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The interest in studying metabolic alterations in cancer and their potential role as novel targets for
therapy has been rejuvenated in recent years. Here, we report the development of the first genome-
scale network model of cancer metabolism, validated by correctly identifying genes essential for
cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which
40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It
further predicts combinations of synthetic lethal drug targets, whose synergy is validated using
available drug efficacy and gene expression measurements across the NCI-60 cancer cell line
collection. Finally, potential selective treatments for specific cancers that depend on cancer
type-specific downregulation of gene expression and somatic mutations are compiled.
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Introduction

The interest in studying cancer metabolism has recently grown
in light of the decreasing number of newly released anticancer
drugs, the development of metabolite profiling technologies
and metabolic network databases, and due to increased efforts
to target metabolic diseases by the pharmaceutical industry.
During tumor development, cancer cells modify their meta-
bolism to meet the requirements of cellular proliferation, thus
facilitating the uptake and conversion of nutrients into
biomass (Vander Heiden et al, 2009). Numerous studies have
shown similar metabolic alterations occurring across tumor
cells, including changes in glucose metabolism that give rise to
the Warburg effect, and an increase in biosynthetic activities
(such as nucleotide, lipids and amino-acid synthesis), im-
portant for cellular proliferation (DeBerardinis et al, 2008;
Tennant et al, 2009; Vander Heiden et al, 2009) The latter
are regulated by several signaling pathways implicated in
cell proliferation, in which cancer-associated mutations lead
to accelerated growth (Christofk et al, 2008). The similarity
in metabolic activity across cancer types is evident in
experimental measurements of metabolic flux and from
analyzing multiple high-throughput molecular data sources,
including gene expression, metabolomics and phenotypic
assays of cell line growth following shRNA-facilitated gene
silencing (knockdown) (Supplementary Information). Meta-
bolic commonalities across tumors have important practical
implications, where drugs, such as antimetabolites that target

nucleotide biosynthesis are used to fight a variety of different
malignancies.

The observation that many types of cancer cells adapt their
metabolism to facilitate biomass formation to enable proli-
feration suggests that it may be possible to predict characte-
ristic alterations in cancer metabolism via genome-scale
computational modeling approaches that have been success-
fully used in the past to predict the metabolic state of fast-
growing microorganisms (Price et al, 2004). In particular, flux
balance analysis (FBA) is a constraint-based modeling (CBM)
approach that is suitable for modeling cancer metabolism as it
assumes that a cell is under selective pressure to increase its
growth rate, and hence searches for metabolic flux distribu-
tions that produce essential biomass precursors at high rates
(Price et al, 2003). A fundamental step toward large-scale
modeling of human metabolism has been taken in recent
studies (Duarte et al, 2007; Ma et al, 2007), which recon-
structed a generic (non-tissue specific) human metabolic
network based on an extensive evaluation of genomic and
bibliomic data. The potential clinical utility of a human
metabolic model has already been demonstrated, showing
its ability to identify reactions causally related to hemolytic
anemia (Duarte et al, 2007), to predict potential drug targets
for treating hypercholesterolemia (Duarte et al, 2007), disease
co-morbidity (Lee et al, 2008) and tissue specificity of disease
genes (Shlomi et al, 2008), in identifying diagnostic bio-
markers for inborn errors of metabolism (Shlomi et al, 2008).
A recent study by Li et al (2010) have further utilized the
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human metabolic model as a basis for the prediction of novel
targets for known anticancer drugs (Li et al, 2010).

Results

A genome-scale model of cancer metabolism
correctly predicts cancer growth-supporting
genes

Here, we construct the first large-scale model of cancer
metabolism that aims to capture the main metabolic functions
common across many cancer types. To this end, we integrate
the human metabolic model of Duarte et al (2007) with
cancer gene expression data, utilizing a variant of our recent
computational method for the automatic reconstruction of
human tissue metabolic models, termed MBA (Model Building
Algorithm) (Jerby et al, 2010) (see Materials and methods).
In brief, we begin by assembling an initial core set of 197
metabolic enzyme-coding genes that are highly expressed
across 90% of all cancer cell lines in the NCI-60 collection
(Grever et al, 1992). Then, applying MBA, a minimal set
of additional reactions from the human metabolic model that
are needed to activate the reactions associated with this initial
core set is added, obtaining a cancer metabolism model that
is consistent, that is, each of the core reactions can poten-
tially carry a non-zero metabolic flux, within a global flux
distribution satisfying stoichiometric, mass balance and reac-
tion directionality constraints. The minimal set of added reac-
tions was chosen such that it enables the steady-state
production of biomass compounds required for cellular proli-
feration (based on prior knowledge of their relative concentra-
tions; see Materials and methods). This model reconstruction
approach, accounting for both a core set of highly expressed
genes along with a cellular proliferation constraint extends
upon previous model reconstruction methods (Shlomi et al,
2008; Jerby et al, 2010). The resulting cancer metabolic model
includes 772 reactions and 683 genes (see Materials and
methods; Supplementary Table S8). Applying FBA to this
model enables the prediction of the metabolic state of cancer
cells (their proliferation rate and flux distribution) across
different gene knockdowns and modeling the effects of drug
applications on a large scale.

