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Abstract. This paper aims to solve a fundamental problem in intensity-
based 2D/3D registration, which concerns the limited capture range and
need for very good initialization of state-of-the-art image registration
methods. We propose a regression approach that learns to predict rota-
tion and translations of arbitrary 2D image slices from 3D volumes, with
respect to a learned canonical atlas co-ordinate system. To this end,
we utilize Convolutional Neural Networks (CNNs) to learn the highly
complex regression function that maps 2D image slices into their cor-
rect position and orientation in 3D space. Our approach is attractive
in challenging imaging scenarios, where significant subject motion com-
plicates reconstruction performance of 3D volumes from 2D slice data.
We extensively evaluate the effectiveness of our approach quantitatively
on simulated MRI brain data with extreme random motion. We further
demonstrate qualitative results on fetal MRI where our method is in-
tegrated into a full reconstruction and motion compensation pipeline.
With our CNN regression approach we obtain an average prediction er-
ror of 7mm on simulated data, and convincing reconstruction quality of
images of very young fetuses where previous methods fail. We further
discuss applications to Computed Tomography (CT) and X-Ray pro-
jections. Our approach is a general solution to the 2D/3D initialization
problem. It is computationally efficient, with prediction times per slice
of a few milliseconds, making it suitable for real-time scenarios.

1 Introduction

Intensity-based registration requires a good initial alignment. General optimi-
sation methods often cannot find a global minimum from any given starting
position on the cost function. Thus, image analysis that requires registration,
e.g., atlas-based segmentation [2], motion-compensation [14], tracking [13], or
clinical analysis of the data visualised in a standard co-ordinate system, often
requires manual initalisation of the alignment. This problem gets particularity
challenging for applications where the alignment is not defined by a 3D-3D rigid-
body transformation. An initial rigid registration can be achieved by selecting
common landmarks [3]. However, many applications, in particular motion com-
pensation techniques, require at least approximate spatial alignment and 3D
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consistency between individual 2D slices to provide a useful initialisation for
subsequent automatic registration methods. Manual alignment of hundreds of
slices is not feasible in practice. Landmark-based techniques can mitigate this
problem, but is heavily dependent on detection accuracy and robustness of the
calculated homography between locations and the descriptive power of the used
landmark encoding. 2D slices also do not provide the required 3D information
to establish robust landmark matching, therefore this technique cannot be used
on applications such as motion compensation in fetal imaging.

Robustness of (semi-)automatic registration methods is characterised by their
capture range, which is the maximum transformation offset from which a specific
method can recover good spatial alignment. For all currently known intensity-
based registration methods, the capture range is limited.

Contribution: We introduce a method that automatically learns slice transfor-
mation parameters relative to a canonical atlas co-ordinate system, purely from
the intensity information in 2D slices. We propose a CNN regression approach
that is able to predict and re-orient arbitrarily sampled slices, to provide an
accurate initialisation for subsequent intensity-based registration. Our method
is applicable to a number of clinical situations. In particular, we quantitatively
evaluate the prediction performance with simulated 2D slice data extracted from
adult 3D MRI brain and thorax phantoms. In addition, we qualitatively evaluate
the approach for a full reconstruction and motion compensation pipeline for fetal
MRI. Our approach can naturally be generalised to 3D-3D volumetric registra-
tion by predicting the transformation of a few selected slices. It is also applicable
to projective images, which is highly valuable for X-Ray/CT registration.

Related Work: Slice-to-Volume Registration (SVR) is a key step in medical
imaging, multiple 2D images can be registered together in a common world
co-ordinate system to form a consistent 3D volume. This provides better visu-
alisation for the practitioner to diagnose and/or perform operative procedures.
Furthermore, it paves the way to exploit 3D medical image analysis techniques.

