma and related genera). 

SignalP probably should not be used for Tenericutes at all, since they seem to lack a type I signal peptidase 

completely [28]. On the command line, organism group is chosen with one of the options “-t euk” (the 

default), “-t gram-”, or “-t gram+”. Concerning organism groups, see also Notes 7-11. 

Output format: There are four levels of detail possible: “short”, “standard”, “long”, and “all”. The two first 

formats report scores and conclusion at the sequence level; “short” in a one-line format and “standard” in a 

more human-readable format. “Standard” is the default on the web server, and “short” on the command line. 

The “long” and “all” formats additionally report scores for each position in each sequence (for an 

explanation of the scores, see next section). The difference between “long” and “all” is that “long” reports 

scores for the chosen ANN method only, while “all” reports scores for both ANN methods (SignalP-noTM 

and SignalP-TM, see “Method” below for an explanation). On the command line, output format is chosen 

with the “-f” option; note that “standard” is chosen with “-f summary”. 

Graphics output: SignalP can make a plot of the scores for each position in each sequence in portable 

network graphics (PNG) format and optionally also in encapsulated postscript (EPS) format. The default on 

the web is to make PNG graphics, while the default on the command line is no graphics. If you want 

graphics from the command line, use the options “-g png” or “-g png+eps”.  

Method: SignalP 4 has two sets of ANNs: SignalP-noTM is trained with only cytosolic and nuclear proteins 

in the negative set, while SignalP-TM is trained with a negative set that also included transmembrane 

proteins. During training, we found that the two methods SignalP-TM and SignalP-noTM were to some 

extent complementary, i.e. SignalP-TM did not yield as good results as SignalP-noTM when there were no 

transmembrane sequences involved. As a compromise, SignalP 4 per default uses a heuristic to decide which 

of the two sets of networks is used for prediction of each sequence. If the user is positive that all proteins in 

the input are soluble, it is possible to override this heuristic and get a slightly better performance by using 

only the SignalP-noTM networks. This is done in the web interface by selecting “Input sequences do not 

include TM regions” and on the command line by including the option “-s notm”.  



Cutoff: The D-score (see next section) is used for determining whether each input sequence contains an SP or 

not. The user can set cutoff values (for SignalP-TM and SignalP-noTM separately) if a different balance 

between sensitivity and specificity is desired. The web interface offers two sets of predefined cutoff values, 

“Default” and “Sensitive”. The “Default” cutoffs, corresponding to SignalP 4.0, are optimized to give the 

best Matthews correlation coefficient (see the “Performance” page on the website for definition), but they 

result in a quite conservative prediction with a sensitivity that is actually lower than that of SignalP 3.0. The 

“Sensitive” cutoffs, introduced in SignalP 4.1, are set to reproduce the sensitivity of SignalP 3.0. This of 

course results in a slightly higher false positive rate, but still significantly better than that of SignalP 3.0 

when measured on the whole data set (with transmembrane proteins included in the negative set). Our 

recommendation is to use the “Sensitive” setting if it is important to avoid false negatives, but use the 

“Default” setting for estimating the proportion of SPs in an organism. The estimation by the “Default” cutoff 

was found to be in accordance with an estimate of the number of SPs in Escherichia coli by a recent 

proteogenomics study [29]. At the website, you can see the preset cutoff values change when you select 

“Default” or “Sensitive” or change the organism group. On the command line, the “Sensitive” cutoffs are 

selected by including the options “-U 0.34 -u 0.34” for organism group “euk” or “-U 0.42 -u 

0.42” for organism groups “gram+” and “gram-”. 

Truncation of input sequence: By default, SignalP truncates every sequence to 70 amino acids before 

prediction. This gives enough included sequence after the cleavage site to give the optimal prediction for the 

vast majority of SPs. If you want to predict extremely long signal peptides, you can try a higher value, or 

disable truncation completely by entering 0 (zero). Note that the neural networks are trained with sequences 

with a maximal length of 70, and they include the relative position in the sequence in their input. Therefore, 

general performance may deteriorate if you change this setting. On the command line, truncation is changed 

with the “-c” option. 

Minimal predicted signal peptide length: SignalP 4.0 could, in rare cases, erroneously predict extremely 

short signal peptides. These errors have in SignalP 4.1 been eliminated by imposing a lower limit on the 

cleavage site position (SP length). The minimum length is by default 10, but you can adjust it. Signal 

peptides shorter than 15 residues are very rare, at the time of writing there are 17 experimentally confirmed 

cases in UniProt that are not fragments. If you want to disable this length restriction completely, enter 0 

(zero). On the command line, minimal SP length is changed with the “-M” option. 