To validate the cancer network model generated, we
analyzed it via FBA to predict growth-supporting genes whose
knockdown would significantly reduce cellular proliferation
rate (see Materials and methods), that is, we knocked down all
genes one at a time, and recorded the resulting simulated
growth rate in the model. Overall, we obtain a set of 199
growth-supporting genes, which are reassuringly ranked as
highly essential based on shRNA gene silencing data (Luo et al,
2008) (Kolmogorov–Smirnov (KS) P-value¼0.0045; Supple-
mentary Figure S1). The reference shRNA data set consists of a
list of genes, ranked according to the survival rate of 12 cancer
cell lines after these genes are knocked down, thus denoting
the genes’ experimentally measured contribution to cancer
growth. As a further validation, we compared the predicted set
of growth-supporting genes with a set of genes in which cancer
somatic mutations have been reported in the literature (Futreal
et al, 2004), finding a high level of enrichment (hyper-
geometric P-value of 0.002). For comparison, we evaluated

the predictive performance of the gene expression data and the
human metabolic model separately, finding that either source
is a worse predictor of both shRNA gene essentiality (P-values
are 0.075 and 0.029, respectively) and cancer mutations
(P-values are 0.0077 and 0.025, respectively) compared with
the generic cancer model (Materials and methods; Supple-
mentary Information).

While we described above the reconstruction of a generic
cancer metabolic model, capturing major metabolic altera-
tions that are common across cancer types, a similar compu-
tational approach can be utilized to develop more fine-tuned
metabolic models of specific cancer types. To demonstrate this
potential, we applied our cancer model building approach to
reconstruct a model of non-small cell lung cancer metabolism
utilizing multiple gene expression data sets (Supplementary
Information). The growth-supporting genes predicted by
the lung cancer model are ranked as highly essential based
on shRNA gene silencing data measured in this cell line
(KS P-value¼0.025), outperforming the predictions made by
the generic cancer model for this cell line (Supplementary
Information).

Predicting cytostatic anticancer targets

To identify which of the above-identified growth-supporting
genes may be considered viable anticancer targets, we further
aimed to predict whether their knockdown is expected to be
toxic to non-dividing cells or damage the proliferation of
normal cells. To simulate the effect of these gene knockdowns
on normal, non-dividing cells, we predicted the potential
damage to ATP production (utilizing the entire human
metabolic network), a vital biochemical function that must
be preserved in every cell. Based on these predictions, we
define a cytostatic score for each gene, representing the extent
to which its knockdown reduces cancer growth compared with
its effect on ATP production in healthy cells (see Materials and
methods) (with a cytostatic score of 1 denoting a non-toxic
target that completely eliminates cancer growth without
affecting ATP production in healthy cells). The resulting
distribution of cytostatic scores is bimodal; out of the 199 genes
that are predicted to be growth supporting in the cancer model,
52 have a high cytostatic score (above 0.9), and the remaining
147 genes have a low score (below 0.6; Figure 1A; Supple-
mentary Table S2; Supplementary Information). As an addi-
tional method to predict the effect of these knockdowns on the
metabolism of healthy, non-dividing cells, we tested the effects
of knockdowns in a model of liver metabolism (Jerby et al,
2010) (specifically on normal urea secretion, glycogenesis,
glycogenolysis, gluconeogenesis and bilirubin uptake), ruling
out one of these drug targets (CMPK1) as potentially damaging
normal liver uptake of bilirubin (see Materials and methods;
Supplementary Table S2). Notably, in the absence of detailed
metabolic networks for a wide range of different human
tissues, it is currently impossible to strictly rule out that the
predicted targets would not damage metabolic functions of
other healthy tissues. As a final screening step, we studied how
gene knockdowns would affect proliferation of healthy cells.
To this end, we applied a standard FBA analysis on the entire
human metabolic network model, aiming to identify growth-
supporting genes as done for the cancer model. We found that
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the knockdown of 49 out of the 52 high cytostatic scoring
targets is likely to also damage proliferation of normal cells
(Supplementary Table S2), suggesting that the targeting of
these genes would cause similar side effects to current
cytostatic drugs (Partridge et al, 2001).