In literature, one can distinguish between volume-to-slice and slice-to-volume
techniques. The first is concerned with aligning a volume to a given image, e.g.,
aligning an intra-operative C-Arm X-Ray image to a pre-operative volumetric
scan. This can be manually or artificially initialised and many approaches have
been proposed to solve this problem. The most advanced solution, that we are
aware of, uses CNNs to evaluate the spatial arrangement of landmarks automat-
ically [13]. Other methods that can compensate for large offsets usually require
use of fiducial markers [9], requiring special equipment or invasive procedures.

While our method is also applicable to the volume-to-slice problem, as shown
in Exp. 3, here we focus on the slice-to-volume problem. Manual alignment of
hundreds of slices to each other is much more challenging than the theoretically
possible manual initialisation of volume-to-slice problems.

One target application we discuss in this paper is fetal MRI, where maternal
breathing and spontaneous movement from the fetus is a major problem, requir-
ing slice-wise re-alignment of randomly displaced anatomy [4, 8, 14, 11]. Existing
methods require good initial spatial consistency between the acquired slices to
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generate an approximation of the target structure, which is used for iterative
refinement of SVR. Good initial 3D slice alignment is only possible through fast
acquisition like single-shot Fast Spin Echo (ssFSE) and the acquisition of tem-
porally close, intersecting stacks of slices. Redundant data covering an area of
interest cannot be used from all acquired images since the displacement wors-
ens during the course of an examination, thus redundancy has to be high and,
generally, several attempts are necessary to acquire better quality data that can
be motion compensated. Nevertheless, from the clinical practice, individual 2D
slices are well examinable and trained experts are able to virtually realign a
collection of slices mentally with respect to their real anatomical localization
during diagnostics. The recent advent of deep neural network architectures [12]
suggests that a learning based expert-intuition of slice transformations can also
be achieved fully automatically using machine learning.

2 Method
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Fig. 1: Overview of Reconstruction Pipeline.

The core of our method utilises a CNN, called SVRNet, to regress and predict
transformation parameters T̂i, such that T̂i = ψ(ωi, Θ), where Θ is the learned
network parameters and ωi ∈ Ω are a series of 2D image slices that are acquired
from a moving 3D objectΩ. SVRNet provides a robust initialisation for intensity-
based registration refinement by predicting T̂i for each ωi (see Fig. 1). We also
define Ti as known ground truth parameters of ωi during validation.

Our proposed pipeline consists of three modular components: (I) approxi-
mate organ localisation, (II) prediction of T̂i, and (III) 3D reconstruction and
iterative intensity-based registration refinement.

Organ localisation, which defines a Region of Interest (ROI), can be achieved
using rough manual delineation, organ focused scan sequences or automatic
methods, such as [10] for example for the fetal MRI use case. For 3D Recon-
struction, we use a modified SVR method [8] and initialise it with transformed
ωi using T̂i. Here on, we focus on the novel part of this pipeline, which is SVRNet.
Data Set Generation: ωi, for training and validation, are generated from n
motion free 3D volumes Ω. Each volume encloses a desired ROI, is centred at
the origin and re-sampled to a cubic volume of length L, with spacing 1mm ×
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1mm × 1mm. L/4 sampling planes, with spacing of 4mm and size L × L, are
evenly spaced along the Z-axis. ωi at extremities of Ω may contain little or
no content. If the variance of a particular ωi is below a threshold of t, where
t = K ·max(σ2(ωi)), ∀i ∈ Ω and σ2(x) = 1/N

∑N−1

i |xi − x̄|2, then it is omitted.
A higher K value will restrict ωi to the middle portion of the volume. In our
experiments, K ≈ 0.2, which samples the central 80% of the volume.

To capture a dense permutation of ωi ∈ Ωtrain, we rotate the sampling
planes about the origin whilst keeping the volume static. Ideally, all rotational
permutations should be random and evenly spaced on the surface of a unit
sphere. Uniform sampling of polar co-ordinates, P (φ, θ), causes denser sampling
near the poles. This can lead to an imbalance of training samples. Thus we use
Fibonacci sphere sampling [5], which allows each point to represent approx. the
same area. Thus sampling normals can be calculated by P (φi, cos

−1(zi)), where
φi = 2πi/Φ and zi = 1− (2i+1)/n, i ∈ 0, 1, 2, ..., n− 1. Φ is the golden ratio, as
Φ−1 = Φ− 1, and is defined as Φ = (

√
5 + 1)/2.

