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Abstract—Software developers are often faced with modification tasks that involve source which is spread across a code base. Some

dependencies between source code, such as those between source code written in different languages, are difficult to determine using

existing static and dynamic analyses. To augment existing analyses and to help developers identify relevant source code during a

modification task, we have developed an approach that applies data mining techniques to determine change patterns—sets of files that

were changed together frequently in the past—from the change history of the code base. Our hypothesis is that the change patterns

can be used to recommend potentially relevant source code to a developer performing a modification task. We show that this approach

can reveal valuable dependencies by applying the approach to the Eclipse and Mozilla open source projects and by evaluating the

predictability and interestingness of the recommendations produced for actual modification tasks on these systems.

Index Terms—Enhancement, maintainability, clustering, classification, association rules, data mining.

�

1 INTRODUCTION

MANY modification tasks to software systems require

software developers to change many different parts
of a system’s code base [23]. To help identify the relevant

parts of the code for a given task, a developer may use a

tool that statically or dynamically analyzes dependencies

between parts of the source (e.g., [27], [1]). Such analyses

can help a developer locate code of interest, but they

cannot always identify all of the code relevant to the

change. For example, using these analyses, it is typically

difficult to identify dependencies between platform-depen-
dent modules and between modules written in different

programming languages.
To augment these existing analyses, we have been

investigating an approach based on the mining of change

patterns—files that were changed together frequently in the

past—from a system’s source code change history. Mined

change patterns can be used to recommend possibly

relevant files as a developer performs a modification task.

Specifically, as a developer starts changing a set of files,

denoted by the set fS , our approach recommends a set of

additional files for consideration, denoted by the set fR. Our

initial focus has been on the use of association rule mining

to determine the change patterns. In this paper, we report

on our use of an association rule mining algorithm: frequent

pattern mining [2], which is based on frequency counts.

To assess the utility of our approach, we evaluate the
recommendations our tool can make on two large open
source projects, Eclipse1 and Mozilla,2 based on the
predictability and the interestingness of the recommendations.
Predictability quantitatively evaluates the recommenda-
tions against the files actually changed during modification
tasks recorded in the development history. The interesting-
ness of recommendations is evaluated primarily by deter-
mining whether or not a recommended file has strong
structural dependencies with the initial file(s) a program-
mer starts changing: Files that are not structurally related
are deemed more interesting as these files are not typically
determinable using existing static and dynamic analyses.

This paper makes two contributions. First, we show the
utility of change pattern mining. This corroborates the
findings of Zimmermann et al. who independently have
been investigating a similar approach using different data
mining algorithms [29]. Second, we introduce a set of
interestingness criteria for evaluating the usefulness of
change pattern recommendations.

The rest of this paper is organized as follows: Section 2
further motivates our approach through scenarios from the
development history of Eclipse and Mozilla. Section 3
describes our approach. Section 4 presents a validation of
our approach on Eclipse and Mozilla. The paper ends with
a discussion of outstanding issues (Section 5), related work
(Section 6), and a conclusion (Section 7).

2 MOTIVATING SCENARIOS

To illustrate the difficulty developers sometimes face in
finding relevant source code during a modification task, we
outline the changes involved in two modification tasks:3

one from the Mozilla source code change history and one
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from Eclipse’s. Mozilla is an open source Web browser

written primarily in C++. Eclipse is an open source

integrated development environment implemented primar-

ily in Java.

2.1 Scenario 1: Incomplete Change

The Mozilla Web browser includes a Web content layout

engine, called Gecko, that is responsible for rendering text,

geometric shapes, and images. Modification task #150339

for Mozilla, entitled “huge font crashes X Windows,”

reports on a bug that caused the consumption of all

available memory when a Web page with very large fonts

was displayed. As part of a solution4 for this modification

task, a developer added code to limit the font size in the

version of Mozilla that uses the gtk UI toolkit, but missed a

similar required change in the version that uses the UI

toolkit xlib. The comments in the modification task report

include the following:

. 2002-06-12 14:14: “This patch [containing the file
gtk/nsFontMetricsGTK.cpp] limits the size of
fonts to twice the display height.”

. 2002-06-12 14:37: “The patch misses the Xlib gfx
version.” [A patch was later submitted with the
correct changes in the X-windows font handling
code in the file xlib/nsFontMetricsXlib.cpp.]

The source code in gtk/nsFontMetricsGTK.cpp does

not reference the code in xlib/nsFontMetricsXlib.

cpp because the code in the gtk version and the code in

xlib version are used in different configurations of

Mozilla. However, an analysis of the CVS5 change history

for Mozilla indicates that these two files were changed

41 times together in the development of Mozilla. When we

applied our approach to Mozilla, we extracted a change

pattern with three files: gtk/nsFontMetricsGTK.cpp,

xlib/nsFontMetricsXlib.cpp, and gtk/nsRender-

ingContextGTK.cpp. Changing the gtk/nsFontMe-

tricsGTK.cpp triggers a recommendation for the other

two files, one of which had been missed in the first patch.

2.2 Scenario 2: Focusing on Pertinent Code

Eclipse is a platform for building integrated development

environments. “Quick fix” is a feature of the Java develop-

ment support in Eclipse that is intended to help a developer

easily fix compilation errors. Modification task #23587

describes a missing quick fix that should be triggered when

a method accesses a nonexistent field in an interface.
The solution for the modification task involved the class

ASTResolving
6 in the text correction package. This class

was structurally related to many other classes: It was

referenced by 45 classes and referenced 93 classes; many of

these classes were involved in a complicated inheritance

hierarchy. Such a large number of structural dependencies

can complicate the determination of which classes should

be changed with ASTResolving.