The 52 targets with high cancer cytostatic scores contain
8 out of 24 known targets of the 14 FDA-approved metabolic
anticancer drugs found in DrugBank (Wishart et al, 2008)
(Supplementary Tables S1, S2 and S5), representing a highly
significant enrichment (hypergeometric P-value o6�10�7),
testifying to predictive power of the model. Interestingly,
the model misses the prediction of the knockdown effects
on proliferation of 16 known drug targets. These include
four genes involved in the metabolism of signaling molecules
(e.g. aminoglutethimide, which targets a hormone-signaling
mechanism), whose effect on cellular growth is outside the
scope of the model; seven additional genes that are targeted by
antimetabolites (Mercaptopurine, Thioguanine and Capecita-
bine) having multiple metabolic targets (Supplementary
Table S5). Finally, four additional genes are correctly predicted
as part of synthetic lethal simulations described below,
such that overall, out of all the metabolically active drug
targets currently known, only one missed prediction remains
unaccounted for. Moving from the gene to the drug level
and simulating drug treatments by concurrently knocking
down multiple genes targeted by the same drug, we success-
fully identify all three antimetabolites as having a high
cytostatic score, correctly predicting 11 (78%) out of all
14 FDA-approved metabolic anticancer drugs (Supplementary
Table S5).

Interestingly, the set of 52 predicted highly cytostatic genes
contains 13 additional genes that are targeted by existing non-
cancer drugs. Remarkably, all of these predicted drugs but one
are currently under experimental testing for cancer therapy

(Supplementary Table S2): eight of these genes are targeted by
drugs already approved by the FDA for the treatment of various
non-cancer diseases (e.g. antimalarial treatment, hyper-
cholesterolemia, obesity, etc.) and five genes are targeted by
experimental drugs. The remaining 31 (out of the original 52)
cytostatic genes are currently without any known drug that
currently targets them, and form interesting candidates for
potential drug targeting. Notably, these novel drug targets
span a much broader set of potential anticancer target path-
ways; yet, reassuringly many of them participate in the same
metabolic pathways as the known and experimental anti-
cancer drug targets (Figure 1B; Supplementary Table S2).
For example, we predict five highly selective drug targets in
sphingolipids metabolism (a subclass of fatty acid metabolism;
currently not targeted by any FDA-approved drugs), whose
targeting was recently shown to represent a promising
new approach to treat pancreatic cancers (Guillermet-Guibert
et al, 2009).

Predicting synthetic lethal gene targets

The concept of synthetic lethality promises to have a central
role in the future selection of anticancer drug targets (Kaelin,
2005). Synthetic lethal genes are common in metabolic
networks due to their highly robust nature (resulting from
backup mechanisms such as isozymes and alternative path-
ways; Stelling et al, 2002), and their identification via FBA was
successfully demonstrated in microbial networks (Deutscher
et al, 2006; Harrison et al, 2007). To study synthetic lethal drug
targets, we systematically simulated all double gene knock-
downs in the cancer model. We assigned each gene pair with
a synergy score, reflecting the additional drop in prolife-
ration rate below the minimal rate achieved by its indivi-
dual single knockdowns (in accordance with the commonly
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Figure 1 Cancer selectivity and pathway association of predicted growth-supporting genes. (A) Distribution of selectivity scores for the set of 199 predicted growth-
supporting genes. (B) Pathway association of the highly cytostatic growth-supporting genes (cytostatic score40.9), showing for each pathway the number of predicted
genes that are known targets of current anticancer drugs, the number of known targets of drugs that are currently used for non-cancer indications and entirely novel gene
targets, that is, genes without any currently known drugs that target them. For each pathway, the number of missed predictions, that is, known anticancer drug targets
that are not predicted to be highly selective, is also shown.
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used ‘highest single agent’ synergy model; Berenbaum, 1989).
The analysis resulted in 342 synthetic lethal gene pairs with a
synergy score 40.5.