Only one hemisphere needs to be sampled due to symmetry constraints,
antipode normals are the same image albeit mirrored.

Ground Truth Labels: Ti can be represented by Euler angles (six parameters:
{rx, ry, rz, tx, ty, tz}) or Quaternions (seven parameters: {q1, q2, q3, q4, tx, ty, tz}),
or by defining three Cartesian anchor points within the plane (nine parame-
ters). As Huynh et al. [6] have presented detailed analysis on distance func-
tions for 3D rotations, we therefore implemented them as custom loss layers
for regressing on rotational parameters. The loss for Euler angles can be ex-

pressed as; Ψ1((α1, β1, γ1), (α2, β2, γ2)) =

√

d(α1, α2)
2
+ d(β1, β2)

2
+ d(γ1, γ2)

2

where d(a, b) = min{|a − b|, 2π − |a − b|}, and α, γ ∈ [−π, π);β ∈ [−π/2, π/2).
For quaternions; Ψ2(q1, q2) = min {‖q1 − q2‖, ‖q1 + q2‖}, where q1 and q2 are
unit quaternions. We have evaluated all of these options and found that the
Cartesian anchor point approach yielded the highest accuracy. Hence, we use
this approach in all our experiments. The anchor points can be arbitrarily se-
lected, as long as their location remains consistent for all ωi. In our experiments,
we have chosen the centres of ωi, pc, and two corners pl, pr; where pc = (0,0,z),
pl = pc + (-L/2,-L/2,0) and pr = pc + (L/2,-L/2,0). To take rotation into ac-
count, each point is further multiplied by a rotation matrix R to obtain their
final position in world co-ordinates. Each ωi can thus be described by nine pa-
rameters: pc(x, y, z), pl(x, y, z) and pr(x, y, z). This approach keeps the nature
of the network loss consistent as it only needs to regress in Cartesian co-ordinate
space instead of a mixture of Cartesian co-ordinates and rotation parameters.

Network Design: SVRNet is derived from the CaffeNet [7] architecture. Ex-
perimentation with other architectures has revealed that this approach yields a
maximum training performance whilst keeping the training effort feasible. For
regression, we define multiple loss outputs; one for each pc, pl, pr. SVRNet em-
ploys a multi-loss framework, which avoids over-fitting to one particular single
loss [16]. Fig. 1 shows the details of the SVRNet architecture.

3D Reconstruction: As the network predicts T̂i to certain degree of accuracy,
we integrate an iterative intensity-based SVR motion compensation approach
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to reconstruct an accurate high-resolution, motion free 3D volume, Ω, from
the regression. Conventional SVR methods, e.g. [8], require a certain degree
of correct initial 2D slice alignment in scanner co-ordinate space to estimate
an initial approximation of a common volume Ω. The approximation of Ω is
subsequently used as a 3D registration target for 2D/3D SVR. Our approach
does not depend on good initial slice alignment and disregards slice scanner co-
ordinates completely. We only use slice intensity information for SVRNet and
generate an initialization for Ω using the predicted T̂i. We use regularized Super-
Resolution and a Point-Spread-Function similar to [8] to account for different
resolutions of low-resolution ωi and high-resolution Ω. ωi-to-Ω registration is
then individually refined using cross-correlation as cost-function and gradient
decent for optimization. Optimization uses three scales of a Gaussian Pyramid
representation for ωi and Ω. Robust statistics [8] identifies ωi that have been
mis-predicted and excludes them from further iterations.