3.2. Output 
The neural networks in SignalP produce three output scores for each position in the input sequence:  

• C-score (raw cleavage site score): The output from the cleavage site networks, which are trained to 

distinguish SP cleavage sites from everything else. Note the position numbering of the cleavage site: 

The C-score is trained to be high at the position immediately after the cleavage site (the first residue 

in the mature protein). 

• S-score (signal peptide score): The output from the signal peptide networks, which are trained to 

distinguish positions within SPs from positions in the mature part of the proteins and from proteins 

without SPs. 

• Y-score (combined cleavage site score): A combination (geometric average) of the C-score and the 

slope of the S-score, resulting in a better cleavage site prediction than the raw C-score alone. This is 

due to the fact that multiple high-peaking C-scores can be found in one sequence, where only one is 

the true cleavage site. The Y-score distinguishes between C-score peaks by choosing the one where 

the slope of the S-score is steep. 



The graphical output from SignalP (Figure 2 and Figure 3) shows the three different scores, C, S and Y, for 

each position in the sequence.  

In the summary below the plot, the maximal values of the three scores are reported. In addition, the 

following two scores are shown:  

• mean S: The average S-score of the possible SP (from position 1 to the position immediately before 

the maximal Y-score).  

• D-score (discrimination score): A weighted average of the mean S and the maximal Y scores. This is 

the score that is used to discriminate signal peptides from non-signal peptides. 

For a typical SP, the plot will resemble the one in Figure 2 with one peak in C- and Y-score and an S-score 

that is high in the beginning (close to the positive target value of 0.9) and then falls to a low value. For non-

secretory proteins all the scores represented in the SignalP output should ideally be very low (close to the 

negative target value of 0.1).  

The plot can give valuable information about the confidence of the prediction. For example, an intermediate 

S-score (close to 0.5) signifies that SignalP is unsure whether the sequence is a signal peptide, and two or 

more peaks in Y-score indicate that SignalP is unsure about the exact position of the cleavage site (see 

Figure 3). See also Notes 6 and 12. 

Below the summary for each sequence, two files are provided via links: “data” and “gnuplot script”. If you 

have the free graphics program gnuplot [30] on your computer, you can use these two files to customize your 

plot. If you want to keep these files when using the command line interface, you need to include the option 

“-k”. 

Below the output for all the sequences, two other files are provided via links, if at least one SP has been 

predicted. These are “processed fasta entries”, a FASTA sequence file containing the sequences of those 

proteins that had predicted SPs, with the SP removed; and “gff file of processed entries”, a file showing the 

signal peptides feature of those proteins that had predicted SPs in the format GFF (gene finding format). 

Note that these two files are not produced by default in the command line interface; if you want them, 

include the options “-m filename” for processed FASTA entries or “-n filename” for GFF entries. 

See, however, Note 13. 

The file with processed FASTA entries can be very useful for downstream analysis of those proteins that 

were predicted to have SPs. For example, if the focus is on predicting secreted proteins, it should always be 

checked whether there are predicted transmembrane helices downstream of the SP. This can e.g. be done by 

submitting the processed FASTA entries to TMHMM [31, 32]. The advantage of using the processed 

FASTA entries instead of the entire sequences is that you get rid of the false positive transmembrane helix 

predictions that TMHMM often makes for SPs.  

3.3. Case Study  
Since 1996, SignalP has been used to predict countless SPs. The three most influential papers about SignalP 

[14, 17, 18] have been cited more than 11,000  times in total according to Web of Science [33]. It is difficult 

to single out one particular SP prediction study as more interesting than the others.  

However, one study from a group at the company Genentech [34] deserves special mention, since they used 

the output scores of SignalP in a creative way we had not anticipated. The paper is from 2009 and is 

therefore based on SignalP 3.0, but the same approach should be applicable to version 4.1. The focus of the 



study is the prediction of the functional effects of amino acid substitutions in SPs. It is important to stress 

that SignalP was not designed for this purpose—SignalP has been trained on wild type sequences only, and 

mutated SPs which have lost their function partially or completely are more similar to wild type SPs than to 

wild type non-SPs. Mutated SPs can therefore be said to occupy a different part of sequence space than the 

wild type SPs and non-SPs comprising the SignalP training set, and the task of predicting consequences of 

amino acid substitutions in SPs is probably a harder problem than the one for which SignalP was designed. 