As a validation for the plausibility of the predicted
synergistic gene pairs, we find that they are significantly
enriched with genetic interactions between the corresponding
yeast orthologs (hypergeometric P-value¼0.028; see Materials
and methods), considering a large-scale data set of genetic
interactions in yeast (Costanzo et al, 2010). Notably, the
significance of the enrichment is quite remarkable, consi-
dering that the conservation level of genetic interactions
between distant species is considered to be rather low (as
demonstrated, e.g., between Saccharomyces cerevisiae and
Caenorhabditis elegans; Tischler et al, 2008). As a second
validation, we investigated whether drugs that target a single
gene (participating in a predicted synthetic lethal pair)
indeed have higher efficacy in cell lines in which the
synergistic gene is lowly expressed. To this end, we analyzed
together growth inhibition measurements for 11 metabolic
drugs for which such data exists (Lee et al, 2007) and
gene expression measurements over all NCI-60 cell lines
(Grever et al, 1992) (Figure 2A). We find that drugs that
target one of the genes in a predicted pair indeed exert a
significantly stronger inhibitory effect on proliferation in
the cell lines in which their paired target gene has a low
expression level (P-value¼0.02), supporting our predictions
(Figure 2B).

The targeting of both synthetic lethal genes via
combination therapy

To identify which of the synthetic lethal genes may be further
considered for combinatorial drug therapies, we further
predicted whether their joint knockdown is expected to be
toxic for non-dividing cells or damage the proliferation
of normal cells (as performed above for the single targets).
We find that 133 gene pairs have high cytostatic score
(40.6; computed when they are both knocked down;
Figure 3A; see Materials and methods), suggesting (within
the screening limitations pointed above) that their double
knockdown may not be toxic to non-dividing cells. Exploration
of the metabolic pathways in which the predicted highly
cytostatic gene pairs participate (Figure 3B; Supplementary
Table S4) reveals that both the pentose-phosphate path-
way (PPP) and pyruvate metabolism have a central role, with
45% of the gene pairs having at least one target in these
pathways. PPP is involved in the production of both NADPH
(necessary for lipid and nucleotide biosynthesis as well
as protection against oxidative stress) and ribose 5-phosphate
(a nucleotide precursor), making it an attractive target for
cancer therapy, though currently there are still no inhibitors
for this pathway in clinical trials. In pyruvate metabo-
lism, pyruvate carboxylase (PC; participating in 13 pairs)
is notable; it is involved in one of the two major pathways
that contribute to anaplerosis (i.e. the replenishment of
TCA cycle intermediates), the other pathway being glutami-
nolysis. Indeed, several previous attempts have already
been made to target glutaminolysis (Rosenfeld and Roberts,
1981), further supporting the plausibility of targeting PC
as well.

Predicting how the knockdown of the synthetic lethal targets
would affect proliferation of normal cells, we find that in a
marked contrast to the single target analysis, the knockdown
of 99 of the pairs is not expected to adversely damage growth
of normal cells (Supplementary Table S3). The fact that
synthetic lethal genes are predicted to achieve selective
targeting of cancer cells is in accordance with previous
experimental findings (Lehár et al, 2009). For example,
we predict that the double knockdown of glycine hydroxy-
methyltransferase (SHMT1) and alanine-glyoxylate trans-
aminase (AGXT) to differentially inhibit proliferation of cancer
versus normal cells. While these knockdowns would block
glycine biosynthesis in cancer cells (from serine and glyoxy-
late, respectively; Supplementary Figure S2A), their knock-
down in normal cells is predicted to spare glycine production
through an alternative pathway involving choline degrada-
tion. The latter pathway was not included in the cancer
model due to low expression level of its member genes (while
choline utilization in the cancer model proceeds via choline
kinase toward phosphocholine biosynthesis, in agreement
with experimental data; Nakagami et al, 1999). Other
examples include synthetic lethal genes that are predicted to
differentially inhibit nutrient uptake rates in cancer versus
normal cells, due to the exclusion of several lowly expressed
membrane transporters in the cancer model (Supplementary
Figure S2B and C).

Predicting the effect of the 133 double gene knockdowns on
liver metabolism resulted in eight pairs whose targeting could
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Figure 2 The relation between drugs’ efficacy and the expression of their
paired target genes. (A) A schematic illustration of the expected relation between
an efficacy of a drug and the expression of genes that have a synthetic lethal
interaction with the drug’s target. (B) The distribution of efficacy–expression
correlation values for the set of predicted synthetic lethal drug-gene pairs, and for
a background distribution of random pairs. The predicted synthetic lethal pairs
show a significant anticorrelation compared with the random pairs (Wilcoxon
P-value¼0.02).
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potentially damage various liver functions (Supplementary
Table S3). Hence, as noted above for single targets, the current
lack of genome-scale metabolic models for various tissues
prevents the prediction of other potential sources of cellular
damage that may be caused by these knockdowns—and it
would be reasonable to assume that many of these pairs
would be actually labeled as toxic as new tissue models are
developed.