3 Experiments and Results

We have tested our approach on 85 randomly selected and accurately segmented
healthy adult brains, on a real-world use case scenario with 34 roughly delin-
eated fetal brain MRI scans and on 60 low-dose thorax CT scans with no organ
specific segmentation. SVRNet’s average prediction error for these datasets is
respectively 5.6±1.07mm, 7.7±4.80mm, and 5.9±2.43mm. We evaluate 3D re-
construction performance using PSNR and average distance error in mm be-
tween ground truth locations pc, pl, pr and predicted locations p̂c, p̂l, p̂r, such
that, e = (||pc − p̂c||+ ||pl − p̂l||+ ||pr − p̂r||)/3.0.

All experiments are conducted using the Caffe neural network library, on a
computer equipped with an Intel 6700K CPU and Nvidia Titan X Pascal GPU.
Exp. 1: Segmented adult brain data is used to evaluate our network’s re-
gression performance with known ground truth Ti. 85 brains from the ADNI data
set[1] were randomly selected; 70 brains for Ωtrain and 15 brains for Ωvalidation.
Fig. 2 shows an example slice of the ground truth and the reconstructed Ω.

Each brain has been centered and re-sampled in a 256 × 256 × 256 volume.
Using the Fibonacci Sphere Sampling method, a density of 500 unique normals
is chosen with 64 sampling planes spaced evenly apart on the Z-axis (giving a
spacing of 4mm). This therefore yields a maximum of 32000 images per brain;
2.24M for the entire training set and 345K for the entire validation set. After
pruning ωi with little or no content, this figure drops to approx. 1.2M images
for training and 254K for validation. Training took approx. 27hrs for 30 epochs.

Reconstructing from T̂i initialisation without SVR yields a PSNR of 23.7 ±
1.09; with subsequent SVR the PSNR increases to 29.5±2.43 when tested on 15
randomly selected test volumes after four iterations of SVR.
Exp. 2: Fetal brain data is used to test the robustness of our approach under
real conditions. Fetuses younger than 30 weeks very often move a lot during
examination. Fast MRI sequences allow artifact free acquisition of individual
slices but motion between slices corrupts consistent 3D information. Fig. 3 shows
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(a) Original (b) SVRNet (c) +SVR
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Fig. 2: (a): Example slice from the segmented adult brain MRI data set; (b):
Reconstruction from 300 ωi based on SVRNet regression without SVR; (c): Eight
iterations of SVR. Note that SVRNet (b) predicts T̂i only from image intensities
without any initial world co-ordinates of the sampled slice. (d): PSNR (dB)
comparing volumes of (b) and (c) to (a).

(a) ssFSE ax. (b) ssFSE sag. (c) train (d) SVR (e) SVRNet (f) +SVR

Fig. 3: (a): A single slice from a heavily motion corrupted stack of ssFSE T2
weighted fetal brain MRI; (b): Axial view of a sagittal input stack; (c): A slice
at approx. the same position through a randomly selected training volume; (d):
Failed reconstruction attempt using standard SVR based on three orthogonal
stacks of 2D slices (the fetus moved heavily during acquisition); (e): Reconstruc-
tion based on SVRNet T̂i regression; (f): Eight iterations of SVR. Note that (e)
and (f) are reconstructed directly in canonical atlas co-ordinates.

