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Information about an individual’s place and date of birth can be

exploited to predict his or her Social Security number (SSN). Using

only publicly available information, we observed a correlation

between individuals’ SSNs and their birth data and found that for

younger cohorts the correlation allows statistical inference of

private SSNs. The inferences are made possible by the public

availability of the Social Security Administration’s Death Master

File and the widespread accessibility of personal information from

multiple sources, such as data brokers or profiles on social net-

working sites. Our results highlight the unexpected privacy con-

sequences of the complex interactions among multiple data

sources in modern information economies and quantify privacy

risks associated with information revelation in public forums.

identity theft � online social networks � privacy � statistical reidentification

In modern information economies, sensitive personal data hide in
plain sight amid transactions that rely on their privacy yet require

their unhindered circulation. Such is the case with Social Security
numbers in the United States: Created as identifiers for accounts
tracking individual earnings (1), they have turned into sensitive
authentication devices (2), becoming one of the pieces of informa-
tion most often sought by identity thieves. The Social Security
Administration (SSA), which issues them, has urged individuals to
keep SSNs confidential (3), coordinating with legislators to reduce
their public exposure (4).* After embarrassing breaches, private
sector entities also have attempted to strengthen the protection of
their consumers’ and employees’ data (7).† However, the horse may
have already left the barn: We demonstrate that it is possible to
predict, entirely from public data, narrow ranges of values wherein
individual SSNs are likely to fall. Unless mitigating strategies are
implemented, the predictability of SSNs exposes them to risks of
identify theft on mass scales.

Any third party with internet access and some statistical
knowledge can exploit such predictability in 2 steps: first, by
analyzing publicly available records in the SSA Death Master
File (DMF) to detect statistical patterns in the SSN assignment
for individuals whose deaths have been reported to the SSA;
thereafter, by interpolating an alive person’s state and date of
birth with the patterns detected across deceased individuals’
SSNs, to predict a range of values likely to include his or her SSN.
Birth data, in turn, can be inferred from several off line and
online sources, including data brokers, voter registration lists,
online white pages, or the profiles that millions of individuals
publish on social networking sites (10). Using this method, we
identified with a single attempt the first 5 digits for 44% of DMF
records of deceased individuals born in the U.S. from 1989 to
2003 and the complete SSNs with �1,000 attempts (making
SSNs akin to 3-digit financial PINs) for 8.5% of those records.
Extrapolating to the U.S. living population, this would imply the
potential identification of millions of SSNs for individuals whose
birth data were available. Such findings highlight the hidden
privacy costs of widespread information dissemination and the
complex interactions among multiple data sources in modern
information economies (11), underscoring the role of public
records as breeder documents (12) of more sensitive data.

Hypotheses

The first 3 digits of an SSN are called its area number (AN), the
next 2 are its group number (GN), and the last 4 are its serial

number (SN). The SSA openly provides information about the
process through which ANs, GNs, and SNs are issued (1). ANs
are currently assigned based on the zipcode of the mailing
address provided in the SSN application form [RM00201.030]
(1). Low-population states and certain U.S. possessions are
allocated 1 AN each, whereas other states are allocated sets of
ANs (for instance, an individual applying from a zipcode within
New York state may be assigned any of 85 possible first 3 SSN
digits). Within each SSA area, GNs are assigned in a precise but
nonconsecutive order between 01 and 99 [RM00201.030] (1).
Both the sets of ANs assigned to different states and the sequence
of GNs are publicly available (see www.socialsecurity.gov/employer/
stateweb.htm and www.ssa.gov/history/ssn/geocard.html). Finally,
within each GN, SNs are assigned ‘‘consecutively from 0001
through 9999’’ (13) (see also [RM00201.030], ref. 1.)

