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Abstract 
Shear wave velocity (VS) data from sedimentary rock sequences is a prerequisite for implementing most mathematical mod-
els of petroleum engineering geomechanics. Extracting such data by analyzing finite reservoir rock cores is very costly and 
limited. The high cost of sonic dipole advanced wellbore logging service and its implementation in a few wells of a field 
has placed many limitations on geomechanical modeling. On the other hand, shear wave velocity VS tends to be nonlinearly 
related to many of its influencing variables, making empirical correlations unreliable for its prediction. Hybrid machine 
learning (HML) algorithms are well suited to improving predictions of such variables. Recent advances in deep learning 
(DL) algorithms suggest that they too should be useful for predicting VS for large gas and oil field datasets but this has yet to 
be verified. In this study, 6622 data records from two wells in the giant Iranian Marun oil field (MN#163 and MN#225) are 
used to train HML and DL algorithms. 2072 independent data records from another well (MN#179) are used to verify the VS 
prediction performance based on eight well-log-derived influencing variables. Input variables are standard full-set recorded 
parameters in conventional oil and gas well logging data available in most older wells. DL predicts VS for the supervised 
validation subset with a root mean squared error (RMSE) of 0.055 km/s and coefficient of determination  (R2) of 0.9729. It 
achieves similar prediction accuracy when applied to an unseen dataset. By comparing the VS prediction performance results, 
it is apparent that the DL convolutional neural network model slightly outperforms the HML algorithms tested. Both DL and 
HLM models substantially outperform five commonly used empirical relationships for calculating VS from Vp relationships 
when applied to the Marun Field dataset. Concerns regarding the model's integrity and reproducibility were also addressed 
by evaluating it on data from another well in the field. The findings of this study can lead to the development of knowledge 
of production patterns and sustainability of oil reservoirs and the prevention of enormous damage related to geomechanics 
through a better understanding of wellbore instability and casing collapse problems.
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Abbreviations
AAPD  Absolute average percent deviation
ACE  Alternative condition expectation
AE  Average error
AI  Artificial intelligence
ANFIS  Adaptive neuro-fuzzy inference
ANN  Artificial neural network
APD  Average percent deviation
BPANN  Backpropagation artificial neural network
Cal  Caliper log
CFBNN  Conventional feedforward backpropagation 

neural network
CFD  Cumulative distribution functions
CFM  Committee fuzzy machine
CMIS  Committee machine with intelligent systems
CNL  Compensated neutron
CNN  Convolutional neural network
COA  Cuckoo optimization algorithm
CP  Caliper
DL  Deep learning
DPHI  Density porosity
DT  Compressional wave slowness (delta T)
ELM  Extreme learning machine
ENN  Elman neural network
FFANN  Feedforward artificial neural network
FL  Fuzzy logic
GA  Genetic algorithm
Gb  Global position
GEP  Gene expression programming
GR  Gamma ray
GRG   Generalized reduced gradient
GRNN  General regression neural network
LSSVM  Least-squares support-vector machines
LSTM  Long short-term memory networks
MD  Wireline measured depth log
MELM  Multi extreme learning machine
MF  Memetic firefly
ML  Machine learning technique
MLP  Multi-layer perceptron
MSE  Mean squared error
n  The number of data points in the population
NARX  Nonlinear autoregressive network with exog-

enous inputs
NPHI  Neutron porosity
OFIS  Optimized fuzzy inference
ONN  Optimized neural network
OSVR  Optimized support vector regression
P  Percentage of data records with values in a 

distribution less than a specific data record
Pb  Personal position
PDi  Percent deviation for ith data record
PEF  Photoelectric absorption factor
PERM  Permeability log

PS  Pattern search algorithm
PSO  Particle swarm optimization
Qi  The value of data record i for input variable 

Q
Q  The average of the input variable Q
R  The dataset of data records
RES-DEP  Deep resistivity
RES-MED  Medium resistivity
RES-SHT  Shallow resistivity
RHOB  Bulk density
RMSE  Root mean square error
RNN  Recurrent neutral network
RS  Shallow resistivity
RT  True resistivity
SD  Standard deviation
SFIS  Surgeon's fuzzy inference
SML  Single machine learning
SP  Spontaneous potential
SVM  Support vector machine
SVR  Support vector regression
Ti  The value of data record i for input variable 

T
T   The average value of the input variable T
TOB  Transparent open box
Vi(t)  Current time period velocity
Vi(t + 1)  Nest time period velocity
VP  Compressional-wave velocity
W  Weight vector
x  Data variable value range
X  The value of variable x in a specific data 

record
xl
i
  The value of attribute l for data record I

xmaxl  The maximum value of the attribute l among 
all the data records in the dataset

xminl  The minimum value of the attribute l among 
all the data records in the dataset

Introduction

Petroleum geomechanics forms a critical part of reser-
voir engineering and wellbore construction models (Rhett 
1998; Bazyrov et al. 2017; Akbarpour and Abdideh 2020; 
Mohamadian et al. 2021). Interactions of stress fields with 
subsurface lithologies and the formed structures require a 
comprehensive understanding of the mechanical behavior 
of the lithologies associated with gas and oil fields. Such an 
understanding helps to overcome many problematic drill-
ing and field development challenges and reduce operational 
costs (Hudson et al. 2005; Rajabi et al. 2022a).

The development of geomechanical models depends on 
the availability of reliable data from laboratory analysis. 
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This involves mechanical tests on wellbore core samples 
recovered from the subsurface sedimentary columns pen-
etrated during gas and oil field exploration and development 
(Khoshouei and Bagherpour 2021; Miah et al. 2021). How-
ever, due to the high cost and time associated with wellbore 
coring operations, few oil or gas field wells are actually sam-
pled by coring. This means that the availability of geome-
chanical measurements from cores is severely restricted. 
Consequently, estimates and extrapolations for these param-
eters have to be used. Many empirical relationships have 
been developed to compensate for this shortcoming based 
on the use of petrophysical well-log data (Eberhart-Phillips 
et al. 1989; Jørstad et al. 1999; Sohail et al. 2020). The basic 
input requirement for many geomechanical empirical rela-
tionships is shear wave velocity (VS) (Ghorbani et al. 2021). 
Moreover, for cost reasons and the limited geomechanical 
considerations associated with many historical wells, most 
wellbore logging suites do not record VS using the advanced 
and expensive dipole sonic log.