The targeting of a gene whose synthetic lethal
partner is inactivated in specific cancer types
leads to selective treatments

The specific targeting of a gene participating in a synergistic
pair is especially appealing in tumors in which its interacting
gene is specifically inactivated. The targeting of such a gene
solely is likely to selectively damage the tumor, without
affecting the function of healthy tissues in which the
interacting gene is not inactivated and hence can still back
up for the targeted gene. Notably, this strategy can achieve
therapeutic selectivity without requiring the ability to compu-
tationally predict the effect of double knockdowns on healthy
tissues. The inactivation of one of the interacting genes
specifically in cancer cells may result from cancer type-specific
regulation of metabolic activity, or from the dysfunction of
metabolic enzymes due to cancer somatic mutations. Next, we
utilized genomic and transcriptomic data to infer gene
inactivation across an array of cancers, which leads to the

identification of cancer type-specific targets based on the
predicted synergistic gene pairs.

Germline mutations in two metabolic enzymes, succinate
dehydrogenase (SDH) and fumarate hydratase (FH) have been
previously found to be causally implicated in oncogenesis
(Futreal et al, 2004). In both cases, the malignancy was
characterized by somatic loss of the corresponding wild-type
allele, resulting in complete loss of enzymatic activity. Our
model predicts SDH to be synthetic lethal with PC, showing
that either one of these enzymes is required to satisfy TCA
anaplerotic demands essential for the synthesis of aspartate
(that is used to further synthesize arginine and pyrimidine
nucleotides) from oxaloacetate (OAA) (Figure 4A). OAA can be
produced either by PC from pyruvate or through glutamino-
lysis that produces a-ketogluterate (aKG), which is converted
to OAA through several TCA cycle reactions. SDH dysfunction
blocks this anaplerotic flow from glutaminolysis toward OAA.
Hence, inhibition of PC is predicted to specifically inhibit
proliferation of SDH-deficient cancer cells, without damaging
normal cells. Several experimental drugs that target PC are
currently available and may potentially be used for treating
SDH-deficient cancers such as paragangliomas and pheo-
chromocytomas (Frezza et al, 2011). A similar argument
regarding synthetic lethality between SDH and PC also holds
for FH and PC, as FH deficiency is also expected to block
metabolic flux toward OAA. Our model predicts that FH forms
synthetic lethality with nine additional genes (Supplementary
Table S3), four of which already have drugs that target them.
These pairs can hence be potentially used to target specific
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cancers associated with FH mutations such as leiomyoma,
leiomyosarcoma or renal cell carcinoma (Futreal et al, 2004)
(though notably, the tumor suppressor function of FH was
recently shown to go beyond its TCA cycle activity, contri-
buting to DNA damage response; Yogev et al, 2010). An
experimental validation of a predicted synergy between
FH and an enzyme in heme metabolism has already been
performed in a follow-up study described in the Discussion.
Overall, in addition to FH and SDH, somatic mutations were
previously found in 13 other metabolic enzymes (Forbes et al,
2009). These 13 genes are predicted to participate in 44
synergistic gene pairs (Supplementary Figure S3).

Chromosomal deletions of metabolic genes in specific
cancer types is expected to lead to either a complete loss of
function or reduced activity due to dosage effects. Analyzing
data from the Atlas of Genetics and Cytogenetics in Oncology
and Haematology (Huret et al, 2004) revealed that chromo-
somal deletions in all genes that participate in the predicted
synthetic pairs were previously identified in at least one out of
103 cancer types. Hence, the targeting of the corresponding
synthetic lethal genes in these cases is expected to selectively
damage cancer cells. For example, our model predicts several
synthetic lethal interactions between enzymes in two alter-
native pathways for the biosynthesis of phosphatidylserine
(accounting for 5 to 10% of cell membrane phospholipids),
utilizing either ethanolamine or choline as precursors