The existence of such patterns is well known (14), and has been
used to catch impostors posing with invalid or unlikely SSNs (15).
However, outside the SSA, the understanding of those patterns was
confined to the awareness of the possible ANs allocated to a certain
state and the GNs issued in a certain year or years. Based on such
limited knowledge, SSN inferences described in the literature would
start from known SSNs and predict, based on their digits, the
possible states and ranges of years when those SSNs could have
been issued (15). We conjectured, however, that the functional
relationship between the digits of an SSN and the location and time
of its application could be reversed, allowing the inference of all of
the 9 digits of unknown SSNs starting from their presumptive state
and day of application. Empirical observation of SSA’s policies—
particularly the Enumeration at Birth (EAB) initiative, which
started extending nationwide in 1989 (2)—drove the conjecture
(the EAB was designed as an antifraud program integrating the
application for an SSN into the birth certification process). After
EAB, the overwhelming majority of U.S. newborns started obtain-
ing their SSNs shortly after birth (12). Although the assignment
process remained inherently noisy, we hypothesized that (i) times
and locations of individuals’ SSN applications over time have
become more correlated with those individuals’ times and states of
birth; (ii) such correlation may allow a more granular understanding
of the SSN assignment scheme and its regularities than what is
currently described in the literature; (iii) this more granular under-
standing, coupled with the increasing correlation between births
and SSN applications, may allow the prediction of unknown SSNs
entirely from the applicants’ birth information.
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†Companies exchange SSNs in personal information markets, and individuals obtain ‘‘credit
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whole SSNs (8). Stolen SSNs are lucratively exchanged in underground cybermarkets (9).
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Pattern Analysis

We tested our hypotheses using DMF data—a publicly available
file reporting SSNs, names, dates of birth and death, and states
of SSN application for individuals whose deaths have been
reported to the SSA (see www.ntis.gov/products/ssa-dmf.aspx).
(Ironically, one of its applications is fraud prevention, because
the DMF can be used to expose impostors who assume deceased
individuals’ SSNs.) The process of discovery of a more granular
understanding of the SSN assignment patterns was iterative: We
used public information about the assignment scheme to analyze
publicly available data; this allowed us to reinterpret public
details about the assignment scheme and analyze the data again
under improved lenses. We focused on DMF data for individuals
born between January 1973 (after the SSN assignment was
centralized to the Baltimore SSA headquarters) and December
2003 (before DMF data get too scarce). We split DMF records
into groups by their state of application, and—within each
group—sorted them chronologically by birthday. If our hypoth-
esis was correct, we would observe individuals with close birth-
days and same state of application display similar SSNs in the

rearranged dataset. Thereafter, we would be able to use such
regularities to predict unknown SSNs based on birth information.

Analysis. After grouping and sorting DMF data by state of
assignment and date of birth, we started looking for visual and
statistical patterns in the rearranged dataset that proved or
disproved the connection between birthdates and SSNs. The
analysis confirmed the regularities we expected: As hypothe-
sized, a strong correlation exists between dates of birth and all
9 SSN digits; that correlation increases for individuals born in
years after the onset of the EAB program, and in less populous
states (where fewer births take place over a given period,
determining slower—and more detectable—transitions through
the SSN assignment scheme).

In Fig. 1, we show SSN entries in the DMF as triads of points
representing an SSN�s AN, GN, and SN digits. The AN, GN, and
SN subplots of Fig. 1 for 2 illustrative states show trends common
to all states: Cyclical, chronological (albeit noisy) patterns in the
assignment become visible once DMF records are separated by
state of assignment and sorted by dates of birth. Regular
assignment patterns can be detected across all states over all

Fig. 1. SSNs of DMF records sorted by state of assignment and ordered by date of birth for 2 representative states in 1986 and 1996. The x axis represents time:

the day of birth, over 365 days in 1986 or 1996, for individuals whose deaths were reported to the SSA and whose SSNs were assigned in Oregon or Pennsylvania.

The y axis represents the ANs, GNs, and SNs those individuals were assigned. An imaginary straight vertical line connects each triad of dots in the AN, GN, and

SN portions of the figure; each triad represents one DMF record’s SSN.
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years of birth, but are more evident for less-populous states
(Oregon, versus Pennsylvania) and for years after the state’s
entry into the EAB program (1996, versus 1986): SSNs assigned
in the same state to applicants born on consecutive days are likely
to contain the same AN and GN, before the next combination
(henceforth, ‘‘ANGN’’) in the assignment scheme is issued, as
well as sequential SNs.