Due to subsurface heterogeneities, geomechanical vari-
ables commonly vary across gas and oil reservoir formations 
and along the wellbore profiles (especially in directional/ 
horizontal wells). Consequently, VS prediction is often 
required based on a few core measurements combined with 
well-log variables recorded continuously along the wellbore 
profiles. Machine learning (ML) methods provide an alterna-
tive method to make more reliable VS predictions than those 
provided by empirical relationships (Ashraf et al. 2020; Vo 
Thanh et al. 2020; Ali et al. 2021; Thanh et al. 2022; Vo-
Thanh et al. 2022).

The compaction of reservoir and consequential subsid-
ence associated with the Ekofisk field (North Sea) caused 
a great deal of additional cost to the field owners, which 
could have been avoided by evaluating the potential behav-
ior of subsurface formations to engineering operations by 
applying appropriate geomechanical studies (Dusseault 
2011). That field case highlights the necessity of conduct-
ing careful geomechanical studies for effective field devel-
opment, thereby preventing extra operational costs (Fourie 
and Vawda 1992). However, providing appropriate geome-
chanical studies requires geomechanical data from the sedi-
mentary sections of interest. Such data can be obtained in 
two ways. The first method is to measure the required data 
through the time intensive and costly geomechanical labora-
tory experiments on the available core plugs. This method 
provides non-continuous geomechanical data (limited to 
some specific points distributed across the sedimentary 
section) (Stark et al. 2014). The second method provides 
geomechanical data indirectly from petrophysical data, 
from which valuable rock properties, including porosity, 
density, and shear/compressional velocity, can be usefully 
determined (Medetbekova et al. 2021). The latter method 
is cost-effective since it does not require time consuming 

experiments and provides a continuous geomechanical 
dataset across the logged section of a wellbore (Tokeshi 
et al. 2013). Among the petrophysical logs required for this 
method, VS tends not to be routinely recorded in every well 
drilled in oil and gas fields, due to the additional operational 
cost associated with the specific logging tool required to 
record it (Wang et al. 2020). As a result, establishing predic-
tive models for indirect evaluation of VS can be very useful 
for conducting geomechanical studies. Additionally, VS data 
is valuable for assisting decision-making in the selection of 
drilling locations and wellbore trajectories to ensure they 
achieve maximum well stability, preventing sand production, 
and the selection of appropriate zones for hydraulic fractur-
ing (Fourie and Vawda 1992; Stark et al. 2014).

There are two conventional ways commonly used to esti-
mate VS. These are (i) predictive models based on rock phys-
ics, and (ii) empirical correlation-based relationships (Wang 
et al. 2019). Modeling methods use the physical properties of 
rocks to develop petrophysical models to predict  VS. Indeed, 
in rock physics modeling, VS is obtained by studying differ-
ent rock physics models to calculate rocks’ effective elastic 
parameters. The factors that are typically considered in rock 
physics modeling are, porosity, pore shape, fluid inclusion 
properties, and matrix mineralogy (Wang et al. 2020). Sev-
eral different physic-based models have developed for so far 
 VS estimation (Xu and White 1995; Sun et al. 2008; Zhang 
et al. 2012; Guo and Li 2015; Darvishpour et al. 2019; 
Zhang et al. 2020; Ali et al. 2021). Theoretically, the rock 
physics model-based methods are not limited in application 
to specific geographic areas or petroleum basins, because 
they adequately address many of the drawbacks of empiri-
cal equations. Nevertheless, most of the modeling methods 
based on rock physics involve very complicated estimation 
processes due to their need to make assumptions about the 
shape of pores. Such assumptions tend to reduce, to some 
degree, the validity of the estimation results. Besides, in such 
models the matrix elastic parameters, compositions, and the 
mixing mode must be taken into account, together with the 
effects of pore shapes and the fluid constituents, to achieve 
accurate VS predictions. As a result of these difficulties, 

Table 1  Published common empirical correlations used to predict 
shear wave velocity (VS)

References Proposed equations

(Pickett 1963) Vs = VP∕1.9

(Coello et al. 2007) Vs = 1.09913326(V0.9238115636

p
)

(Castagna et al. 1985) Vs = 1.0168VP − 0.05509V2

p
− 1.0305

(Eskandari et al. 2004) Vs = −1.1236V2

p
+ 1.61VP − 2.3057

(Brocher 2005) Vs = 0.7858 − 1.2344VP + 0.7949V2
p

− 0.1238V3
p + 0.0064V4

p
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the models based on rock physics are of low efficiency and 
their complexity limits their appeal for real-world drilling 
and field development applications. The empirical correla-
tion methods have been widely used to estimate VS from 
compressional wave velocity  (VP) since they are quick and 
simple to apply, and relatively reliable methods (Wang et al. 
2020) (Bailey and Dutton 2012; Lee 2013; Ojha and Sain 
2014; Oloruntobi et al. 2019; Oloruntobi and Butt 2020). 
The reliability of empirical correlation equations originates 
from the fact that most of the factors affecting  VP also influ-
ence  VS in a similar manner but to different degrees (Xu and 
White 1995; Oloruntobi and Butt 2020). Table 1 lists some 
of the most commonly used empirical equations developed 
for  VS prediction involving various relationships with  VP. 
Vs signals recorded can be influenced by earthquake effects 
(Güllü and Pala 2014; Güllü and Jaf 2016; Güllü and Kara-
bekmez 2017).

The fact that most empirical correlations for VS prediction 
oy iolve  VP (Table 1) limits their accuracy and tends to make 
them field or basin specific. The results of these empiri-
cal equations are considerably influenced by lithology type, 
which may lead to inadequate prediction accuracy (Akhundi 
et al. 2014; Güllü and Jaf 2016). Besides, the lack of gen-
eralizability to other fields and their poor fit with real data 
across an entire sedimentary section limits the confidence 
with which such relationships can be applied (Güllü and Pala 
2014; Güllü and Jaf 2016; Gholami et al. 2020; Oloruntobi 
and Butt 2020; Rajabi et al. 2021; Rajabi et al. 2022a). In 
recent years, the much-improved computational efficiency 
and prediction accuracy achieved by various ML methods 
has resulted in various ML methods being applied to predict 
VS from well-log input data (Eskandari et al. 2004; Rezaee 
et al. 2007; Rajabi et al. 2010; Asoodeh and Bagheripour 
2013, 2014; Gholami et al. 2014; Maleki et al. 2014; Olo-
runtobi et al. 2019; Gholami et al. 2020; Wang et al. 2020; 
Zhang et al. 2020). The datasets used in those models are 
typically verified with just a few core measurements and 
in some cases, include seismic data, with details listed in 
Table 2 (Al-Dousari et al. 2016). However, as ML and deep 
learning (DL) methods improve and more extensive data-
sets become available from around the globe, much scope 
remains to improve on VS prediction accuracy (Wang et al. 
2020; Wood 2020). Moreover, the possibility exists to make 
the methodologies more robust and generalizable within 
hydrocarbon fields and across sedimentary basins.