Predicting whether amino acid substitutions (non-synonymous single nucleotide polymorphisms, nsSNPs) 

have functional consequences for proteins is an intensely studied problem in bioinformatics. In general, the 

problem is defined as the discrimination between a positive data set of known disease-causing mutations and 

a negative data set of presumed neutral nsSNPs based on the amino acid sequence and the pattern of 

conservation around each substituted amino acid. One of the first and best known predictors for this problem 

is SIFT (sorting intolerant from tolerant) [35–37]. 

The Genentech authors gathered data sets of disease-causing mutations and neutral nsSNPs which occurred 

within the signal peptide region of human secretory proteins, and they hypothesized that the disease-causing 

mutations interfered with signal peptide function and therefore should be predictable by SignalP. They then 

defined a novel score based on the “long” format output of SignalP. This was termed the “R-score” and 

defined thus: 

� = max�∆�	…�� −  min�∆�	…�� + max�∆�	…�� − min�∆�	…�� 

where ∆�� is the difference in S-score between the mutant and the wild type at position i, and max�∆�	…�� is 

the maximal value of that difference within the entire predicted SP (n is the cleavage site position predicted 

for the wild type). The same definitions apply to the terms with C-score. 

The authors were able to show that the R-score was significantly better than the simple difference in D-score 

(∆�) for discriminating between disease-causing mutations and neutral nsSNPs. The performance of the R-

score was similar to that of the score from SIFT which does no SP prediction. Furthermore, they showed that 

R-score and SIFT-score were not correlated, suggesting that they contributed independent information about 

the discrimination. Accordingly, a simple combination of R- and SIFT-score gave a better discrimination 

than either score alone. 

It could be interesting to see whether these results are still valid when using SignalP 4.1 and some of the 

newer alternatives to SIFT, such as PolyPhen-2 [38], PON-P2 [39], SNAP2 [40], etc. In addition, more 

advanced ways of combining SignalP output with the outputs of other programs may prove to perform even 

better. A Chinese group in 2012 used a Random Forest classifier coupled with a feature selection scheme to 

integrate SignalP 3.0 output with sequence profiles and physicochemical parameters [41]. Their approach is 

interesting, and they report a large increase in discrimination performance relative to the R-score; but their 

result may be marked by overfitting, since no effort has been done to avoid homology between training and 

test sets. Homology reduction has been a crucial element in the construction of the SignalP datasets ever 

since version 1.0 [42] and homology partitioning is used in recent nsSNP effect predictors [39, 40].  

A closely related question is whether SignalP is able to predict functional consequences of artificially 

induced mutations in SPs. We have tried using both D-score and R-score on a set of mutated SPs from 

bacteria, but found the effects surprisingly difficult to predict (results not published). One possible future 

direction for SignalP could be to use such data in the training phase to improve the prediction of effects of 



mutations, whether naturally occurring or artificially induced. A method trained in this way might also yield 

improved predictions of secretion efficiency, cf. Note 12. 

Notes 
1. SP definition: Sometimes, especially in introductory textbooks, the term “signal peptide” has been 

used in a broader sense, meaning any (or any cleavable) sorting signal embedded in the amino acid 

sequence of a protein. However, the definition of SP given in Section 1 corresponds to the usage in 

most of the scientific literature, as well as in in UniProt [43], Wikipedia [44], and the Sequence 

feature ontology [45]. Signals for import into mitochondria and chloroplasts are properly termed 

transit peptides and can be predicted e.g. with the program TargetP [46, 47]. 

2. Uncleaved SPs: There are rare examples of SPs that are not cleaved (at the time of writing, there are 

79 such cases annotated in UniProt). These should not be confused with signal anchors, which are 

transmembrane helices close to the N-terminus. Uncleaved SPs are very differently predicted by 

SignalP; some look like typical SPs, some look like typical non-SPs, and others have high S-scores 

but low C- and Y-scores. 

3. Bacterial lipoproteins: Bacterial lipoproteins have special signal peptides which are cleaved by 

signal peptidase II, also known as Lipoprotein signal peptidase (Lsp). A diacylglyceryl group is 

attached to a conserved Cys residue in position +1 relative to the cleavage site, which bears no 

resemblance to the signal peptidase I cleavage site [48]. SignalP often predicts such sequences as 

SPs, but with a wrong cleavage site. For prediction of prokaryotic lipoproteins we recommend using 

the LipoP server [49, 50]. 