Specifically, GNs transition slowly or remain constant over the
years selected for Fig. 1: For instance, excluding the outliers, the
GNs assigned in Oregon to individuals born in 1996 transition
from 47 to 49; in PA they remain constant at 76.

ANs transition faster than GNs; however, contrary to a
commonly held view about their assignment, the same AN is
used for 9,999 consecutively assigned SSNs. Under the interpre-
tation of the assignment scheme held outside the SSA, the SSA
was believed to rotate through all of a state’s ANs for each
assigned SN (16). Such scheme would render the AN random for
states with multiple ANs, and the predictions we present in this
article dramatically less accurate. Instead, Fig. 1 shows an
ascending (and, in Oregon, cyclical) trend: For instance, the ANs
assigned in Oregon to individuals born in 1996 transition from
544 to 540, then to 541, 542, and 543, before reaching 544 again
near year end.

SNs transition faster than either ANs or GNs. The speed at
which they change, coupled with the noise and idiosyncracies
inherent in their assignment, may suggest that the relationship
between dates of birth and SNs is, for practical purposes,
random. Indeed, the SSA refers explicitly to ‘‘random’’ assign-
ments at [RM00201.060] (1). However, visual observation of the
SN subplots in Fig. 1 evidences a noisy yet visibly (for less-
populated states) linear and ascending trend when SNs are
sorted by applicants’ dates of birth. The steepness of the imag-
inary line interpolating the SNs is a function of the state’s volume
of births over a period: At least 5 upward sloping and approx-
imately parallel trend lines emerge in the SN portion of Fig. 1
Left in correspondence to the 5 ANs assigned in 1996.

Based on visual inspection [and statistical analysis presented
in supporting information (SI) Appendix], we gained a different
and more granular understanding of the regularities in the SSN
assignment pattern than what is currently discussed in the
literature. We concluded that the combined SSN assignment
scheme consists of SNs transitioning first; after 9,999 SNs
associated with a certain combination of AN and GN, the next
AN in the issuance scheme is assigned; then, when all ANs
assigned to a state or territory are exhausted, the next GN in the
scheme is assigned. More importantly, we concluded that the
linearity in the assignment of SSNs can be publicly observed as
a pattern linking applicants’ dates of birth to their SSN digits,
including their last 4. The assignment patterns that Fig. 1 makes
explicit suggest that an individual’s SSN may be inferred based
on knowledge of the ANs, GNs, and SNs assigned to individuals
born around the same day and in the same state as the target.

Algorithm Description. Our prediction algorithm exploits the
observation that individuals with close birthdates and identical state
of SSN assignment are likely to share similar SSNs. It employs the
DMF as a public source of information about SSNs assigned over
time and across states. For each target individual, the algorithm
proceeds by first predicting the target’s ANGN, and then the SN
associated with the predicted ANGN. Specifically:
ANGNs. We predict a target individual’s first 5 SSN digits (that is,
his or her ANGN) by choosing the statistical mode of the
distribution of ANGN(s) appearing in the set of DMF records
whose birthdates are contained within a variable window of days
centered around that target individual, excluding the target
record from the set. Because the 50 states greatly differ in
numbers of births occurring over a given period, they exhibit
different transition speeds across the assignment scheme. As

described in SI Appendix, we calculated such variable windows of
days to account for such differences. Furthermore, various
outliers can be found among DMF records (data entry errors or
individuals—such as aliens—who received SSNs later than at
birth). We describe data-cleansing procedures in SI Appendix,
although our prediction accuracy tests also included outliers.
SNs. We predict a target individual’s last 4 SSN digits (that is, his
or her SN) using the set of SSNs of all DMF records contained
in the variable window of days centered around the target
individual’s birthdate, and regressing the SNs of those records on
their associated birthdates (excluding the target record from the
set). The regression model is sketched in Eq. 1:

SNi � � � �1ddi,vw � �2 ANGNi,vw � �i,vw [1]

where SNi is the SN assigned to individual i, born on day dd and
whose record can be found within the window of days vw in a
specific year and state; ANGNi,vw is a vector of dummies for the
various ANGNs that can be found associated with the SSN
records contained in the DMF within that variable window (the
ANGN dummies account for the cyclical pattern of SN issuance);
and � is the regression error. The target individual’s date of birth
and its predicted ANGN are combined with the �1 regression
coefficient for the day ddi,vw and the �2 dummy coefficients for the
predicted ANGNi,vw from the regression conducted over the DMF
records included within a window of days around the target’s date
of birth. For the tests presented below, we used robust regressions.
Variations of the algorithm are discussed in SI Appendix.