In this paper, three recently developed techniques are 
developed and evaluated to predict VS for several wells 
drilled in a giant oil field with both carbonate and sand-
stone reservoirs using data from standard well logs (Fig. 1). 
These include two HML techniques: multi-hidden layer 
extreme learning machine hybridized with a particle swarm 
optimizer (MELM-PSO); and MELM hybridized with a 
genetic algorithm (MELM-GA). The third technique is the 

DL model convolutional neural network (CNN). The main 
novelty and features of this study are to develop, apply, and 
compare Vs predictions from these three techniques applied 
to a large multiple-well dataset from a giant oil field. The Vs 
prediction performance of the DL and HML algorithms is 
also compared, for the same dataset, with commonly used 
empirical Vs prediction models. Recent research has applied 
machine and deep learning algorithms, as robust computa-
tional tools to many engineering fields in order to solve a 
wide range of problems. Furthermore, full-scale comparison 
is performed between the hybrid machine learning models 
and a deep learning model. This identifies the most effective 
and accurate model for predicting the shear wave velocity. 
As a verification measure, we also address possible con-
cerns about ensuring the integrity and repeatability of the 
proposed machine learning practical models by applying 
them to data from another well in the field. As a fast and 
very low-cost solution compared to other available methods, 
the technique involves only minor disadvantages. Execution 
constraints (appropriate computer system processing power) 
represent a constraint related to the number of data records 
and log variables that these models can process. Addition-
ally, the quality of the recorded standard logs is important, 
and poor quality recorded log data will result in higher Vs 
prediction errors. The method’s advantages outweigh their 
disadvantages, and the HML and DL models developed can 
be defined as reference classes or libraries for general use.

Methods

Work flow

A work flow diagram (Fig. 2) summarizes the sequence of 
construction and evaluation steps involved in applying the 
DL and HML algorithms to predict VS and establish the 
prediction accuracy achieved. The process sequence begins 
with compiling a dataset and statistically assessing the 
value distribution of each of the component data variables. 
The maximum and minimum values for each data variable 
(attribute) are used to normalize the variable values so that 
they fall within the range of −1 and + 1. Normalization is 
achieved using Eq. (1) and is important because it avoids 
scaling biases in the learning processes adopted by the DL 
and HML algorithms (Kamali et al. 2022).

where:
xl
i
 = the value of attribute l for data record i;

(1)xl
i
=

(
xl
i
− xminl

xmaxl − xminl

)

∗ 2 − 1
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Table 2  ML techniques previously proposed for predicting  VS. See  source references for ML technique abbreviations

* Technique with best performance
** Statistical parameters for the technique of best performance

Reference Data description ML techniques Statistical evaluation parameters**

Data points Input parameters R2 RMSE AAPD% APD% MSE

(Eskandari et al. 2004) – GR, RHOB, NPHI, 
RT, DT, and X and Y 
coordinates

ANN 0.972 – – – –

(Rezaee et al. 2007) 637 NPHI, RHOB, GR, RT, 
and  VP

FL*, ANN, and ANFIS 0.946 – – – 0.051

(Rajabi et al. 2010) 3030 RHOB, RT, and NPHI GA, FL*, ANFIS 0.951 – – – 0.0148
(Asoodeh and Bagh-

eripour 2012)
– RHOB, RT, NPHI, and 

 VP

ANN, ANFIS, and 
CMIS

0.893 – – – 0.0086

(Asoodeh and Bagh-
eripour 2013)

– RHOB, RT, NPHI, and 
 VP

ANFIS 0.937 – – – 0.0071

(Maleki et al. 2014) – RHOB, GR, DTCO, RT, 
CAL, and NPHI

SVR-GA* and BPNN-
GA

0.97 26.68 – – –

(Gholami et al. 2014) – 27 physical and geome-
chanical seismic 
attributes

MLP 0.98 – – – AE ≅ 22

(Asoodeh and Bagh-
eripour 2014)

– RHOB, RT, NPHI, and 
 VP

ACE stimulated neural 
network

0.952 – – – 0.0063

(Akhundi et al. 2014) – RHOB, GR, RS, RT, 
and NPHI

ANN 0.95 – – – –

(Bagheripour et al. 
2015)

4055 RHOB, GR, PEF, DT, 
RT, RS and NPHI

SVR 0.971 0.0733 1.7595 –0.0567 –

(Al-Dousari et al. 2016) 59 VP and core sample 
data (grain density, 
clay content, porosity, 
permeability, and the 
cementation exponent)

GRNN – – – 6.91 –

(Singh and Kanli 2016) – GR, NPHI, ROHB, RT, 
and  VP

FFANN 0.999 – – – –

(Behnia et al. 2017) 516 � , n, and  VP GEP and ANFIS* 0.963 135.35 – – –
(Mehrgini et al. 2019) 760 RT, ROHB, GR, NPHI, 

and  VP

ENN*, ENN-PSO, 
MLP, MLP-PSO

0.9143 0.0636 – – –

(Shiroodi et al. 2017) – 27 physical and geome-
chanical seismic 
attributes

SFIS, ANFIS, OFIS, 
and CFM*

0.884 69.93 0.0328 − –
(Alkinani et al. 2019) – NPHI, RHOB, and  VP CFBNN and NARX 

network*
0.996 – – – –

(Ghorbani et al. 2021) – GR,  VP, RHOB, NPHI,
CAL, Vs LSSVM-GA 0.9813 0.411 – – –
(Zhang et al. 2020) – RHOB, NPHI, RT, GR, 

DT, and PEF
LSTM  > 0.95 – – – –

(Wood 2020) 1000 GR, RHOB, NPHI, 
DPHI, RT, and  VP

TOB, TOB-GRG*, and 
TOB-Firefly

0.999 11.08 0.1764 −0.0145 –

(Gholami et al. 2020) – 6 physical and geome-
chanical seismic 
attributes

ONN, OFIS, OSVR, 
and  CM*

0.923 78.21 0.0219 – –

(Wang et al. 2020) 2369 RHOB, Cal, CNL, GR, 
DT, PERM, RS, RT, 
SP, and  VP

PSO-LSTM*, LSTM, 
and RNN

0.990 0.0917 0.0097 0.0170 –

(Olayiwola and Sanuade 
2021)

– CAL, MD, GR, ROHB, 
NPHI, and  VP

ANN, LSSVM*, and 
ANFIS

0.971 0.0892 – – –
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xminl = the minimum value of the attribute l . among all 
the data records in the dataset; and,

xmaxl = the maximum value of the attribute l among all 
the data records in the dataset.