(Figure 4B). These include, synthetic lethality between phos-
phatidylserine synthase 1 (PTDSS1) (in the choline utilizing
pathway), and phosphatidylserine synthase 2 (PTDSS2),
ethanolamine phosphotransferase (CEPT1) and ethanol-
amine-phosphate cytidylyltransferase (PCYT2) (all three in
the ethanolamine pathway). The predicted synergy between
these two pathways was previously demonstrated experimen-
tally (Arikketh et al, 2008; Vance and Vance, 2009). We find
that each of the three enzymes in the ethanolamine pathway
are frequently deleted in various cancer types (Supplementary
Table S13), including testicular cancer (PTDSS2), pheo-
chromocytoma (CEPT1) and renal cell carcinoma (PCYT2),
suggesting that the targeting of their synthetic lethal partner
PTDSS1 would selectively inhibit proliferation of these specific
cancers. Another example is that of ribulose 5-phosphate
3-epimerase (RPE), participating in the non-oxidative branch
of the PPP. This enzyme is predicted to be synthetic lethal with
all three enzymes in the oxidative branch of the pathway,
glucose 6-phosphate dehydrogenase (G6PD), 6-phosphoglu-
conolactonase (PGLS) and phosphogluconate dehydrogenase
(PGD) (Figure 4C). The latter is due to the requirement of
either the oxidative or non-oxidative branches of the PPP
for synthesizing a-D-ribose 5-phosphate, which is an essential
precursor for nucleotides. We find that RPE undergoes frequent
deletions in several cancer types, including adrenocortical
carcinoma and head and neck squamous cell carcinoma,
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the targeting of the corresponding synthetic lethal partner is expected to selectively affect proliferation of the cancer cells.

Predicting selective drug targets in cancer
O Folger et al

6 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



suggesting that the targeting either of its corresponding
synthetic lethal partners should be useful for selectively
inhibiting proliferation of these specific cancers. Notably, the
experimental drug hydroxyacetic acid was previously shown
to inhibit G6PD activity, suggesting its potential usage for
treating the above-mentioned cancer types. Figure 5 shows the
association of approved and experimental drugs with cancer
types, in accordance with cancer-type chromosomal deletions
of synthetic lethal genes (Supplementary Table S9).

Analyzing gene expression data of healthy human tissues
taken from Su et al (2004), we have found that out of the 342
predicted synthetic lethal targets, 72 pairs have at least one
gene with a significantly low expression level in a target cancer
type and not in healthy tissues, spanning leukemia, melanoma,
lung, colon, CNS, ovarian, renal, prostate and breast cancer
(see Materials and methods). Taken together, these results
testify to the promising utility of this approach for identifying
new potential treatment targets for specific cancers.

Discussion

As a further experimental support for the plausibility of the
predicted targets, a follow-up work by Frezza (under review)

studied the predicted synergy (described above; Figure 2)
between the TCA cycle enzyme FH and the heme metabolism
pathway. This synergy is of a particular interest both from a
practical perspective, as FH loss-of-function is associated with
Hereditary Leiomyomatosis and Renal-Cell Cancer (HLRCC)
(Tomlinson et al, 2002) and from a basic science perspective
as, currently, no mechanism that explains the capability of
these cells to survive without FH (and hence without a func-
tional TCA cycle) has been provided. Notably, the synergy with
heme metabolism predicted by the cancer model is not evident
based on the gene expression data measured under FH-
deficient cells solely, and cannot be gleaned from analyzing
the human metabolic model of Duarte et al (2007). In the study
by Frezza (under review), newly characterized genetically
modified kidney mouse cells carrying a conditionally targeted
FH allele were used to confirm that targeting heme metabolism
would render FH-deficient cells non-viable while not dama-
ging the control wild-type FH-containing cells. This was found
to result from a linear pathway involving the biosynthesis and
degradation of heme, which enables FH-deficient cells to
utilize the accumulated TCA cycle metabolites and permits
partial mitochondrial NADH production. These results confirm
the suggested targeting of heme metabolism to treat HLRCC
patients, providing an interesting specific demonstration of
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Figure 5 Drugs predicted to target specific cancer types based on chromosomal loss of synthetic lethal participant genes. Specific drugs may be effective in treating
specific types of cancer, based on our predictions of selective synthetic lethal gene pairs. Cancer types that show a high frequency (in yellow and white) of chromosomal
deletions of specific genes are susceptible to drugs inhibiting the genes’ synthetic lethal complements. Experimental drugs are followed by an asterisk. In cases where
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the utility of using our generic cancer model, and the usage of
synthetic lethality as a mean for specifically targeting cancer
cells. Future validation of predicted targets could involve
specific shRNA silencing of predicted single and synergistic
targets, across different cancer cell lines. Additionally,
predicted repurposing and combinations of approved
and experimental drugs can be easily tested across cell lines,
measuring the reduction in proliferation rate following their
treatment. Finally, of particular interest in this respect are
‘hubs’ participating in many predicted SLs, whose knockdown
could have large functional effects.