Results

We evaluated the performance of our prediction algorithm using
the DMF as an analysis set to identify assignment patterns, and
as a test set to measure the accuracy of SSN predictions based
on extrapolated patterns. We predicted ANGNs and SNs for
more than half a million DMF records whose SSNs were issued
in 1 of the 50 states and whose births reportedly took place
between January 1973 and December 2003. Naturally, the
analysis set used in the prediction of a given DMF record did not
include said record.

We evaluated the results under 2 success metrics: whether we
could correctly identify with 1 single attempt an SSN�s first 5
digits (because the last 4 may be discerned elsewhere); and
whether we could correctly identify the entire SSN in fewer than
x attempts (with x � 10, 100, or 1,000).

Fig. 2A summarizes the results for our first metric. On average,
we matched at the first attempt the first 5 digits for 7% of all
records for individuals born nationwide between 1973 and 1988,
and 44% for those born after 1988 [means are weighted by the
relative numbers of births across years and states obtained from
National Center for Health Statistics (NCHS) data]. As hypoth-
esized, although our predictions are already more accurate than
random chance by several orders of magnitudes over the 1973
through 1988 period, dramatic and widespread increases in
accuracy are especially observable after 1988 (the onset of the
nationwide EAB program), particularly for less-populous states.
Furthermore, a trend of steady improvements in accuracy is
evident over the years across all states, as increasingly larger
proportions of newborns receive their SSNs through the EAB
program (data scarcity does not determine this result, as dis-
cussed in SI Appendix). For instance, we accurately predicted the
first 5 digits of 2% of California records with 1980 birthdays, and
90% of Vermont records with 1995 birthdays. If we allow 2
attempts (using the most-frequent and the second most-frequent
ANGNs as candidates), the weighted mean prediction accuracy
for the first 5 digits of individuals’ SSNs raises to 61% for all
DMF records issued nationwide with dates of birth between 1989
and 2003: In other words, the first 5 SSN digits of 6 of 10 SSN
records in that set can be identified with just 2 attempts.

Acquisti and Gross PNAS � July 7, 2009 � vol. 106 � no. 27 � 10977
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For the last 4 digits, we considered a brute-force matching
algorithm where, for each target SSN, the attacker tries out the
predicted ANGN and SN combination, before increasing and
decreasing the SN by 1-integer steps for the subsequent attempts,
while keeping the predicted ANGN constant. Under this algorithm,
10 or fewer attempts per target are sufficient to match the complete
SSNs of �0.01% of all DMF records with dates of birth between
1973 and 1988, and �0.1% of all records with dates of birth between
1989 and 2003. Those are weighted averages; prediction accuracies
are as high as 5% for certain years and states (such as Delaware,
1996), corresponding to �1 of every 20 SSNs issued in those years
and states identifiable with 10 or fewer attempts.

Nationwide, the weighted mean of the percentage of whole SSNs
that can be matched with 100 or fewer attempts is 0.08% for records
with pre-1989 dates of birth, and 0.9% for those with post-1988
dates of birth. Yearly accuracies rise �10% for some smaller states.

Finally, �1,000 attempts per target are sufficient to match the
entire SSNs of 0.8% of all records with dates of birth between 1973

and 1988, and 8.5% of all records with dates of birth between 1989
and 2003 (Fig. 2B). A successful identification of an entire SSN with
�1,000 attempts makes that SSN comparable with a 3-digit (and,
therefore, highly insecure) financial PIN. For smaller states and
recent years, the percentage rises �60%—with some of our pre-
dictions matching complete, 9-digit SSNs at the very first attempt.