Using our approach, we found that ASTResolving had
been changed more than 10 times in conjunction with three
classes: 11 times with NewMethodCompletionProposal,
10 times with NewVariableCompletionProposal, and
12 times with UnresolvedElementsSubProcessor.
These three classes were part of the solution for the
modification task, as indicated by comments in the revision
system. However, the other four classes that were part of
the solution were not recommended because they had not
been modified together a sufficient number of times.7

3 APPROACH

Our approach consists of three stages. In the first stage,
which we describe in Section 3.1, we extract the data from a
software configuration management (SCM) system and
preprocess the data to be suitable as input to a data mining
algorithm. In the second stage, which we describe in
Section 3.2, we apply an association rule mining algorithm
to form change patterns. In the final stage, which we
describe in Section 3.3, we recommend relevant source files
as part of a modification task by querying against mined
change patterns. Having extracted the change patterns in
the first two stages, we do not need to regenerate the change
patterns each time we query for a recommendation.

3.1 Stage 1: Data Preprocessing

Our approach relies on being able to extract information
from a SCM system that records the history of changes to
the source code base. In addition to the actual changes
made to the source code, these systems typically record
metadata about the change, such as the time-stamp, author,
and comments on the change. Most of these systems
manage software artifacts using a file as the unit. Some
support finer-grained artifacts such as classes and methods
in an object-oriented programming language (e.g., Coop/
Orm [16]). Our initial focus has been on change histories
stored in a CVS repository, which records and manages
changes to source files. Before attempting to find patterns in
the change history, we need to ensure that the data is
divided into a collection of atomic change sets, and we need
to filter atomic changes that do not correspond to mean-
ingful tasks.

3.1.1 Identifying Atomic Change Sets

The first preprocessing step involves determining which
software artifacts—in our case, files—were checked in
together. This step is not needed when the history is stored
in an SCM system that provides atomic change sets, such as
ClearCase [15]. However, other systems such as CVS, which
is used for the systems we targeted in our validation, do not
track this information; as a result, we must process the
change history to attempt to recreate these sets. We form the
sets using the following heuristic: An atomic change set
consists of file changes that were checked in by the same
author with the same check-in comment close in time. We
follow Mockus et al. in defining proximity in time of check-
ins by the check-in time of adjacent files that differ by less
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than three minutes [20]. Other studies (e.g., [11]) describe
issues about identifying atomic change sets in detail.

3.1.2 Filtering

The second preprocessing step involves eliminating
transactions consisting of more than 100 files because
these long transactions do not usually correspond to
meaningful atomic changes, such as feature requests and
bug fixes. An example is when an integrated development
environment, such as Eclipse, is used to remove unneces-
sary import declarations in all of the Java files in a project.
This kind of organize-import operation tends to change
many files but does not correspond to a meaningful
modification task.

3.2 Stage 2: Association Rule Mining

Association rule mining algorithms extract sets of items that
happen frequently enough among the transactions in a
database. In our context, such sets, called change patterns,
refer to source files that tend to change together. In our
study, we investigate frequent pattern mining [2] for
extracting change patterns from the source code change
history of a system.

The idea of frequent pattern mining is to find recurring
sets of items—or source files in our context of finding
change patterns—among transactions in a database D [2].
The strength of the pattern fs1; . . . ; sng, where each si is the
name of a source file, is measured by support, which is the
number of transactions in D containing s1; . . . ; and sn. A
frequent pattern describes a set of items that has support
greater than a predetermined threshold called min_support.

The problem of finding all frequent patterns efficiently is
not trivial because the performance can be exponential with
respect to the number of items in D when the support
threshold min_support is low. Efficient algorithms to this
problem have been proposed (e.g., [3], [22], [13]). The
algorithm we chose to find frequent patterns uses a compact
data structure called FP-tree to encode a database [13]. The
idea of the algorithm is to find frequent patterns by a depth-
first approach of recursively mining a pattern of increasing
cardinality from the data structure FP-tree that encodes D,
as opposed to a breadth-first approach of finding all patterns
of the same cardinality before finding patterns of a larger
cardinality. In an FP-tree, each node represents a frequent
item in D, except for the root node that represents an empty
item. Each path from the root to a node in the FP-tree
corresponds to a collection of transactions in D, each of
which contains all of the items on the path. Items in a path
are in descending order of support (and in lexicographical
order of item name if two items have the same support).
The mining process involves decomposing an FP-tree
associated with database D into smaller FP-trees, each of
which corresponds to a partition of D. This divide-and-
conquer approach allows the determination of frequent
patterns to focus on the decomposed database rather than
the whole database.

3.3 Stage 3: Query

Applying a data mining algorithm to the preprocessed data
results in a collection of change patterns. Each change
pattern consists of sets of the names of source files that have

been changed together frequently in the past. To provide a
recommendation of files relevant to a particular modifica-
tion task at hand, the developer needs to provide the name
of at least one file that is likely involved in the task. The files
to recommend are determined by querying the patterns to
find those that include the identified starting file(s); we use
the notation recommðfSÞ ¼ fR to denote that the set of files
fS results in the recommendation of the set of files fR. When
the set of starting files has cardinality of one, we use the
notation recommðfsÞ ¼ fR. The recommendation set fR is
the union of matched patterns—patterns with at least one
file from fS—not including fS .