that our method is able to accurately predict T̂i also under these conditions. For
this experiment we use ωi from three orthogonally overlapping stacks of ssFSE
slices covering the fetal brain with approx. 20-30 slices each. We are ignoring
the stack transformations relative to the scanner and treat each ωi individually.
For Ωtrain, 28 clinically approved motion compensated brain reconstructions are
resampled into a 150× 150× 150 volume with 1mm× 1mm× 1mm spacing. A
density of 500 unique sampling normals has been chosen via the Fibonacci sphere
sampling method with 25 sampling planes evenly spaced between -25 to +25 on
the Z-axis. This gives a plane spacing of 2mm, sampling only the middle portion
of the fetal brain. Training took approx. 10hrs for 30 epochs. Prediction, i.e.,
the forward pass through the network, takes approx. 12 ms/slice.
Exp. 3: Adult thorax data: To show the versatility of our approach we also
apply it to adult thorax scans. For this experiment no organ specific training is
performed but the whole volume is used. We evaluate reconstruction performance
similar to Exp. 1 and T̂i prediction performance when Ω is projected on an
external plane, comparable to X-Ray examination using C-Arms. The latter
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provides insights about our method’s performance when applied to interventional
settings in contrast to motion compensation problems. 60 healthy adult thorax
scans were randomly selected, 51 scans used for Ωtrain and nine scans used
for Ωvalidation. Each scan is intensity normalised and resampled in a volume
of 200 × 200 × 200 with spacing 1mm × 1mm × 1mm. Using the Fibonacci
sampling method, 25 sampling plane of size 200 × 200, evenly spaced between
-50 and +50, were rotated over 500 normals. Training took approx. 20 hours for
60 epochs. Fig. 4c shows an example reconstruction result gaining 28dB PSNR
with additional SVR. T̂i prediction takes approx. 20 ms/slice for this data.

(a) original (b) SVRNet (c) +SVR

PSF Avg 4 iter SVR
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22

24
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28
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32
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NR

 [d
B]

(d) PSNR (e) DRR GT (f) SVRNet

Fig. 4: (a): Raw slice of low-dose thorax CT data; (b): Reconstruction based on
SVRNet T̂i regression; (c): Four iterations of SVR; (d): PSNR of (b) and (c)
compared to (a). (e): Projection of an unseen pathological test CT volume as
DRR and (e) shows a DRR at the location predicted by SVRNet when presented
with the image data in (e).

We use Siddon-Jacobs ray tracing [15] to generate Digitally Reconstructed Ra-
diographs (DRRs) from the above described data. For training, we equally sam-
ple DRRs on equidistant half-spheres around 51 CT volumes at distances of
80cm, 60cm, and 40cm, between −90◦ and 90◦ around all three co-ordinate
axes. For validation, we generate 1000 DRRs with random rotation parameters
within the bounds of the training data at 60cm distance from the volumetric
iso-centre. We trained on healthy volunteer data and tested on nine healthy and
ten randomly selected pathological volumes (eight lung cancer and two spinal
pathologies). Our approach is able to predict DRR transformations relative to
the trained reference co-ordinate system with an average translation error of
106mm and 5.6◦ plane rotation for healthy patients, and 130mm and 7.0◦ aver-
age error for pathological patients. As X-Ray images are projective, the transla-
tion component is mostly degraded. A slice at 40mm may appear identical to a
slightly zoomed slice at 140mm. Therefore, slice variation is based almost entirely
on the orientation around the half-sphere. An example is shown in Fig. 4e,f.
Discussion & Conclusion: We have presented a method that is able to predict
slice transformations relative to a canonical atlas co-ordinate system. This allows
motion compensation for highly motion corrupted scans, e.g., MRI scans of very
young fetuses. It allows to incorporate all images that have been acquired during
examination and temporal proximity is not required for good initialisation of
intensity-based registration methods as it is the case in state-of-the-art methods.
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We have shown that our method performs remarkably well for fetal brain data in
presence of surrounding tissue and without organ specific training for low-dose
thorax CT data and X-Ray to CT registration.

One limitation of our method is that SVRNet requires images to be formatted
in the same way the network is trained on. This includes identical intensity
ranges, spacing and translation offset removal and can be achieved with simple
pre-processing methods. Furthermore, SVRNet has to be trained for a specific
scenarios (e.g., MRI T1, T2, X-Ray exposure, etc.). However, we show that the
training region does not need to be delineated accurately and that our method
is not restricted with respect to the used imaging modality and scenario.

Another limiting factor is organ symmetry, which is still an unsolved problem.
This contributed the most errors throughout the experiments. ROI oversampling
and automatic outlier rejection can mitigate this in real-world scenarios.

Acknowledgements: NVIDIA, Wellcome Trust/EPSRC iFIND [102431],
EPSRC EP/N024494/1
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