Beyond the prediction of new potential drug treatments, the
modeling approach presented here is expected to open up
many additional exciting possibilities in the near future. First,
data on gene regulation may be integrated with the stoichio-
metric model using existing approaches (Covert et al, 2004;
Shlomi et al, 2007) to further enhance the model’s accuracy.
Second, the forthcoming introduction of a new version of the
human metabolic model may further increase the accuracy
of the resulting cancer models. Third, the reconstruction of
human tissue-specific models, such as the recently developed
models for liver (Jerby et al, 2010) and kidney (Chang et al,
2010), can lead to better computational predictors of drug
selectivity. A major current difficulty in the reconstruction of
such models involves the definition of a metabolic ‘objective
function’ for normal tissues. Fourth, future studies could probe
the functional effects of the gradual knockdown of reactions,
aiming to capture a richer repertoire of enzymatic inhibition
and gene knockdown. Finally, individual cancer cell line
models may lead to the prediction of specific cancer
biomarkers, building on existing CBM methods (Shlomi et al,
2008). In summary, the model presented here lays down a
fundamental computational counterpart for interpreting the
rapidly accumulating proteomics (Bichsel et al, 2001) and
metabolomics (Fan et al, 2009) data characterizing cancer
metabolic alterations, and paves the way both for obtaining
a systems level understanding of cancer metabolism and for
designing new therapeutic means that selectively target them.

Materials and methods

Reconstructing a human cancer metabolic model

To reconstruct a cancer metabolic model in humans, we collected
gene expression data from all cancer cell lines in the NCI-60 collection
(Grever et al, 1992), a collection of microarray experiments in 59 cancer
cell lines of various types performed in a controlled and consistent
manner with a single platform and within a single laboratory, and
assembled a core set of 197 cancer genes that are highly expressed (with
intensity above 200) in 490% of cell line measurements (while the
results of our analysis remain highly robust to different definitions of
core gene sets; Supplementary Information). Assuming that reactions
associated with these highly expressed cancer genes are likely to be
activated in cancer cells, we applied the following approach: our goal is
to extract from the human metabolic model of Duarte et al (2007), the
most parsimonious, consistent model, that includes this core reactions
set and enables cellular proliferation. A metabolic network model is
considered consistent if it enables the activation all of its reactions—
that is for each reaction there exist a feasible flux distribution in
the model (satisfying stoichiometric mass balance and directionality
constraints) in which this reaction is carrying a non-zero flux. Bearing
this definition, we employ a greedy search heuristic approach that is
based on iteratively pruning reactions from the human metabolic
model in a random order, while maintaining the consistency of the

pruned model with regard to its core reactions set (starting from a
generic version of the human metabolic model that is consistent). In
each pruning step, a reaction is removed from the cancer model being
built only if its removal does not prevent the activation of the reactions
in the core reactions set. Since the reactions’ scanning order may affect
the resulting model, the algorithm is executed with different, random
pruning orders (1000 in our implementation) to construct multiple
candidate models. The fraction of models that contain a certain reaction
reflects the latter’s confidence score, which indicates the extent to
which it should be included in the final cancer model. Hence, to
construct the final cancer model, the candidate models are aggregated,
starting from core reactions set and iteratively adding reactions ordered
by their confidence scores, until a final, minimal but consistent with the
core reactions, model is obtained. A similar approach has been
concurrently used to develop a model of healthy liver metabolism
(Jerby et al, 2010) (Supplementary Information). Notably, blocked
reactions from the model of Duarte et al were removed before the
application of the MBA algorithm.

To predict gene contribution to biomass production, we added a
growth reaction to the resulting model, representing the steady-state
consumption of biomass compounds required for cellular proliferation.
The stoichiometric coefficients of the growth reaction represent the
relative molecular concentrations of 42 essential metabolites, including
nucleotides, deoxynucleotides, amino acids, lipids, etc. in human
tissues. These relative concentrations are calculated based on data
regarding mass composition of liver and muscle tissues (Supplemen-
tary Table S6). A sensitivity analysis shows that the prediction
performance of the cancer model is highly insensitive to the specific
definition of biomass composition (Supplementary Information). In all
simulations, we assume a standard RPMI-1640 medium, in accordance
with the medium used in our reference shRNA experimental data set
(Luo et al, 2008; Supplementary Table S7). The biomass production rate
predicted by the cancer model is 40% lower than that predicted by the
human network model, reflecting that the two models are indeed
functionally different. Notably, the generic human model does not
represent a concrete cell-type (but rather a collection of reactions that
take place within different cell types), and hence its predicted optimal
biomass production rate does not accurately represent a rate that is
achievable by a specific cell type. By definition, the maximal biomass
production rate in the cancer model cannot be higher than that
achievable in the generic human model as the cancer model consists of
a subset of the reactions of generic model.