We illustrate the query process with an example based
on Mozilla’s modification task #150339 described in Section
2.1, using the frequent pattern mining algorithm with the
support threshold min_support equal to 20 and transactions
from the Mozilla development history from 27 March 1998
to 8 May 2002. Suppose a developer starts changing the file
gtk/nsFontMetricsGTK.cpp. Our approach would
retrieve the two change patterns that contain the file gtk/

nsFontMetricsGTK.cpp : {gtk/nsFontMe-

tricsGTK.cpp, gtk/nsFontMetricsGTK.h, gtk/

nsRenderingContextGTK.cpp} and {gtk/nsFontMe-
tricsGTK.cpp, xlib/nsFontMetricsXlib.cpp}. The
recommendation is generated (as described in Section 3.3)
by taking the union of the two change patterns not
including the starting file gtk/nsFontMetricsGTK.cpp:
recomm (gtk/nsFontMetricsGTK.cpp) = {xilb/
nsFontMetricsXlib.cpp , gtk/nsFontMe-

tricsGTK.h, gtk/nsRenderingContextGTK.cpp}.

4 VALIDATION

To assess the utility of change patterns in a modification
task, we need to apply the approach to systems with many
source code changes and for which information about
modification tasks is available. To satisfy this requirement,
we applied the approach to the development histories of
two large open-source systems—Eclipse and Mozilla. The
two projects are written in different programming lan-
guages: Eclipse is mainly written in Java and Mozilla is
mainly written in C++. The two projects also differ in
development history: Mozilla has more than six years of
development history, whereas Eclipse only has three years
of development history. Each of these projects also involves
a large number of developers, reducing the likelihood that
peculiar programming practice of a particular programmer
dramatically affects the results. However, both Eclipse and
Mozilla are open source projects and use CVS and Bugzilla
bug tracking system8 to track modifications. In this section,
we begin by describing our validation strategy (Section 4.1)
and the parameter settings (Section 4.2). We then present an
analysis of the results (Sections 4.3 to 4.5).

4.1 Validation Strategy

The validation process involved determining if source code
recommended from a change pattern was relevant for a
given modification task. This validation process required
dividing the development history information for a system
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into training and test data. The training data was used to
generate change patterns that were then used to recom-
mend source for the test data.

To determine if our approach can provide good
recommendations, we investigated the recommendations
in the context of completed modification tasks made to each
system. These modification tasks are recorded in each
project’s Bugzilla, which also keeps track of enhancement
tasks. We refer to both bugs and enhancements as
modification tasks, and we refer to the files that contribute
to an implementation of a modification task as a solution.

Since Bugzilla does not record which source files are
involved in a solution of a modification task, we use
heuristics based on development practices to determine this
information. One common practice is that developers
record the identifier of the modification task upon which
they are working as part of the CVS check-in comments for
a solution of the modification task. Another common
practice is that developers commit the files corresponding
to a solution of the modification task into CVS close to the
time at which they change the status of the modification
task report to “fixed” [9]. For the validation, we chose tasks
for which a solution can be associated, for which the files
involved in the solution were between the dates designated
as the test data, and for which at least one file involved in
the solution was covered by a change pattern extracted
from the training data.

To recommend possibly relevant files using our ap-
proach, at least one file that is likely involved in the solution
must be specified by the developer. In our validation, we
chose to specify exactly one file fs to generate a set of
recommended files fR; we chose this approach because it
represents the minimum amount of knowledge a developer
would need to generate a recommendation. We evaluate the
usefulness of the recommended files fR in terms of two
criteria, predictability and interestingness, described in the
rest of Section 4.1.

4.1.1 Predictability

The predictability of the recommendations is measured in
terms of precision and recall. The precision of a set of
recommendations refers to how well our approach provides
concise recommendations. The recall of a set of recommen-
dations refers to how well our approach recommends
the files in the solution. More precisely, the precision
precisionðm; fSÞ of a recommendation recommðfSÞ is the
fraction of recommendations that did contribute to the files
in the solution fsolðmÞ of the modification task m. The recall
recallðm; fSÞ of a recommendation recommðfSÞ is the
fraction of files in the solution fsolðmÞ of the modification
task m that are recommended.

precisionðm; fSÞ ¼
jcorrectðm; fSÞj
jrecommðfSÞj

recallðm; fSÞ ¼
jcorrectðm; fSÞj

jfsol � fSj
; where

correctðm; fSÞ ¼ jrecommðfSÞ \ ðfsol � fSÞj:

ð1Þ

We use precision and recall to evaluate our approach
quantitatively in two ways: the average precision and recall
(denoted by precisionavg and recallavg, respectively), which

measure the accuracy of recommendations given by each

query (with starting file fS), and the limit of precision and

recall (denoted by precisionlim and recalllim, respectively),

which evaluate how many recommendations are never

correct and how many files in the solution are never

recommended by any query.
In the computation of the average measures, precisionavg

and recallavg, we included only the precision and recall for

recommendations from modification tasks M in the test

data where each task’s solution contained at least one file

from a change pattern. We used each file fs in the solution

of a modification task m 2 M to generate a set of

recommended files fR and calculated fR’s precision and

recall in the equations in (1). The average precision is the

mean of such precision values and analogously for the

average recall.
Equations (2) show the limit precision and recall. The

precisionlimðMÞ value evaluates, for all modification tasks

m 2 M, the fraction of recommended files that could possibly

be correct by any query. More specifically, this measure

captures the average fraction of files that can be recom-

mended from the union of all change patterns in which at

least one file in the change pattern is in the solution. We

denote the files in the union of change patterns as restricted

above by P ðfsolðmÞÞ. The recalllimðMÞ value evaluates, for

all modification tasks m 2 M, the fraction of files in the

solution that could possibly be recommended by any query.

More specifically, this measure captures the average

fraction of files in the solution that are in P ðfsolðmÞÞ. As in

the computation of precisionavg and recallavg, M refers to

modification tasks in the test data where each task’s

solution contained at least one file from a change pattern.