The normalized data records are then assigned to either 
a training subset or a testing subset. Trial and error tests 
indicate that an approximate 70%:30% split of data records 
between training and testing subsets works well for most rea-
sonably sized datasets. The testing subset of data records is 
held independently of the training subset and is not involved 
in the algorithms’ training processes. A K-fold method is 
used to sample the training subset for validation purposes. 
Statistical measures of accuracy are then used to assess the 
VS prediction performance of each DL and HML algorithm 
evaluated to establish their relative VS prediction capabilities.

Machine‑learning (ML) algorithms

ML algorithms are now usefully applied to solve many oils 
and gas operational and prediction challenges including 
drilling, reservoir performance, and geomechanical char-
acterization (Gullu 2017; Ashraf et al. 2020; Ashraf et al. 
2021; Ranaee et al. 2021). ML algorithms are well suited 
to evaluating problems involving multiple variables with 

nonlinear relationships and complex value distributions 
(Gullu 2017; Hazbeh et al. 2021b). Recently, some research-
ers work on the shear wave velocity based on machine learn-
ing algorithms. Artificial neural network (ANN), extreme 
learning machine (ELM), support vector machine (SVM) 
and other algorithms based mainly on regression / corre-
lation relationships have been successfully applied to pro-
gressively improve the prediction performance of variables 
relevant to the petroleum industry (Farsi et al. 2021b). Some 
of the researchers work on the Vs based on the ML work 
(Weijun et al. 2017; Azadpour et al. 2020; Zhang et al. 2020; 
Zhang et al. 2021; Miah 2021; Olayiwola et al. 2021; Zhong 
et al. 2021; Ebrahimi et al. 2022).

Single machine‑learning (SML) algorithms

Extreme learning machine (ELM) ELM is a rapidly exe-
cuted feed-forward neural network (Huang et  al. 2006). It 
can be usefully applied to reduce learning time, improve 
accuracy, and increase generalizability (Huang et al. 2006; 
Huang et al. 2011; Huang 2014; Wang et al. 2014; Cheng 
and Xiong 2017; Naveshki et al. 2021; Zhang et al. 2022). 
ELM differs from an ANN, utilizing back-propagation or 
other optimization algorithms, in that all the ELM’s internal 

Fig. 1  Schematic diagram outlining the technique to predict Vs data from a standard suite of well logs by applying deep learning prediction 
model
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learning parameters are randomly determined. This saves 
computational time as during ELM training, the parameters 
associated with the hidden layer (weights and biases) do not 
need to be adjusted. The output weights are determined by 
the inverse Moore–Penrose function applied to the hidden 
layer to output matrix (Yeom and Kwak 2017). The struc-
ture of a simple ELM (with a single hidden layer) is shown 
in Fig. 3.

ELM performance for complex problems can be 
improved by introducing more than one hidden layer. The 
multi-layer ELM algorithm is configured as follows:

Step 1: Determine the number of hidden layers (l) and 
neurons in each layer.
Step 2: Assuming (X, Y) = (xi,  yi) = (i = 1,2, 3, …, Q) 
as training data; where X is the matrix of input variable 
values for each data record and Y is the output variable 
vector including all data records.
Step 3: Each hidden layer has n neurons and an activation 
function g (x). Weights between layers i and (i-1) and 
biases applied to layer i are randomly generated.
Step 4: Calculate WIE = [B W], XE = [1 X]T.
Step 5: Calculate the H matrix with Eq. (2):

Step 6: If i is less than l, calculate Eq. (3) and return to 
step three. Otherwise go to the next step.

Step 7: The output weights are calculated based on the 
Moore–Penrose inverse by applying Eq. (4):

(2)H = g
(
WIEXE

)

(3)X = HT, i = i + 1

Fig. 2  Workflow schematic for comparing the VS prediction performance of HML and DL algorithms

Fig. 3  Schematic architecture of Extreme learning machine (ELM) 
with a single hidden layer. Modfied with permission from ref. (Abad 
et al. 2021a) 
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Step 8: The output prediction is calculated with Eq. (5).:

Genetic algorithm (GA) GA is an evolutionary algorithm 
developed in the 1960’s and inspired by the principles of 
genetics, involving functions that mimic inheritance, muta-
tion, selection, and combination. It establishes an initial 
population of randomly generated artificial “chromosomes” 
(Mohamadian et al. 2021). Each chromosome is evaluated 
through several evolutionary iterations with a cost function, 
which is progressively minimized. To determine the attrib-
utes of the next generation of “chromosomes” the value of 
the current generation is ranked (elitism) and only the best 
performing ones are “selected” to participate in reproduc-
tion. Crossover and mutation operations, with an assigned 
degree of randomness, are then involved in producing the 
next generation. The degree of randomness helps the GA 
from avoiding being trapped at local minima, enabling it 
to thoroughly explore the feasible solution space. Figure 4 
illustrates the GA process in the form of a flowchart.

(4)β = pinv
(
HT

)
× Y

(5)Ŷ =
(
HT × 𝛽

)T
Particle swarm optimization (PSO) algorithm Figure  5 
illustrates the PSO algorithm in the form of a flowchart. 
PSO searches the feasible solution space using a popu-
lation (swarm) of particles, the adjusted movements of 
which are inspired by those of flocks of birds or shoals 
of fish. The positions of the initial population are set ran-
domly in the search space, which is defined by the mini-
mum and maximum values of the decision variables. The 
particle is moved in different directions and at different 
speeds between the lower limit  (Vmin) and the upper limit 
 (Vmax) from one iteration to the next. The designated posi-
tions of each particle is recorded and their best historical 
individual position is stored as a “personal best”  (Pb) and 
used in partially determining the movements going for-
ward.