FBA was used to simulate the effects of gene knockdowns on the
biomass production rates of the proliferating cells (Förster et al, 2003).
Genes whose knockdown reduces the maximal biomass production
rate in 41% were considered to be growth supporting. Notably, the
results presented in the paper are insensitive to the specific choice
of threshold for defining growth reduction, as the majority of the
knockouts (99.13%) result in either no reduction of growth or its
complete elimination (Supplementary Information).

Validating predicted growth-supporting genes
based on shRNA data

Luo et al (2008) provide a ranking of gene probes that are targeted by
shRNA, based on the effect that their knockdown exerts on cancer
cellular proliferation. To check whether a set of predicted growth-
supporting genes are ranked as highly essential for cancer proli-
feration, we computed a one-sided KS statistic, comparing the ranking
distribution of the predicted gene set probes with the ranking
distribution of the remaining probes. Significance is assessed by
comparing the derived KS statistic with similar statistics computed for
10 000 randomly selected gene sets of the same size (in accordance
with the statistical method underlying Gene Set Enrichment Analysis
statistic; Subramanian et al, 2005).

Computing cytostatic scores for single and double
drug target predictions

A cytostatic score of a gene represents the extent to which its
knockdown obliterates cancer growth compared with its effect on
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ATP production in the normal, human metabolic model. The gene
knockdown effect on growth rate is computed by applying FBA on the
cancer model, denoting by WTgrowth and KOgrowth the growth rate
before and after the knockdown, respectively. The gene knockdown
effect on ATP production is computed by applying FBA on the human
metabolic model, measuring the reduction in maximal achievable
ATP production rate, denoting by WTatp and KOatp the maximal
ATP production rate before and after the knockdown, respectively. The
cytostatic score is defined as (KOatp/WTatp)� (1–KOgrowth/WTgrowth).
A cytostatic score of 1 denotes a highly selective knockdown that
completely eliminates cancer growth without affecting ATP production
of healthy cells, and a score of 0 denotes a highly non-selective
knockdown. The cytostatic score for synergistic gene pairs is computed
in an analogous manner, by simulating the effect of double knock-
downs on growth and ATP production rates.

Predicting and validating synergistic drug targets

We define a synergy score for a gene pair as the additional drop in
growth rate below the minimal rate achieved by the single knock-
downs. Specifically, denoting by KOA, KOB and KOAB, the growth rates
following the knockout of gene A, gene B and the joint knockout
of genes A and B, respectively, the synergy score is defined as: KOAB/
min(KOA, KOB) (in accordance with the commonly used ‘highest single
agent’ synergy model; Berenbaum, 1989). The validation of the
predicted synergistic gene targets via yeast orthologs was based on an
orthology mapping by Berglund et al (2007). Among the yeast genes
that participate in the high-throughput genetic interaction screen
(Costanzo et al, 2010), we identified 75 genes that are orthologous to
human genes that participate in predicted synergistic targets.

The correlation between drug efficacy and gene expression was
computed as following: for each gene pair in which one gene is
targeted by drug D and the other one is denoted G, we computed the
Spearman correlation between the effective growth inhibition con-
centrations (GI-50) of D with the expression levels of G across the 60
cell lines. The P-value was computed by a Wilcoxon test, comparing
the distribution of Spearman correlations for all predicted synergetic
drug-gene pairs, with the distribution of Spearman correlations for a
large random sample of drug-gene pairs.

To identify synergistic gene pairs that consist of genes with signi-
ficantly low expression levels specifically in cancer cells, we obtained
gene expression data from 75 healthy human tissues (Su et al, 2004) and
compared it with the NCI-60 cancer cell line expression data (Grever
et al, 1992). First, we normalized the tissue expression data set to the
same mean and s.d. as the NCI-60 cancer cell line expression data. Then,
we applied Wilcoxon test to identify genes with significantly low
expression level in at least one out of eight cancer types represented in
NCI-60, followed by false discovery rate correction for multiple testing.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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