What we want the limit measures to convey is the average

percentage of recommendations by any query that are never

correct, which is 1� precisionlimðMÞ, and the average

percentage of files in the solution that are never recom-

mended by any query, which is 1� recalllimðMÞ.

precisionlimðMÞ ¼ meanm2M
jP ðfsolðmÞÞ \ fsolðmÞj

jP ðfsolðmÞÞj

recalllimðMÞ ¼ meanm2M
jP ðfsolðmÞÞ \ fsolðmÞj

jfsolðmÞj ; where

P ðfsolðmÞÞ ¼
[

all change patterns p such that p \ fsolðmÞ 6¼ ;
p:

ð2Þ

For example, suppose the solution of a modification

task m contains files fa; b; c; d; eg and the change patterns

computed from past history are fa; b; fg, fi; j; hg, and fb; cg.
The files that can possibly be recommended—P ðfsolðmÞÞ —is

fa; b; c; fg. Regardless of what starting files are used, d and e

can never be recommended although they are part of the

solution; as a result, 40 percent of the files in the solution

cannot possibly be recommended. Of files that can possibly

be recommended, the files that are also in the solution are

fa; b; cg. Regardless of what starting files are used, f can

never be correct although it can be recommended; as a result,

25 percent of the files cannot possibly be correct.
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4.1.2 Interestingness

Even if a recommendation is applicable, we have to
consider whether or not the recommendation is interesting.
For example, a recommendation that a developer changing
the C source file foo.h should consider changing the file
foo.c would be too obvious to be useful to a developer. To
evaluate recommendations in this dimension, we assign a
qualitative interestingness value to each recommendation of
one of three levels—surprising, neutral, or obvious—based on
structural and nonstructural information that a developer
might easily extract from the source.

Structural information refers to relationships between
program elements that are stated in the source using
programming language constructs. Table 1 lists the struc-
tural relationships we considered in our analysis for the
Java and C++ languages. The “Structural relationship”
column of Table 1 lists the structural relationships
relðs 7! rÞ between two source code fragments s and r,
where s refers to a source code fragment that a developer
starts to look at and r refers to a source code fragment that
is structurally related to s. The “Granularity” column
indicates the unit of the source code fragments involved
in the relationship: “coarse” indicates that the fragments are
at a class or interface granularity; “fine” indicates that the
granularity of the fragments is finer than class-granularity,
for instance, the relationship is between methods. The
column “Language” indicates to which language—C++ or
Java—the relationship is applicable. The last column
provides a description for each relationship.

Nonstructural information refers to relationships be-

tween two entities in the source code that are not supported

by the programming language. Nonstructural information

includes information in comments, naming conventions,

string literals, data sharing (e.g., code exchanging data

through a file), and reflection.
The interestingness value of a recommendation, fr where

recommðfSÞ ¼ fR and fr 2 fR, is based on how likely it is

that a developer pursuing and analyzing fs would consider

the file fr as part of the solution of a modification task. We

assume that such a developer has access to simple search

tools (e.g., grep) and basic static analysis tools that enable a

user to search for references, declarations, and implemen-

tors of direct forward and backward references for a given

point in the source, as is common in an integrated

development environment.
We categorize a recommendation fr as obvious when

. a method that was changed in fs has a direct fine-
grained reference—reads, isRead, writes, isWritten,
calls, isCalled, creates, isCreated, checks, isChecked,
as described in Table 1—to a method, field, or class
in fr, or

. a class that was changed in fs has a strong coarse-
grained relationship—the coarse-grained relation-
ships described in Table 1—to a class in fr.

We categorize a recommendation as surprising when

. fs has no direct structural relationships with fr, or
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. a fragment in fs contains nonstructural information
about fr.

A recommendation is neutral when

. a method in fs, other than the one that was changed in
fs, has a direct fine-grained reference to a method,
field, or class in fr, or

. a class that was changed in fs has a weak coarse-
grained relationship—it indirectly inherits from, or
is in the same package or directory that has more
than 20 files—with a class that was changed in fr.

If fs and fr have more than one relationship, the
interestingness value of the recommendation is deter-
mined by the interestingness value of the most obvious
relationship.

4.2 Validation Settings

Fig. 1 presents some metrics about the Eclipse and Mozilla
developments and outlines the portions of the development
history we considered in our analysis. In both systems, the
training data comprised changes to over 20,000 files and
over 100,000 versions to those source files.

Table 2 shows the number of transactions involving
different cardinalities of files as well as the total number of
transactions. For the period of time that corresponds to the
training data, both Eclipse and Mozilla have a similar
number of transactions. In both systems, transactions of two
items have the highest counts and the number of transac-
tions decreases as the cardinality of the transaction
increases.

Table 3 describes the parameters we used in the data
mining algorithm. The first column lists the support
threshold. The second column indicates whether the data
mining algorithm was applied to Eclipse and Mozilla. The

third column presents the number of files that were

generated from the patterns extracted using the algorithm

with the specified parameter applied to either Eclipse or

Mozilla.
For the frequent pattern algorithm, the value of the

support threshold min_support was varied so that a reason-

ably large number of files (over 200) were involved in

patterns and the support was not too low (not below 5).