The position of all particles is evaluated by the objec-
tive function (cost function), and the particle with the 
lowest cost function value is identified in each iteration 
as the best global position  (Gb). In each iteration, a new 
velocity  (Vi (t + 1)) for each particle (i) is calculated based 
on the previous velocity  (Vi (t)) and the distance of the 

Fig. 4  Flowchart showing the execution sequence of a genetic algo-
rithm (GA) optimizer

Fig. 5  Flowchart showing the execution sequence of a particle swarm 
optimizer (PSO). Modfied with permission from ref. (Rashidi et  al. 
2021) 
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particle’s current position  (xi (t)) in the solution space 
compared to its best historical personal position and the 
best global position achieved by the swarm so far (Eq. 6). 
Subsequently, the new position of each particle  (xi (t + 1)) 
is calculated based on its prevailing position and the new 
calculated velocity (Eq. (7)).

where:
i = 1, 2, …, n, are the number of particles in the swarm;
w = Inertia weight, representing a recurrence value that 

controls particle velocity (Pedersen and Chipperfield 2010; 
Jafarizadeh et al. 2022);

c1,  c2, are positive-valued personal (cognitive) and collec-
tive (social) learning coefficients, respectively (Coello et al. 
2007); and,

r1,  r2 are random numbers in the range [0,1].
The new position of each particle is then re-evaluated 

with the cost function. The PSO algorithm is well suited 

(6)
Vi(t + 1) = wVi(t) + c1r1

(
Pbi(t) − xi(t)

)
+ c2r2

(
Gb(t) − xi(t)

)

(7)xi(t + 1) = xi(t) + Vi(t + 1)

Fig. 6  Flowchart for implement-
ing the hybrid MELM-PSO and 
MELM-GA applied to predict 
VS. Modfied with permission 
from ref. (Abad et al. 2021a) 

Table 3  GA control parameter values applied in the MELM-GA 
algorithm

Control Parameter Value/Options

Number of iteration 200
Population 45
Selection method Roulette wheel
Crossover Uniform (p = 1)
Mutation Uniform (p = 0.05)
Mutation rate 0.11
Selection pressure for Roulette wheel 2

Table 4  PSO control parameter values applied in the MELM-PSO 
algorithm

Control Parameter Values

Number of iterations 200
Swarm size 40
Cognitive constant 2.05
Social constant 2.05
Interia weight (damping ratio) 0.96
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to efficiently explore continuous solution spaces without 
becoming easily trapped at local minima.

HML algorithm configurations

Multi‑layer extreme learning machine (MELM) hybridized 
with optimizers MELM performance depends on the num-
ber of hidden layers included, and the number of neurons in 
each of those layers. The MELM structure varies according 
to the complexities of the dataset (Rashidi et al. 2021). The 
more complex the problem, the greater the number of hidden 
layers and neurons. On the other hand, the more layers and 
neurons involved, the longer the computational time. There-
fore, optimizing the MELM structure can lead to a high-pre-
cision model with an efficient learning process and relatively 
short computational requirements. A trial-and-error method 
can be used to determine the appropriate structures of mul-
tilayer ANN and MELM, but this can be very time consum-
ing. Therefore, in this study the PSO algorithm is used to 
determine the number of MELM hidden layers and number 
of neurons in each layer. On the other hand, due to the pro-
cess of randomly selecting of hyperparameters for MELM, 

different answers may be obtained each time the algorithm is 
implemented. To solve this problem, the MELM algorithm is 
combined with the optimizer (GA or PSO) to firstly identify 
the optimum hyperparameter values (Fig. 6).

GA and PSO optimization algorithms have adjustable 
hyperparameters (control values) that influence the effi-
ciency of their performance. Trial-and-error methods were 
used to determine these control values (Tables 3 and 4). A 
total of 50 iterations of the optimizers were used to identify 
the optimum number of layers and neurons in the MELM, 
whereas 200 iterations (Tables 3 and 4) of the optimizers 
were used to optimize the weights and biases of the MELM-
GA and MELM-PSO hybrid models (Abad et al. 2022).

The K-fold cross-validation technique was applied, with 
a tenfold set up, to achieve more stable and reliable VS pre-
diction results in determining the number of MELM layers 
and neurons. This divides the entire dataset into ten equal 
portions. The model is then evaluated ten times with each 
execution using nine portions of the data records as the train-
ing subset, and one portion of the data records as the valida-
tion subset (Fig. 7). Each of the ten portions is therefore used 
once as the validation subset.

Fig. 7  K-fold cross-validation 
applied in the training phase 
(tenfold used) and values 
obtained then used to evaluate 
the testing subset

Table 5  The values of RMSE 
(VS in km/s) for the different 
number of hidden layers and 
neurons in the layers for the 
MELM models developed for 
VS prediction

Number of MELM 
hidden layer

Number of neurons in the 
MELM hidden layers
2 4 6 8 10

2 0.05341 0.05307 0.05129 0.04992 0.04998
4 0.05219 0.05286 0.05001 0.04900 0.04998
6 0.05224 0.05287 0.05013 0.04900 0.04997
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Table 5 shows the provisional VS prediction results for 
different MELM structures, established by trial and error, 
using the tenfold cross-validation technique. They indicate 
that MELM with between 2 and 6 hidden layers and with 
between 6 and 10 neurons achieves the lowest RMSE for 
VS predictions. In order to save computational time, the 
optimizers were therefore constrained to vary MELM lay-
ers between values of 2 and 6 and the number of neurons 
between 6 and 10.

Deep learning

Convolutional neural network (CNN)

CNN have demonstrated their capabilities in diverse appli-
cations in recent years, including prediction and learn-
ing applications related to image recognition (Krizhevsky 
et al. 2017), reading comprehension (Yu et al. 2018), and 
reinforcement learning in game strategy (Silver et al. 2016; 
Abad et al. 2021a). CNN uses convolutional (weight shar-
ing) layers instead of the traditional fully connected layers 
of neural networks such as ANN and ELM (Abad et al. 
2021b). This compresses the layers and neurons of CNN 
compared to fully connected networks and often enables 
them to generate higher resolution predictions with less 
training data records for specific problems.

Figure 8 shows a generic CNN structure. It has several 
parallel filters acting on the input data records that can be 
configured to extract different features. The input vector 
is filtered by each of the CNN filter layers, with each layer 
producing its own output vector; Therefore, the dimen-
sions of the network increase with the number of filter 
layers selected. A pooling layer is then used to reduce the 
dimensions and normalize the selected variables, feeding 
that data into the concatenate layer. This information is 
then fed into the dense layer (s) to generate the final out-
put. This dense layer (like the multilayer perceptron neural 
network) is made up of a number of neurons, the number 
of which is determined by the user (trial and error) or an 
optimizer. The model is executed to establish the weights 
and biases for the neurons in the dense layers that achieve 
the highest dependent variable prediction accuracy.

There are a number of hyperparameters that need to 
be set when developing a CNN model. For the CNN con-
structed in this study to predict VS, based on trial-and-
error, the number of filters was set to 200, A kernel size 
(convolutional window length) of 3 was selected, the 
“relux” activation function was applied and the number 
of neurons in the dense layer was set to 100.