4. Tat signal peptides: The special SPs that direct some bacterial proteins through the Tat (Twin 

arginine translocation) pathway instead of the Sec pathway are not very well predicted by SignalP. 

These SPs have a special motif containing two Arginines in the N-terminal part, and they are in 

general longer and less hydrophobic than normal SPs [51, 52]. For prediction of Tat signal peptides 

we recommend using the TatP server [53, 54]. 

5. Nucleotide sequences: Note that SignalP will not produce sensible output from DNA sequences; it 

will treat such sequences as proteins exclusively consisting of Ala, Cys, Gly, and Thr.  

6. Start codon prediction: Since SignalP predicts an N-terminal signal, it is dependent on a correct start 

codon assignment. A start codon assigned too far downstream will cut part of the true amino acid 

sequence, while a start codon assigned too far upstream will add arbitrary sequence to the N-

terminus, both making it difficult to recognize a possible SP. If you get a prediction of an unusually 

long SP where the S-score is low in the beginning but then rises to a higher value, you should look 

for possible alternative start codons downstream of the annotated one. For eukaryotic sequences, you 

might want to check start codon predictions with the program NetStart [55, 56]. 

7. Archaea: There is no “Archaea” option among the organism groups. This is certainly not because 

Archaea do not have SPs, but because there are too few experimentally confirmed SPs from Archaea 

(at the time of writing, the number is 11 in UniProt). 

8. Viruses: There is no “Viruses” option among the organism groups. Virus or phage SPs should be 

predicted according to their host organism group. 

9. Atypical Gram-positives: Certain bacteria, notably Deinococcus spp., have a thick cell wall and react 

positively to the Gram staining procedure, even though they also have an outer membrane [57]. 

Their SPs should probably be predicted with “Gram-negative bacteria” as organism group, although 

too few SPs from such organisms are experimentally known to answer this question confidently. 



10. SP diversity within eukaryotes: It has long been known that some yeast signal peptides are not 

recognized by mammalian cells [58]. Therefore, it would be natural to assume that separate SignalP 

versions for yeast and Mammalia would provide better predictions than a common eukaryotic 

version. While developing SignalP 4.0 we tried dividing the eukaryotic data into animals, fungi, and 

plants and training separate methods for these three groups. However, this did not give any 

improvement, and performance for all three groups was better when using the method trained on all 

eukaryotic sequences together. This should be tested again for the next version of SignalP. 

11. SP diversity within bacteria: The Gram-negative version of SignalP is probably biased towards E. 

coli and other γ-proteobacteria, since these constitute the bulk of the experimentally annotated 

Gram-negative SPs in UniProt. Newer results suggest that some bacteria have rather divergent 

cleavage site motifs [59]. Future versions of SignalP might therefore benefit from dividing the 

Gram-negative bacteria into several groups, if enough data are available.  

12. Secretion efficiency: A frequently asked question is whether SignalP can predict secretion efficiency 

when attaching an SP to a heterologous protein—in other words, whether efficient SPs score higher 

than slowly secreting SPs. The answer is unfortunately not known. Intuitively, one would expect 

efficient secretors to have higher Y- and D-scores. However, SignalP is trained to recognize SPs 

against a background of non-SPs, regardless of secretion efficiency. This means that inefficient 

secretors are trained with the same target value as efficient secretors, as long as they are naturally 

occurring SPs. Therefore, the scores will not necessarily correlate with secretion efficiency. 

13. GFF version: The gene finding format you get with the “-n” option is GFF version 2, which is 

actually deprecated [60]. This should be updated to GFF version 3 in the next SignalP version. 
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Figure captions 
Figure 1: The SignalP 4.1 web site, showing the input field and the available options. 

Figure 2: SignalP output for a protein with a typical signal peptide, Human endoplasmic reticulum 

resident protein 44. Note that there is one conspicuous peak in Y-score at position 30, meaning that the 

signal peptide is predicted to be cleaved between amino acids 29 and 30. Please note that this protein is 

not secreted. 

Figure 3: SignalP output for a protein with a less typical signal peptide, Mouse Trefoil factor 1. There 

is a five-fold “AQ” repeat around the cleavage site region, resulting in four peaks in Y-score. Although 

the first peak is the highest, corresponding to a predicted signal peptide length of 21, the prediction of 

the cleavage site position should be taken with caution in this case. 

 

 