In practical applications, SSNs are often used as authenticators
in inquiries processed by credit reporting agencies (CRAs). Because
consumer credit reports contain errors and inconsistencies, CRAs
are known to accept as valid even inquiries where just 7 of 9 SSN
digits are actually correct (17). This implies that, for some practical
purposes, the prediction accuracies we reported may be conserva-
tive by 2 orders of magnitude: With just 10 or fewer attempts per
target, the inquiries associated with 9.2% of all SSNs issued after
1988 could be accepted as valid by CRAs and 29.1% of those issued
in the 25 states with fewer births.

Discussion

The prediction accuracies we have reported pertain to more than
half a million DMF records of deceased individuals. However,
the same assignment patterns detected over DMF records also
apply to the SSNs assigned to alive individuals: Over short
periods of time (such as the windows we used in our calcula-
tions), mortality rates do not significantly differ by dates of birth
(18). This implies that the DMF data are, by and large, a
representative subset of the overall SSN-receiving population,
and the prediction accuracies we presented also apply to alive
individuals whose birth data were available.

Therefore, an alternative way of interpreting our results
consists of extrapolating from the prediction accuracies over
DMF records for deceased individuals to the US-born popula-
tion of individuals still alive. In this case, by moving from left to
right in both quadrants of Fig. 2, we get a sense of the
predictability, by state, of the SSNs of younger and younger
individuals. Under the hypothetical assumption of complete
availability of birth data, the first 5 digits of 26 million SSNs for
individuals born between 1989 and 2003 may be correctly
matched at the first attempt (in addition to �4 million of those
born between 1973 and 1988); and almost 5 million complete
SSNs may be matched with �1,000 attempts (in addition to �1
million of those born between 1973 and 1988).

Statistical predictions of windows of possible SSNs, however,
do not amount, alone, to identity theft. The likelihood that
probabilistic inferences can translate to actual SSN identification
is a function of several parameters, including the availability of
targets’ birth data, the availability of services an attacker can
exploit for repeated attempts to match the targets’ SSNs, and
those services’ ability to detect and halt such attempts. Inaccu-
rate or unavailable birth information, or the attacker’s inability
to complete repeated attempts, will reduce the accuracy of the
predictions and the number of individuals’ SSNs under actual
threat compared with the DMF estimations.

Dramatically reducing the range of values wherein an SSN is
likely to fall, however, makes identity theft easier to perpetrate.
A party who attempted to guess someone’s SSN randomly would
face poor success odds: Without auxiliary knowledge, the the-
oretical entropy of an SSN can be estimated at 30 bits (in log2).
The more granular knowledge of the assignment scheme that we
have shown to be inferrable significantly decreases that entropy
(for some states, down to 11 bits). When 1 or 2 attempts are
sufficient to identify a large proportion of issued SSNs’ first 5
digits, an attacker has incentives to invest resources into har-
vesting the remaining 4 from public documents‡ or commercial

‡Recent legislative initiatives have focused on restricting the public usage of only the SSNs’

first 5 digits, allowing the last 4 to remain associated with names in public documents (see

www.ncsl.org/programs/lis/privacy/SSN2007.htm).

Fig. 2. Prediction accuracies for DMF records with January 1973 to December

2003 birthdays across the 50 states. (A) Ratios of ANGNs (first 5 digits) accu-

rately predicted. (B) Ratios of complete SSNs accurately predicted with �1,000

attempts. In each quadrant, columns represent months, and rows represent

states (sorted by their 1973 births, lowest to highest). The colors in each cell

represent ratios out of monthly SSN counts.
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services.§ More importantly, when �10, 100, or 1,000 attempts
are sufficient to identify complete SSNs for massive amounts of
targets, brute-force attacks replicating the algorithm we pre-
sented in the previous section become economically plausible.

Attackers can exploit online services as oracle machines (19),
testing subsets of variations predicted by the algorithm to verify
which SSN corresponds to an individual with a given birth date [a
practice called ‘‘tumbling,’’ consisting of slightly changing numerical
details in fraudulent credit applications (such as address numbers
and SSNs), has been documented by IDAnalytics (20)].