Fig. 8  Schematic illustration of the structure of a deep learning convolutional neural network (CNN). Modfied with permission from ref. (Abad 
et al. 2021b) 
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Statistical measures of prediction accuracy

VS prediction performance comparison between the HLM, DL 
and empirical models evaluated are conducted by calculat-
ing widely used statistical measures of prediction accuracy as 
expressed in Eqs. 8, 9, 10, 11, 12, 13, 14 and 15.

Percentage deviation (PD) or relative error (RE)

Average percentage deviation (APD):

Absolute average percentage deviation (AAPD):

Standard Deviation (SD):

(8)PDi =
H(Measured) − H(Predicted)

H(Measured)

x100

(9)APD =

∑n

i=1
PDi

n

(10)AAPD =

∑n

i=1
��PDi

��
n

Mean Square Error (MSE):

Root Mean Square Error (RMSE):

Coefficient of Determination  (R2):

(11)SD =

�
∑n

i=1

�
Di − Dimean

�2

n − 1

(12)Dimean =
1

n

n∑

i=1

(
HMeasuredi

− HPredictedi

)

(13)MSE =
1

n

n∑

i=1

(
ZMeasuredi

− ZPredictedi

)2

(14)RMSE =
√
MSE

(15)R2 = 1 −

∑N

i=1

�
HPredictedi

− HMeasuredi

�2

∑N

i=1

�
HPredictedi

−

∑n

I=1
HMeasuredi

n

�2

Fig. 9  Marun oil field located onshore Iran in the Zagros basin. Repoduced with permission from ref (Rashidi et al. 2020)
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These indicators of prediction accuracy are best con-
sidered together rather than individually as they all reveal 
complementary information and insight into the prediction 
performance of the algorithms considered. RMSE is used as 
the objective function for the HML and DL models, making 
it the single most important measure, as those algorithms are 
configured to minimize RMSE.

Data collection and characterization

Marun field description

To predict VS, well log data from three wellbores drilled in 
the Marun oil field: MN#163, MN#225 and MN#179, are 
evaluated. This giant oil field is located onshore southwest 
of Iran (Fig. 9). It was discovered in 1963 and is one of the 
largest oil fields in the Zagros Basin with two producing oil 
reservoirs; the Asmari (Oligocene to Early Miocene) and 

Bangestan (Upper Cretaceous) formations. Collectively, 
these reservoirs contain in-place oil resources of some 46 
billion barrels. In addition, the Khami (Lower Cretaceous) 
formation forms an underlying natural gas reservoir with 
some 462 trillion cubic feet of gas-in-place.

Data collection and data distribution

Well-log datasets compiled for wells MN#163, MN#225 
and MN#179 sample the Asmari carbonate reservoir. Data 
records from two of the wells (MN#163 and MN#225) were 
used for supervised training and validation of the DL and 
HML algorithms in terms of VS prediction accuracy. Data 
from well MN#179 was then used as an independent testing 
subset to test the models for VS prediction accuracy with 
data previously unseen by the trained and validated model.

The well-log variables used as input features for the VS 
prediction models are gamma ray (GR); compressional-
wave velocity  (VP); bulk density (RHOB); neutron porosity 

Table 7  VS Prediction accuracy 
statistics for the training 
subset (~ 70% of available data 
records) in respect of shear 
wave velocity  (VS; km/s) (for 
MN#163 and MN#225)

Models APD (%) AAPD (%) SD (STBD) MSE (STBD) RMSE (STBD) R2

Empirical models
Pickett 4.286 5.099 6.524 0.025 0.159 0.8604
Carroll −79.286 79.286 78.080 3.372 1.836 0.8608
Castagna et al 2.596 4.170 5.769 0.018 0.134 0.8605
Eskandari et al 2.902 4.577 6.662 0.021 0.143 0.8605
Brocher −4.149 7.775 9.036 0.042 0.205 0.8607
Hybrid machine 

learning-optimizer 
models

MELM-PSO −0.331 1.562 2.373 0.002 0.048 0.9790
MELM-GA −0.109 1.518 2.491 0.003 0.051 0.9734
Deep-Learning Model
CNN −0.025 1.337 1.951 0.002 0.041 0.9844

Table 8  VS Prediction accuracy 
for the validation subset (~ 30% 
of available data records) in 
respect of shear wave velocity 
 (VS; km/s) (for MN#163 and 
MN#225)

Models APD (%) AAPD (%) SD (STBD) MSE (STBD) RMSE (STBD) R2

Empirical models
Pickett 4.037 4.923 6.307 0.023 0.153 0.8744
Carroll −79.739 79.739 78.522 3.401 1.844 0.8747
Castagna et al 2.374 4.007 5.609 0.017 0.129 0.8729
Eskandari et al 2.719 4.428 6.568 0.019 0.140 0.8608
Brocher −4.398 7.814 9.113 0.042 0.206 0.8735
Hybrid machine 

learning-optimizer 
models

MELM-PSO −0.562 2.082 3.113 0.004 0.062 0.9656
MELM-GA −0.267 1.920 3.502 0.005 0.069 0.9543
Deep-Learning Model
CNN −0.103 1.804 2.616 0.003 0.055 0.9729
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(NPHI); shallow resistivity (RES-SHT); medium resistivity 
(RES-MED); deep resistivity (RES-DEP) and caliper (CP). 
Table 6 statistically summarizes the distributions of the nine 
variables involved (8 input plus VS as dependent variable) 
sampled from the Asmari reservoir sections penetrated by 
the three wells: MN#163 (3793 data records), MN#225 
(2829 data records) and MN#179 (2072 data records), con-
stituting 8694 data records in total.

The ranges of the data variables covered by the Asmari 
reservoir well-log samples are substantial (Table 6). For 
instance, the VS range evaluated extends from 1.40 km/s to 
3.15 km/s across the three wells considered. This highlights 
the lithological variety within the Asmari reservoir includ-
ing, limestone, dolomite, shale, siltstone, sandstone and 
evaporite layers.

The best subset of input variables was selected based on 
evaluation of correlation coefficients between each input vari-
ables and the measured VS values. The input variables display-
ing the highest correlation coefficients were selected for VS 
modeling. Figure 13 shows that four input variables, VP, GR, 
RHOB, and NPHI, have the highest correlation coefficients 
with VS. The HML and DL model were initially built using 
these four selected features. The impact of the other potential 
input variables was then evaluated by adding them, one at a 
time, to the selected feature subset to predict VS. The result of 
that analysis revealed that by adding the variables RES-DEP 
and RES-SHT, to the four originally selected features based on 
correlation coefficient, generated more accurate VS predictions. 
Therefore, these six features were used to build the HML and 
DL models finally evaluated.