Comparing the patterns generated for Eclipse and Mozilla

using the frequent pattern algorithm with the same

parameter setting (min_support equals 20 and 15), Mozilla

has more than five times more files involved in the change

patterns than Eclipse. We were careful to choose thresholds

that were neither too restrictive nor too relaxed. An overly

restrictive threshold results in too few patterns. This

situation affects the recall value as the recommendations

do not cover the changes needed for a modification task. An

overly relaxed threshold affects the precision since too

many patterns result in a number of recommendations, only

a few of which are correct.
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4.3 Predictability Results

Fig. 2 shows the precision and recall values that result from
applying the frequent pattern algorithm to each system. The
lines connecting the data points on the recall versus
precision plot show the trade-off between precision and
recall as the parameter values are altered. The recall and
precision axes are adjusted to show only values up to 0.7.
The label beside each data point indicates the min_support
threshold used in the frequent pattern mining algorithm; for
example, “ms = 5” stands for min_support = 5.

For the two groups of connected points labeled “recallavg
versus precisionavg,” each data point represents average
recall and precision. The recall and precision values for the
generated change patterns for Mozilla are encouraging;
precision is around 0.5 with recall between 0.2 and 0.3
(meaning that, on average, around 50 percent of the
recommended files are in a solution and 20 percent to
30 percent of the files in a solution are recommended). The
line plot shows a steady trade-off between recall and
precision when min_support changes. However, the recall
and precision values in the Eclipse case are less satisfactory;
precision is only around 0.3, recall is around 0.1 to 0.2, and
the line plot shows some strange behavior, namely, when
min_support threshold equals 15, there is a sudden decrease
in both precision and recall. The small number of patterns
and small number of files covered by patterns may cause
this behavior because few recommendations can be made.

For the two groups of connected points labeled “recalllim
versus precisionlim,” each data point represents the limit of
recall and precision, which evaluate the recommendations
that can possibly be recommended (recalllim) and recom-
mendations that can possibly be correct (precisionlim). For
Mozilla, the precision is between 0.4 and 0.5, which means
that, on average, around 50-60 percent of the recommended
files are never correct; the recall is around 0.6, which means
that, on average, around 40 percent of the files in a solution
are never recommended. For eclipse, the precision is
around 0.4 meaning that, on average, around 60 percent
of the recommended files are never correct, and the recall is
around 0.4 meaning that, on average, around 60 percent of
the files in a solution are never recommended.

Although the recall and precision may seem low, the
value of the approach must be evaluated based on its ability
to provide helpful recommendations; the scenarios pre-
sented in Section 2 provide some examples. We assess the
interestingness of recommendations further below. We
argue that recommendations with precision presented in
Fig. 2 are useful as long as the gain to the developer when
the recommendation is helpful is greater than the cost to the
developer of determining which recommendations are false
positives. Our approach can augment existing approaches
that provide recommendations to relevant source code in a
modification task.

4.4 Interestingness Results

To assess the interestingness of the recommendations, we
randomly chose, for each project, 20 modification tasks
from the period of time covered by the test data for the
project. For each modification task, we determined, for each
file (fs) that was part of the check-in for the modification
and that was contained in at least one change pattern, the
files (fR) recommended using fS . For each file recom-
mended, we assessed its interestingness level according to
the criteria described in Section 4.1.

Tables 4 and 5 summarize the recommendations result-
ing from change patterns generated with the frequent
pattern algorithm where min_support threshold equals 20 in
Mozilla and min_support equals 10 in Eclipse. We chose to
investigate the results from the frequent pattern algorithm
with these threshold settings because they resulted in the
best trade-off in terms of precision and recall. We grouped
the recommendations with the same interestingness level
into similar cases and gave each a descriptive name.
Recommendations with the same descriptive name and
with the same interestingness level can come from different
modification tasks; the identifiers of the relevant tasks are
shown in the last column. The number in parentheses
beside each identifier is the sum of the cardinality of
recommended sets, where each recommended set is the
result of querying with a different fs associated with the
modification task.
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4.4.1 Mozilla Interestingness Results

Table 4 presents a categorization of recommendations for

Mozilla. Our approach generated recommendations for 15

of the 20 selected modification tasks. The recommendations

for the 15 tasks include two kinds of surprising recommen-

dations, two kinds of neutral recommendations, and five

kinds of obvious recommendations. We focus the discussion

on the cases categorized as surprising. Recommendations

classified as neutral and even obvious may still be of value to

a developer, as shown by the scenario described in

Section 2.2, but we do not provide a detailed analysis of

these cases.
The “cross-language” case in the surprising category

demonstrates how our approach can reveal interesting

dependencies on files written in different languages and on

noncode artifacts that may not be found easily by a

developer.

. For Mozilla, a developer specifies the layout of

widgets in XUL (XML-based User interface Lan-

guage), which eases the specification of the UI and

provides a common interface for the UI on

different platforms. XUL does not solely define
the UI; a developer must still provide supporting

code in a variety of formats, including XML

schema files and Javascript files. This situation

occurred in the solution of modification task

#150099, which concerned hiding the tab bar in

the Web browser by default. The solution involved

adding a new menu item for displaying the user’s

preference of showing or hiding the tab bar in an
XUL file, declaring the menu item in a XML

schema file, and initializing the default settings of

the menu item as call-back code in a Javascript file.

Our approach generated six surprising recommen-

dations involving Javascript-XUL,9 XML schema-

XML, and XML schema-Javascript.

The “duplicate code bases” case from the surprising
category demonstrates how our approach can reveal
potentially subtle dependencies between evolving copies
of a code base.

. As part of the solution of modification task #92106,
two scripts that built different applications in the
XML content model module TransforMiix needed
to be updated. One script was for building an
application for transforming XML documents to
different data formats, and the other script was for
building a benchmarking application for the former
application. Much of the two build scripts shared the
same text and changes to one script usually required
similar changes to the other script. In fact, this code
duplication problem was later addressed and elimi-
nated (modification task #157142). When either of
these build scripts was considered to be modified,
our approach was able to provide a recommendation
that the developer should consider the other script,
resulting in two surprising recommendations.