Y ‘‘instant’’ credit approval services [such as plentiful online
credit card issuers—including those specifically targeting in-
dividuals with poor credit (21); wireless carriers; or instant
lending services (22)]. These services require information
such as applicants’ names, dates of birth, and SSNs to screen
credit or service applications, thus offering an attacker a
means to verify variations of predicted SSNs;

Y sending mass spear phishing emails (23) based on social
engineering (24). Such emails would include the target’s first
5 or 6 SSN digits to elicit a revelation of the remaining digits;

Y the SSA’s own SSN Verification Service (www.ssa.gov/
employer/ssnv.htm) and the Department of Homeland Secu-
rity’s E-Verify system (www.uscis.gov/e-verify), 2 antifraud
initiatives that allow employers to verify large numbers of
employees’ SSNs at a time. They could be abused if an attacker
succeeded in impersonating companies’ representatives or
self-employed individuals.

Although defense mechanisms to detect repeated abuses are
in place at those services [for instance, the SSNVS tracks
incorrect attempts at verifying SSNs, and financial institutions
blacklist (for various days or months) IP addresses originating 3
or more failed logins or transactions (25)], ‘‘botnets’’ of com-
promised computers (26) allow attackers to test—cheaply and
covertly—vast numbers of variations of targets’ SSNs, strategi-
cally distributing simultaneous attempts across services, com-
promised machines, and target accounts. A rational attacker
would focus on SSNs issued in states and years with higher
prediction accuracies, taking advantage of the lack of a central-
ized, real-time system for the notification of hits and flags on
credit account requests (27), as well as of the fact that, unlike
traditional passwords, SSNs cannot be blacklisted after failed
attempts, nor changed to avoid future fraud (28).

Consider, for instance, an attacker who rented a small botnet
(10,000 IP addresses) to apply for credit cards impersonating
18-year-old West Virginia-born U.S. residents (whose state and
dates of birth he has obtained from commercial databases).
Assuming that an IP address gets blacklisted by an online credit
card issuer after 3 incorrect attempts, that the criminal distrib-
utes his or her attacks across 20 issuers and can find birth data
for 50% of the potential targets, and that inquiries with the
correct first 7 of 9 digits are sufficient for a CRA to answer with
a positive match in 50% of the cases, he could harvest credentials
at rates as high as 47 per minute, obtaining �4,000 credentials
within 2 h before his or her IPs are blacklisted [our estimates are
based on the prediction accuracies calculated over DMF records
for the corresponding year and state and constrain the number
of attempts to stay within 10% of the daily volume of CRA
inquiries [estimated at 4 million by the FTC in 2004 (17)]. After
that, he could wait for the blacklist period to expire or rent a
different set of botnet machines. Estimates for the total number
of bots worldwide range from as low as 800,000 (26) to as high
as 5 million (29).

The profitability of such operation depends on various factors.
Breaching large organizations’ databases to harvest personal data
can produce massive amounts of credentials but often requires
significant logistical and technical efforts (for instance, see ref. 30
on the TJ Maxx breach). On the other hand, automated vast-scale
cyber-attacks based on distributed computations, or mass-scale
harvesting of personal data and affordability, are becoming more
common (31) because of the availability and affordability of bot-
nets. Botnets are easy to program for repeated online applications,
and they are economical: Although estimates vary, controlling
10,000 IPs for a day could cost as little as $1,000 (32). The data
necessary for the predictions is, itself, widely available: SSN pre-
dictions do not require knowledge of someone’s birth zipcode but
just his or her state and date of birth. Whereas SSNs are becoming
harder to purchase in the open market (8) and less available in
public documents (33), mass amounts of birth data for U.S.
residents can be obtained or inferred—often for free or at negli-
gible per unit prices—from multiple sources. They include data
brokers (such as www.peoplefinders.com, which sells access to birth
data and personal addresses for ‘‘almost every adult in the United
States’’); voter registration lists (for most states); online free people
searches (such as www.zabasearch.com); as well as social network-
ing sites: Our estimates indicate that at least 10 millions U.S.
residents make publicly available or inferrable their birthday infor-
mation on their online profiles. An attacker may not even need birth
data: The rise of synthetic identity theft (where fake names
are combined with real SSNs and birthdates) suggests that a
correspondence between birthdate and SSN can be sufficient to
pass the screening of CRAs, even when names or addresses do
not match those in the credit reports (21, 22). Our results show that
such correspondence is inferrable even without knowledge of the
target’s name.