Results

Identifying the best performing algorithm for VS 
prediction

Tables 7 and 8 display the VS prediction accuracies based 
on the training (70%) and validation (30%) subsets, respec-
tively, selected from the 6622 data records available for 
wells MN#163 and MN#225. This represents the super-
vised training and learning performance for the HML and 
DL algorithms. The performance of five empirical rela-
tionships used for predicting VS from VP (Table 1) are also 
shown for each of these data subsets.

Table 9 displays the VS prediction accuracies for the 
supervised and trained HML and DL algorithms applied 
to all 6622 data records for wells MN#163 and MN#225. 
The performance of five empirical relationships (Table 1) 
are also shown for comparison.

Close inspection of the models’ VS prediction results 
(Tables 7, 8 and 9) reveals that the DL CNN model achieves 
exceptionally high VS prediction accuracy when applied 
to the two subsets and all data records for the two wells 
involved in supervised learning. (e.g., from Table 9 CNN: 
RMSE = 0.0456 km/s; AAPD = 1.477%;  R2 = 0.9808). The 
HML models also achieve high VS prediction accuracy, for 
the two subsets and full supervised learning dataset, but 
they do not match that of the CNN model. The MELM-
PSO model performs slightly better than the MELM-GA 
model. The recorded VS prediction performance (RMSE) 
therefore ranks the DL, HML models and empirical equa-
tions as follows: CNN > MELM-PSO > MELM-GA > Cast-
agna et al. > Eskandari et al. > Pickett > Brocher > Carroll.

It is very clear from Tables 7, 8 and 9 that the DL and 
HML models substantially outperform all five of the empiri-
cal models used to predict VS using relationships with VP. 
This outcome highlights the value of using information from 

Table 9  VS Prediction accuracy 
for all data records from 
wells MN#163 and MN#225, 
considered collectively

Models APD (%) AAPD (%) SD (STBD) MSE (STBD) RMSE (STBD) R2

Empirical models
Pickett 4.211 5.046 6.459 0.025 0.157 0.8646
Carroll −79.422 79.422 78.207 3.380 1.839 0.8650
Castagna et al 2.530 4.121 5.721 0.018 0.132 0.8643
Eskandari et al 2.847 4.533 6.634 0.020 0.142 0.8537
Brocher −4.224 7.787 9.059 0.042 0.205 0.8646
Hybrid machine 

learning-optimizer 
models

MELM-PSO −0.400 1.718 2.617 0.003 0.053 0.9748
MELM-GA −0.157 1.639 2.832 0.003 0.057 0.9675
Deep-Learning Model
DL −0.048 1.477 2.171 0.002 0.046 0.9808
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a suite of well logs rather than just relying on VP data to 
predict VS. Figure 10 displays the predicted versus meas-
ured VS values for the data records in each subset and the 
full supervised learning dataset evaluated by the HML and 
DL models. The superior prediction performance of the DL 
CNN model is apparent as it involves no substantial outlier 
predictions. On the other hand, MELM-PSO and MELM-
GA models do involve a few substantial outliers (only about 
5 data records out of 6622 total data records).

Figure 11 reveals that the most commonly used empirical 
models (Table 1) provide workable VS prediction accuracy 

 (R2 ~ 0.86) for this dataset but are substantially less reliable 
than the DL and HML models. The results in Table 1 show 
that the RMSE for an empirical equation is substantially 
greater than the RMSE for the CNN and HML models. The 
Castagna et al. (1993) relationship performs better than the 
other empirical models evaluated for the Asmari reservoir 
(Tables 7, 8 and 9). Figure 12 displays the relative percent-
age error (PD%) for VS predictions for each of the 6622 data 
records (wells MN#163 and MN#225) constituting the train-
ing and validation subsets. These are displayed sequentially 
for the high performing DL and HML models. The PD% 
range for DL model (~ −20% < PDi <  ~ 15%) is substantially 
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Fig. 10  Shear wave velocity (VS) prediction versus measured values for each data record in the training and validation subsets and the full dataset 
evaluated for the Marun oil field wellhead measurements related to the 6622 data records from Marun oil field (for MN#163 and MN#225)
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better than for the HML models (~ -70% < PDi <  ~ 45%) 
but for most data records PD% is <  ± 5%. The PD% range 
for the empirical relationships is much greater, and for 
most data records PD% is >  ± 15%. The Castagna et al. 
(1993) model performs better (~ −20% < PDi <  ~ 25%) 
than other empirical models and the Carroll (1969) rela-
tionship performs the worst for the PD accuracy measure 
(~ −120% < PDi <  ~ −20%).

A plot of VS RMSE versus iteration number (Fig. 13) for the 
DL and HML algorithms identifies that all three algorithms 
converge to highly accurate solutions rapidly. The MELM-
PSO and MELM-GA models converge at similar rates and 
after fewer iterations than the CNN algorithm. Although it 
takes more iterations, the CNN does achieve the lowest RMSE 
solutions by outperforming the HML algorithms after 100 
iterations.

Discussion

Relative influences of the input variables on VS

Spearman’s correlation coefficient (ρ), expressed on a scale of 
−1 to + 1 (Gauthier 2001), is calculated (Eq. 16) to establish 
the nonparametric relationships between the input variables 
and VS.

where:
Ti = T input variable value of data record i;
T = mean value for variable T;
Qi = Q dependent variable (VS) value of data record i;
Q = mean value for dependent variable Q;

(16)� =

∑n

i=1

�
Ti − T

��
Qi − Q

�

�
∑n

i=1

�
Ti − T

�2 ∑n

i=1

�
Qi − Q

�2

Fig. 11   VS predicted versus VS 
measured for the five empirical 
models applied to the full set of 
supervised learning data records 
(i.e., for wells MN#163 and 
MN#225)
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n = number of data records in dataset or subset.
Figure 14 identifies, using the ρ values calculated for 

all 6622 of the supervised learning datasets, that VP has, as 
should be expected, the greatest influence on VS. On the other 
hand, CP has the least influence on VS. The input variables 
NPHI, GR and RHOB also show substantial influences on VS, 
whereas the resistivity variables show negligible influences 
on VS.
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Development and generalization of CNN model 
applied to other marun field wells

The best VS prediction model (DL CNN) established for the 
Asmari reservoir, trained based on supervised learning using 
the dataset compiled from wells MN#163 and MN#225, is 
applied to data previously unseen by the trained and validated 
model. It does so by evaluating the dataset compiled for Marun 
oil field well MN#179 (2072 data records; Tables 7, 8 and 9).