. For the Mac OS X operating system, Mozilla includes
two code bases, Chimera and Camino. The second
is a renamed copy of the first code base, but changes
were still occurring in parallel to each code base. For
modification tasks #143094 and #145815, our ap-
proach was able to recommend that a change to a file
in one code base should result in a change to the
corresponding file in the other code base.

. Modification task #145560 concerned fixing a typo-
graphical error in a variable named USE_NSPR_

THREADS in the configuration template file con-

figure.in. The shell script configure—the
other file involved in the solution of the modifica-
tion task—was generated using autoconfig for
configuring different platforms using appropriate
parameter values specified in the template file
configure.in. Our approach was able to recom-
mend that a change in file configure.in required
a change in configure because configure must
be regenerated from configure.in.

. Modification task #150339, which was described in
Section 2.1, presented a situation where a developer
missed changing code that was duplicated in two
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versions of the system, one that uses the gtk

UI toolkit and another one that uses the xlib UI
toolkit. Our approach generated recommendations
suggesting parallel changes in the code.

4.4.2 Eclipse Interestingness Results

Table 5 shows the categorization of recommendations for
Eclipse. Fewer of the selected modification tasks for Eclipse
resulted in recommendations than for Mozilla. We could
not provide recommendations for 11 of the modification
tasks because the changed files were not covered by a
change pattern. Of the nine tasks that resulted in recom-
mendations, eight of them had solutions involving files in
which the classes were structurally dependent. We group
these into seven cases involving obvious recommendations,
two cases involving neutral recommendations, and one case
involving surprising recommendations that we focus on.

The “cross-platform/XML” case involved recommenda-
tions for noncode artifacts, which, as we argued above, may
not be readily apparent to a developer and may need to be
determined by appropriate searches.

. Modification task #24635 involved a missing URL
attribute in an XML file that describes which
components belong to each platform version. The
change involved 29 files that spanned different plug-
ins for different platform versions. Our approach
generated 230 surprising recommendations. This
large number of recommendations was made be-
cause the solution for the problem contains 29 files of
which 18 match at least one change pattern. Each of
these 18 files, when used as the starting file, typically
generated recommendations of over 10 files, sum-
ming to 230 recommendations.

4.4.3 Conclusion of the Interestingness Results

The majority of the recommendations made by our
approach were classified as neutral or obvious and involved
files that were structurally related. Even though existing
static or dynamic analysis approaches could detect such
relationships, in some cases, our approach may provide
more specific recommendations; for instance, the case
described in Section 2.2. Many of the cases we listed as
surprising involved files implemented in different lan-
guages or used in different platforms. These dependencies
would be difficult to find with existing static and dynamic
analysis approaches.

4.5 Performance

The queries that we performed in this validation took less
than 5 seconds on a Sun Ultra 60 system with 1280 MB RAM
with 2 x 360 MHz UltraSPARC-II processors. The computa-
tion time of populating the database is more time-consum-
ing, but is performed less often. Populating the database
with file change data took about two hours for each of
Mozilla and Eclipse. Transaction computation took 6 min-
utes on Eclipse and 11 minutes on Mozilla. The computa-
tion time of mining change patterns increases as the support
threshold decreases: Table 6 shows that the performance
ranges from 1 minute to 55 minutes for Eclipse and from
1 minute to 3 minutes for Mozilla.

5 DISCUSSION

In this section, we begin by discussing the criteria we used
to validate the results of our experiment (Sections 5.1 and
5.2). We then comment on some issues with the approach
(Sections 5.3 to 5.5), including the granularity of the source
code used in the change pattern mining process, and an
alternative algorithm we have investigated (Section 5.6).

5.1 Interestingness Validation Criteria

Evaluating the usefulness of a particular file recommenda-
tion is difficult because the relevance of a particular file to a
change task is subjective. For instance, even if a file does
not need to be changed as part of the modification task,
some developers may assess the file as relevant if it aids in
their understanding of some functioning of the code
relevant to the modification task. Since we cannot deter-
mine absolutely if a file is interesting, we chose to base the
interestingness criteria on a set of heuristics, several of
which are based on structural relationships between parts
of the code. Since existing tools, such as compilers and
integrated development environments, provide support to
find some structurally related code, we categorized
recommendations which could be found using such tools
as obvious. On the other hand, recommendations involving
nonstructural relationships may be more difficult for a
developer to find; these recommendations are thus classi-
fied as neutral or surprising.

The interestingness of recommendations might be
determined more accurately through an empirical study
involving human subjects. As we have argued, we believe
our interestingness criteria are a good approximation of
what would interest a software developer. An assessment of
recommendations by human subjects and a correlation of
the interest to our criteria remains open for future work.

5.2 Predictability Validation Criteria

Our evaluation of recall and precision is conservative in the
sense that we measure these values with respect to whether
a recommended file fr was part of the set of files fsol that
was checked in as part of the solution. We cannot determine
if a recommended file that did not have a version stored as
part of the change might have been helpful to a developer in
understanding the source to make the desired changes.
Additionally, in the calculation of recallavg and precisionavg,
the recommendations were made using one starting file,
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which represents the minimum amount of knowledge a
developer would need to apply our approach.

In the calculation of predictions in the test data, we have
not included the modification tasks whose solutions do not
contain any files in a change pattern. The rationale behind
this is that our approach is based on the assumption that
the target project has a rich history of changes. Modifica-
tion tasks whose solutions do not contain any files from
any change patterns indicate that the part of the system the
modifications tasks are concerned with does not have a
rich history of changes. For example, the test data of the
Mozilla project contains 827 modification tasks between the
designated dates that we could associate with a CVS check-
in, of which the solutions of 337 to 487 (41 to 59 percent)
tasks are covered by at least one file from a change pattern:
The range of task solution covered depends on the value of
min_support.