These aspects are further discussed in ref. 34. There, we present
an illustrative application of the prediction algorithm in which we
infer alive individuals’ SSNs based on public information we mined
from a social networking site. To illustrate the actual threat of
combining public records to infer sensitive information, we used
DMF data as the analysis set to extract the most-frequent ANGNs
and the SN regression coefficients for the range of states and
birthdays corresponding to the alive individuals’ birth data. We
extracted the birth data from the public profiles of 621 students at
a North American university. We then interpolated our sample’s
birth data with the patterns estimated from DMF records, and then
predicted the formers’ SSNs. We verified the accuracy of our
predictions against the subjects’ actual SSN data (from the Uni-
versity Enrollment services), using a secure, IRB-approved proto-
col that disclosed to us only aggregate prediction accuracy statistics.
We found that at parity of year and state of birth (and SSN
assignment), the test based on online social network data and the
DMF test produced comparable results: we accurately predicted
with a single attempt the first 5 digits for 6.3% of our sample,
composed mostly of individuals born in populous states before the
onset of the EAB program; almost one-third of those predictions
(which matched the target’s first 5 digits) fell within fewer than
1,000 integers from the target’s actual SSN. The DMF test slightly
outperforms the social networking site test, since self-reported
social network data about hometown and date of birth may be
inaccurate or, in fact, misleading. However, these findings confirm
that patterns extrapolated from deceased individuals’ SSNs in fact
can be used to predict the SSNs of living individuals based entirely
on public data.

Although inaccurate birth data or inability to run repeated
verification attempts are likely to lower prediction accuracies for
alive individuals compared with those we obtained for the DMF
set, various factors may actually increase prediction accuracies in
the real world. Access that criminals have to external data
sources with living individuals’ SSNs, larger shares of population

§In the practice known as ‘‘pretexting’’ (5), criminals contact financial services and use

information already available to them—such as names and partial SSNs—to learn the

remaining SSN digits.
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being born under EAB (and then, inevitably, populating the
DMF), and matched predictions or improved prediction algo-
rithms will conspire to augment the DMF analysis set, narrow the
group of testable SSN variations, and improve prediction accu-
racies. Furthermore, the averages we presented above should not
befog the finding that the SSN assignment scheme effectively
discriminates (in terms of higher identification risks) against
younger individuals born in less populous states. More importantly,
our extrapolations conservatively focused on individuals born be-
tween 1989 and 2003: to those, one should add all individuals born
after 2003 who continue to receive SSNs under the current assign-
ment scheme [being a minor is no shield against identity theft (35);
some lenders give accounts to individuals with no credit history
(21)]. Unlike data breaches, which are local threats (that is, specific
to the records contained within a certain database, however large
that may be), the predictability we observed is universal, in that
applies, in principle, to any current and future SSNs—unless their
assignment scheme is modified.

Conclusions

The predictability of SSNs is an unexpected consequence of the
interaction between multiple data sources, trends in information
exposure, and antifraud policy initiatives with unintended effects.
It exposes the privacy tradeoffs of information-disclosure policies
(36), reflecting the paradox of information ‘‘deemed useful to be
publicly available under the old transactions technology’’ but now
too available in a world of wired consumers (37). SSNs were
designed as identifiers at a time when personal computers and
identity theft were unthinkable; today, abused as authentication
devices (38), they enable an ‘‘architecture of vulnerability’’ (39), in

which losses are incurred even in absence of fraud, because of costs
caused by attempts to defend, and exploit, the system.