The statistical measures of accuracy achieved for these 
MN#179 data records using the same eight well-log data 
input variables are listed in Table 8. These results confirm 
high VS prediction accuracy using the prediction model 
trained and validated with data from the other two wells. 
Figure 15 plots the measured versus predicted VS values 
predicted by the CNN model trained with MN#163 and 
MN#225 data records and applied to all 2072 data records 
from wells MN# 179. The prediction performance is very 
good, confirming its reliability. This makes it suitable for 
application in other wells drilled into the Asmari reservoir 
in the Marun oil field for which VS well log data has not been 
recorded. To apply the trained model to other wells, a stand-
ard suite of well logs is required for the wells of interest. 
Fortunately, such a suite of well logs is available for most of 
the existing wells in the field (Table 10).

Figure 16 shows the VS prediction performance of the 
DL CNN model applied to the dataset from well MN#179 
in terms of percentage error (PD%) for each data record 
arranged in order of sample depth through the Asmari res-
ervoir. While most of the PD errors for these data records 
are is <  ± 5% in the lower 500 samples (equivalent to the 
lower 100 m of the Asmari section) several PD errors of 
between 5 and 15% are recorded. These outlying values in 
the lower part of the Asmari section drilled in well MN#179 
are worthy of further analysis, but their prediction accuracy 
remains within reasonable error limits. The DL CNN model 
described and evaluated here could be used in a similar way 
to predict VS in other fields but, of course, it would need to 
initially be recalibrated with some direct VS measurements 
from at least one well in each of the fields / reservoirs to 
which it is applied.

Recommendations for future research works

Evaluation of the effect of the inclusion of other drilling 
parameters such as standpipe pressure and mud flow rate as 
input parameters along with well logging to predict VS can 
be further investigated. According to the current findings, 
adding more related input parameters could provide models 
with higher prediction efficiencies. Involving other optimiz-
ers, such as genetic algorithms and firefly algorithms, in the 
development of a high-performance hybrid predictive model 
for VS prediction can also be considered in future research 
work (Choubin et al. 2019; Ghorbani et al. 2020b; Kalbasi 
et al. 2021; Mohamadian et al. 2022; Rajabi et al. 2022b). 
The application of the proposed method should be investi-
gated in a wide range of applications, e.g., various energy, 
ecological and natural research applications (Ghorbani 
et al. 2017; Ghorbani et al. 2019; Taherei Ghazvinei et al. 
2018; Ahmadi et al. 2020; Band et al. 2020a; Band et al. 
2020b; Emadi et al. 2020; Lei et al. 2020; Shamshirband 
et al. 2020; Barjouei et al. 2021; Hazbeh et al. 2021a). From 
computational fluid, pressure and hydrological modeling 
to environmental simulation for instance (Ghalandari et al. 
2019b; Rezakazemi et al. 2019; Seifi et al. 2020; Farsi et al. 
2021a; Mahmoudi et al. 2021) the proposed methodology 
can be effective. For the future research the comparative 
analysis with other machine learning methods, e.g., (Asadi 
et al. 2019; Ghalandari et al. 2019a; Ghorbani et al. 2020c; 
Joloudari et al. 2020; Mosavi et al. 2020; Sadeghzadeh et al. 
2020; Shabani et al. 2020; Abdali et al. 2021; Mosavi and 

Table 10  VS prediction accuracy of the CNN model (trained with MN#163 and MN#225 dataset), applied to the Asmari reservoir section of 
Marun Field well MN#179 previously unseen by the trained and validated model

Models APD (%) AAPD (%) SD (STBD) MSE (STBD) RMSE (STBD) R2

DL (CNN) −0.010 2.107 2.858 0.005 0.068 0.9675

Fig. 16  VS prediction error (PD%) for the DL CNN model trained 
with data from wells MN#163 and MN#225 and applied to data 
records from well MN#179 previously unseen by the trained and vali-
dated model
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Safaei-Farouji 2021) would be essential to bring an insight 
into the true potential of the proposed method. To improve 
the accuracy and the performance of the proposed method 
further deep learning, ensemble and hybrid methods for 
instance, those suggest in (Band et al. 2020b; Dehghani et al. 
2020; Ghorbani et al. 2020a; Mosavi et al. 2020; Nabipour 
et al. 2020; Mousavi et al. 2021; Shamsirband and Mehri 
Khansari 2021) can come to the consideration.

Summary and conclusions

A large dataset of well-log data records compiled for the 
Asmari reservoir section penetrated by three Marun oil 
field wells (MN#163, MN#225 and MN#179) onshore Iran 
is compiled to predict shear wave velocity (VS). The perfor-
mances of two hybrid machine learning prediction models 
(MELM-PSO and MELM-GA), one deep learning model 
(CNN), and commonly used empirical models to predict 
VS are compared using the compiled dataset. For super-
vised training of the MELM-PSO, MELM-GA, and CNN 
models data from two wells (MN#163 and MN#225; 6622 
data records split 70%:30% between training and validation 
subsets) were initially evaluated. To independently test the 
best-performing trained model (CNN), 2072 data records 
of MN#179 previously unseen by the trained and validated 
model were also evaluated. 

• The recorded VS prediction performance (RMSE) ranks 
the DL, HML models and empirical equations as fol-
lows: (Best) CNN > MELM-PSO > MELM-GA > Cast-
agna et al. > Eskandari et al. > Pickett > Brocher > Carroll 
(Worst).

• The CNN model delivered the highest VS prediction 
accuracy based on supervised learning using data records 
from wells MN#163 and MN#225 (RMSE = 0.0456 km/s; 
 R2 = 0.9808 when applied to all 6622 data records).

• The hybrid machine learning algorithms MELM-PSO 
and MELM-GA, also provided highly credible VS predic-
tions RMSE = 0.05 to 0.06 km/s;  R2 ~ 0.96 when applied 
to all 6622 data records), whereas the empirical model 
achieved VS prediction accuracy of RMSE > 0.11 km/s 
and  R2 < 0.87.

• Applying the trained and validated CNN model to the 
previously unseen 2072 data records from the Asmari 
reservoir penetrated by well MN#179 achieved VS predic-
tion accuracy of RMSE = 0.068 km/s and  R2 = 0.97.

• This impressive prediction performance confirms that 
the CNN model trained with supervised data from two 
wells can be applied to accurately predict VS in other 
Asmari reservoir sections in the Marun oil field from 
basic well log variables where VS logs have not been 
recorded.

• Properly trained deep learning and hybrid machine learn-
ing models, such as those evaluated, offer a better method 
of predicting VS from multiple well-log variables, in a 
supervised context and with data previously unseen by 
the trained and validated models, than the commonly 
used empirical models based solely on VP data.
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