5.3 Weaknesses of Our Approach

Several possibilities may affect the predictability of the

recommendations in our evaluation. One possibility is that

there were too few transactions for each system: Association

rule mining usually assumes a large number of transactions.

For example, in the first frequent pattern algorithm

literature, the number of transactions used in the experi-

ment is more than 20 times greater than the number of items

in a validation of the frequent pattern algorithm [13].

However, in Eclipse and Mozilla, the number of transac-

tions and the number of items—files in our context—are

approximately the same because items do not occur in as

many transactions as in other applications. This may be one

reason that the recall and precision are not high. The use of

CVS by these projects further impacts our approach since

historical information is not maintained by CVS when a file

or directory is renamed. Moreover, significant rewrites and

refactoring of the code base can affect our approach. Such

changes affect the patterns we compute because we do not

track the similarity of code across such changes.

5.4 Granularity

Currently, the change associations we find are among files.
Applying our approach to methods—where change pat-
terns describe methods instead of files that change together
repeatedly—may provide better results because a smaller
unit of source code may suggest a similar intention behind
the separated code. However, refining the granularity
weakens the associations (each pattern would have lower
support), which may not be well-handled by our current
approach.

5.5 Implementation Trade-Offs

In this paper, we have presented an initial evaluation of an
implementation of an association rule algorithm. In our
implementation, we made several choices. First, we chose to
use an offline approach. More time is needed up-front to
compute the patterns, but the query time is faster once the
patterns are computed if the same query is performed
multiple times. Second, the implementation of the approach
we described in this paper does not handle incremental
changes that are checked into the SCM system. An

incremental implementation that updates the list of transac-
tions of atomic changes as files are checked into the SCM
system and that incrementally mines patterns [8] is
possible.

5.6 Alternative Algorithms for Finding Change
Patterns

In this paper, we have presented one association rule
mining algorithm for finding change patterns, namely,
frequent pattern mining. We also considered another
algorithm, called correlated set mining [7], which considers
statistical correlation that may be implied by cooccurrences
of items, unlike frequent pattern mining which considers
only cooccurrences of items. The idea of correlated set
mining is to find all sets of items with sufficient correlation
as measured by the chi-squared test. In our context, the chi-
squared test compares the frequencies of files changed
together (called observed frequencies) with the frequencies we
would expect if there were no relationship between whether
or not the set of files are changed together (called expected
frequencies). A statistically significant difference between the
two frequencies indicates, with a degree of confidence, that
the fact that the files changed together are correlated.

When we applied the correlated set algorithm (comput-

ing correlated sets of cardinality two) to the change data of

the target systems, few change patterns were generated,

indicating that the algorithm is not applicable on the data.

We observed that the expected frequencies are much

smaller than the observed frequencies because the total

number of possible files in the system is much larger than

the number of times any two files changed together. Data

with such a distribution does not work well with the chi-

squared test used in correlated set mining, which requires

expected frequencies to not be too small. One way to

improve this situation is to partition the transactions in a

way that it would not dramatically weaken the correlations

and to apply the correlated set mining algorithm to each

partition so that the number of files in the system is closer to

the number of times any two files changed together.

Dividing the system into architectural modules may be

one such meaningful way to partition the system.

6 RELATED WORK

We first focus on the comparison of our approach to others
that rely upon development history (Section 6.1) to help
determine relevant code. We then focus on approaches that
rely on impact analysis to determine the scope of a
modification task (Section 6.2). Finally, we describe other
work that uses data mining approaches to software
engineering problems (Section 6.3).

6.1 Using Development Histories to Identify
Relevant Code

Zimmermann et al., independently from us, have devel-
oped an approach that also uses association rule mining on
CVS data to recommend source code that is potentially
relevant to a given fragment of source code [29]. The rules
determined by their approach can describe change associa-
tions between files or methods. Their approach differs from
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ours in that they use a particular form of association rule
mining in which rules determined must satisfy some
support and confidence. Frequent pattern mining, the
algorithm that we use, uses only support to determine the
association. The reason that we chose not to use the
confidence value is because it can give misleading associa-
tion rules in cases where some files have changed
significantly more often than others [7]. It was also part of
our motivation for considering correlation rule mining,
which takes into account how often both files are changing
together as well as separately. In their implementation, they
use an online approach, where only the patterns that match
the current query are computed, whereas we compute all
the patterns and use them for multiple queries. Both
Zimmermann et al.’s approach and ours produce similar
quantitative results: Precision and recall that measure the
predictability of the recommendations are similar in value
when one single starting file is in the query. Zimmermann
et al. also did similar experiments with a different number
of starting files. The qualitative analyses differ. They
present some change associations that were generated from
their approach and argue that these associations are of
interest. In contrast, we analyzed the recommendations
provided in the context of completed modification tasks,
emphasizing when the results would be of value to a
developer. We assessed the value of the recommendations
using the interestingness criteria that we developed.

Shirabad et al. also address a similar question to that
addressed in this paper: When a programmer is looking at a
piece of code, they want to determine which other files or
routines are relevant [25]. They proposed an approach that
predicts the relevance of any pair of files based on whether
the files have been looked at or changed together.
Information about pairs of relevant files is used to learn
concepts by building decision trees on attributes, such as
the length of the common filename prefix and the number
of shared routines. Similar to our approach, their approach
can apply across languages and platforms if the attributes
do not depend on programming constructs. Our approach
differs in that we find files that change together repeatedly
instead of only changing at least once. Their results show
that the error rate of classifying a file, given another file, to
one of the three levels of relevance is 27 percent on average,
which is better than the error rate of 67 percent when the
relevance value is assigned randomly. In contrast, our
notion of recall and precision is based on whether the
recommendations are correct with respect to a given
modification.