A number of mitigating strategies can be considered. In the
short term, one of the least costly countermeasures would have
the SSA fully randomize the assignment scheme, abandoning the
matching of area numbers to states, and the sequential assign-
ment of serial numbers. [The SSA has recently proposed ran-
domizing part of the SSN assignment scheme—but only its first
3 digits (40).] These modifications would eliminate the statistical
predictability of newly assigned SSNs. However, they would not
do much to protect already existing SSNs.

To address those concerns, various recent legislative initiatives
have been focusing on removing SSNs from public exposure or
redacting their first 5 digits [see www.ncsl.org/programs/lis/
privacy/SSN2007.htm (33, 38)]. However, our results suggest that
such initiatives, although well-meaning, may be misguided:
Assigned SSNs cannot be revoked to avoid future fraud, exposed
data cannot be taken back, and the first 5 digits of an SSNs are
those, in fact, easier to infer. This leaves even redacted or
truncated SSNs still predictable—and, therefore, still vulnerable.
Industry and policy makers may need, instead, to finally reassess
our perilous reliance on SSNs for authentication, and on con-
sumers’ impossible duty to protect them.
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25. Florêncio D, Herley C, Coskun B (2007) Do strong web passwords accomplish anything?

USENIX HOTSEC 2007, www.usenix.org/event/hotsec07/tech/full�papers/florencio/

florencio.pdf , pp 1–6.

26. Cooke E, Jahanian F, Mcpherson D (2005) The zombie roundup: Understanding,

detecting, and disrupting botnets. USENIX SRUTI, www.usenix.org/event/sruti05/tech/

full�papers/cooke/cooke.pdf, pp 39–44.

27. ID Analytics (2003) National Report on Identity Fraud (ID Analytics, San Diego).

28. Social Security Adminsitration (2007) IdentityTheft and Your Social Security Number,

www.ssa.gov/pubs/10064.pdf.

29. Matwyshyn AM (2006) Penetrating the zombie collective: Spam as an international

security issue. SCRIPTed 3(4).

30. U.S. Department of Justice (2008) Retail Hacking Ring Charged for Stealing

and Distributing Credit and Debit Card Numbers from Major U.S. Retailers,

www.usdoj.gov/opa/pr/2008/August/08-ag-689.html.

31. Symantec (2008) Symantec Global Internet Security Threat Report, Trends for July–

December 07, http://eval.symantec.com/mktginfo/enterprise/white�papers/b-

whitepaper�internet�security�threat�report�xiii�04–2008.en-us.pdf

32. Lesk M (2007) The new front line: Estonia under cyberassault. IEEE Security Privacy

5(4):76–79.

33. Government Accounting Office (2008) Social Security Numbers Are Widely Available

in Bulk and Online Records, but Changes to Enhance Security Are Occurring, www.

gao.gov/new.items/d081009r.pdf, GAO-08-1009R.

34. Acquisti A, Gross R (2009) Social insecurity: The unintended consequences of identity

fraud prevention policies. Tech rep (Carnegie Mellon Univ, Pittsburgh).

35. Federal Trade Commission (2006) Identity Theft Complaints by Victim Age, www.

ftc.gov/sentinel/reports/Sentinel�CY-2005/idt�victim�age.pdf.

36. Duncan G, Keller-McNulty SA, Stokes SL (2001) Disclosure risk vs. data utility: The R–U

confidentiality map. Tech rep no. 121 (National Institute of Statistical Sciences, Re-

search Triangle Park, NC).

37. Varian HR (1996) Economic aspects of personal privacy. Privacy and Self-Regulation in

the Information Age (National Telecommunications and Information Administration,

Washinton, DC).

38. Federal Trade Commission (2008) Security in Numbers: Social Security Numbers and

Identity Theft, www.ftc.gov/os/2008/12/P075414ssnreport.pdf.

39. Solove D (2003) Identity theft, privacy, and the architecture of vulnerability. Hastings

Law J 54:1227–1252.

40. Social Security Administration (2007) Protecting the integrity of Social Security num-

bers. Federal Register 72(127):36540.

10980 � www.pnas.org�cgi�doi�10.1073�pnas.0904891106 Acquisti and Gross

http://www.pnas.org/cgi/data/0904891106/DCSupplemental/Appendix_PDF