Hipikat is a tool that provides recommendations about

project information a developer should consider during a

modification task [9]. Hipikat draws its recommended

information from a number of different sources, including

the source code versions, modification task reports, news-

group messages, email messages, and documentation. In

contrast to our approach, Hipikat uses a broader set of

information sources. This broad base allows Hipikat to be

used in several different contexts for recommending

different artifacts for a change task. When a recommenda-

tion is requested based on a description of a modification

task at hand, Hipikat recommends similar modifications

completed in the past, with their associated file changes.

Our approach is complementary to Hipikat because our

approach can be used when Hipikat does not apply. First,

Hipikat requires a similar bug to have been fixed in the past

to provide a specific recommendation about which code is

of interest. Our approach may apply even when a similar

bug cannot be determined. In addition, Hipikat’s analysis

requires a board source of artifacts, including the modifica-

tion tasks reports. Our approach applies to projects where

information on modification tasks is not available or where

revisions of the system cannot be associated with modifica-

tion task descriptions.
Some techniques that leverage development history data

are proposed to identify groups of relevant code. Mockus
and Weiss proposed a method to identify groups of related
source code, called chunks, for independent development
[21]. Their approach of identifying chunks involves itera-
tively finding a better grouping by optimizing some
quantitative measures based on development history, such
as the number of modification tasks that involve source
code entities within a chunk. Thus, the result is that a source
code entity within a chunk is often changed together with
another entity in the same chunk, but not with an entity in a
different chunk. Fischer et al. have used development
history data for identifying a software system’s features,
which are referred to as an observable and relatively closed
behavior or characteristic of a software part, such as HTTP
[10]. Similar to Mockus andWeiss’s work and Fischer et al.’s
work, our approach is also based on the notion of files being
changed together in the development history; however, the
recommendations given by our approach are task-specific.

6.2 Other Approaches in Detecting Related Code

Impact analysis approaches (e.g., [4]) attempt to determine,
given a point in the code base involved in a modification
task, all other points in the code base that are transitively
dependent upon the seed point. This information may help
a developer determine what parts of the code base are
involved in the modification task. Many of these ap-
proaches are based on static slicing (e.g., [12]) and dynamic
slicing (e.g., [1]). Static slicing identifies all of the statements
in a program that might affect the value of a variable at a
given point in the program by analyzing the data-flow and
control-flow of the source code. Dynamic slicing finds all
parts of source code that affect a variable in an execution for
some given input of the program, rather than for all inputs
as in static slicing. In contrast to these approaches, our data
mining approach can work over code written in multiple
languages and platforms and scales to use on large systems.
In addition, dynamic slicing relies on an executable
program and on the availability of appropriate inputs of
the program, whereas our approach can work with code
that is nonexecutable, or with code that consists of
components running on different platforms. On the other
hand, slicing approaches can provide finer-grained infor-
mation about code related to a modification task, without
relying on the code having been changed repeatedly in the
past. Our approach complements slicing approaches.

Code clone detection attempts to determine code that is
the same or similar. This information may help a developer
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determine different instances of the clones when one

instance of the clone changes in a modification task. Many

of these approaches defined clones based on various

program aspects such as software metrics (e.g., [17]), the

program’s text (e.g., [5]), abstract syntax trees (e.g., [6]), and

program dependency graphs (e.g., [14]). In contrast, our

approach based on frequency of code changed in the past is

not limited to identifying only instances of code that are the

same or similar to each other.

6.3 Other Data Mining Approaches for
Software Engineering Tasks

Zimmermann et al. have also applied association rule

mining to a different problem than that described in

Section 6.1: determining evolutionary dependencies among

program entities for the purpose of determining and

justifying a system’s architecture [28]. This involves

determining the degree of modularity of a system based

on analyzing the density of evolutionary dependencies

between entities in the source as well as the proportion of

inter versus intra-entity evolutionary coupling.
Association mining has been used for suggesting

structurally related code. Michail used such an approach

to find library reuse patterns to aid a developer in building

applications with a particular library [18], [19]. The

extracted patterns summarize usage information on the

program structure of the program, such as explicating that

application classes which inherit from a particular library

class often override certain member functions. Tjortjis et al.

apply association rule mining to help recover a structure for

a program [26]. They find association rules that describe

related source code attributes such as variables, data types,

and method invocation. They consider source code frag-

ments that contain many attributes involved in such rules as

a collection of structurally related fragments. Sartipi et al.

use both association rule mining and clustering to identify

structurally related fragments in the architecture recovery

process [24]. These three approaches differ in both intent

and form. In addition, we are applying the data mining to

version data, rather than to a single version as in Michail’s,

Tjortjis et al.’s, and Sartipi et al.’s work.

7 CONCLUSION

In this paper, we have described our approach of mining

change history to help a developer identify pertinent source

code for a change task at hand. We have validated our

hypothesis that our approach can provide useful recom-

mendations by applying the approach to two open-source

systems, Eclipse and Mozilla, and then evaluating the

results based on the predictability and likely interestingness

to a developer. Although the precision and recall are not

high, recommendations can reveal valuable dependencies

that may not be apparent from other existing analyses. In

addition to providing evidence for our hypothesis, we have

developed a set of interestingness criteria for assessing the

utility of recommendations; these criteria can be used in

qualitative analyses of source code recommendations

provided by other systems.
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