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Abstract Remote sensing and GIS are important tools for studying land use/land cover

(LULC) change and integrating the associated driving factors for deriving useful outputs. This

study is based on utilization of Earth observation datasets over the highly urbanized Allahabad

district in India. Allahabad district has experienced intense change in LULC in the last few

decades. To monitor the changes, advanced techniques in remote sensing and GIS, such as

Cellular Automata (CA)-Markov Chain Model (CAMCM) were used to identify the spatial

and temporal changes that have occurred in LULC in this area. Two images, 1990 and 2000,

were used for calibration and optimization of the Markovian algorithm, while 2010 was used

for validating the predictions of CA-Markov using the ground based land cover image. After

validating the model, plausible future LULC changes for 2020 were predicted using the

CAMCM. Analysis of the LULC pattern maps, achieved through classification of multi-

temporal satellite datasets, indicated that the socio-economic and biophysical factors have

greatly influenced the growth of agricultural lands and settlements in the area. The two
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urbanization indicators calculated in this study viz. Land Consumption Ratio (LCR) and Land

Absorption Coefficient (LAC) were also used, which indicated a drastic change in the area in

terms of urbanization. The predicted LULC scenario for year 2020 provides useful inputs to

the LULC planners for effective and pragmatic management of the district and a direction for

an effective land use policy making. Further suggestions for an effective policy making are

also provided which can be used by government officials to protect this important land

resource.

Keywords LULC . Cellular automata .Markov chain analysis . Remote sensing and GIS .

Predictivemodeling . India

1 Introduction

Humans have largely influenced the earth environment by changing the land use/land cover

(LULC) dynamics. LULC modeling is a thrust area of research in recent decades for solving

the problem that arises due to the modification and conversion of LULC (Lambin et al. 2001).

Effective analysis and monitoring of land cover require a substantial amount of data about the

Earth surface and the living habitats (Schneider and Woodcock 2008). Most of the time,

anthropogenic effects initiate the development of LULC change (LULCC) followed by natural

processes (Niemelä et al. 2000; Srivastava et al. 2012b). Urbanization is a global trend that has

been accelerated significantly since the 20th century (Srivastava et al. 2010) which acts as a

major driver of change in landscape structure and functions (Antrop 2004; Banerjee and

Srivastava 2013). In contrast, LULCC is one of the most important variables that decide most

of the resource planning and control measures (Weng 2007), as well as pollution of many

natural resources such as water and soil (Grimm et al. 2008; Srivastava et al. 2012a). Several

landscape pattern scenarios, considering changing environmental conditions for, e.g., climate

change, land use change, establishing new road networks etc., have also been found respon-

sible for urbanization by several researchers (Lambin et al. 2001; Satterthwaite 2009; Csorba

and Szabó 2012; Srivastava et al. 2012c; Vaz et al. 2012; Patel and Srivastava 2013).

Remote sensing (RS) provides synoptic and continuous data used by many researchers in

the field of LULCC studies (Gupta and Srivastava 2010; Szabó et al. 2012). Satellite datasets,

like Landsat, IRS and IKONOS, provide valuable information that can be used as an input for

many prediction studies. Many researchers have applied geospatial techniques for natural

resource management and planning purposes (Singh et al. 2010; Túri and Szabó 2008; Patel

et al. 2012; Patel et al. 2013; Singh et al. 2013a; Srivastava et al. 2013b). Cellular Automata

(CA) is a popular technique which works on a uniform grid-based principle, and has been

utilized in urban growth modeling for simulating spatial processes (Wu and Webster 2000;

O’Sullivan 2001; Wu 2002). The merit of CA is its ability to represent any complex systems

through a small set of simple rules and states, which makes it useful for urbanization studies

(Li and Yeh 2000; Wu and Webster 2000). The CA works on what-if scenarios; therefore, it

can be utilized for planning related activities (Irwin et al. 2009; Araya and Pedro Cabral 2010).

The coupling of CA with Markov Chain Model (CAMCM) provides a robust approach in

spatial and temporal dynamics modeling of LULCC, because RS and GIS data can be

efficiently incorporated (Kamusoko et al. 2009; Steeb 2011) and provide a more detailed

information on a synoptic scale. In the CAMCM, the MCM controls the temporal dynamics

among LULC classes relying on transition probabilities (Kamusoko et al. 2009), while CA

helps in determining the local rules either by the CA spatial filter or transition potential maps

(Sang et al. 2011). The potential application of the CAMCM in an urban environment has been
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recognized by many researchers by combining biophysical and socioeconomic data for

simulation of accurate LULC in plausible future (Chen 2006; Kamusoko et al. 2009; Guan

et al. 2011; Wang and Zhang 2001; Guan et al. 2011; Jokar Arsanjani et al. 2011; Jokar

Arsanjani et al. 2013; Yang et al. 2014).

In this study, an integrated approach was applied to reach the following objectives: (i) to

analyze the temporal and spatial changes in the study area in 1990–2000–2010; (ii) to simulate

and predict land use change for years 2010 and 2020 based on CAMCM to preserve the

unique natural characteristics; (iii) to provide values for two urban indicators, LCR

and LAC. The outcome of the study will be highly useful to urban planners, resource

managers and policy makers and could be utilized in other geographical locations.

This paper is divided into four sections. The first section, i.e., introduction provides a

brief background of other related studies while the second section deals with the

materials and methodology, which includes description of study area, socio-economic

status, Earth Observation datasets and algorithm structure of CAMCM. The third

section, results and discussion, provides outcomes of image classification, accuracies

and the performance of CAMCM model followed by some suggestions and recom-

mendations which can be utilized for protection and conservation of land resources.

The fourth section provides the final remarks and conclusions of this study.

2 Materials and methods

2.1 Study area

The study area, Allahabad district of Uttar Pradesh State, covers 5246 km2; it is

located between north latitudes 24°47′ to 25°47′ and east longitudes 81°09′ and

82°21′. The area is surrounded by the Ganga and Yamuna Rivers (Fig. 1). The district

climate is generally characterized by cold and hot seasons. A variety of seasons are

recognized: generally, the period from November to February is the winter season,

while the summer starts from May and is followed by monsoon which continues up to

the late September. The monsoon season is responsible for a high annual rainfall (1027 mm) in

the area.

2.2 Population status

Allahabad is a district in the Uttar Pradesh State. The district has a total population of

5,954,391 people with 3,131,807 males and 2,822,584 females (Census of India 2011). A

high increase in population is also observed in rural pockets. From the demographical statistics

of 2011, each year about a total of one million people were added both in the urban and rural

area of the district. The decadal population growth rate of the study area is given in Table 1. In

year 2001, the population density was 901 persons per km2 while in year 2011 it reached to

1087 persons per km2. The average literacy rate in year 2001 was 62.11 and increased to

72.32 % in year 2011.

2.3 Satellite datasets

In the context of this study, multi-date and multi-sensor satellite images were collected along

with field investigation and socioeconomic statistical data since 1990. The Landsat satellite

data were selected because of their availability with the medium spatial and high temporal
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resolutions. It has been acquired for three distinct years 1990, 2000, and 2010 for land use

mapping purposes (Table 2). The acquired satellite data for years 1990, 2000 and 2010 were

imported in ERDAS 9.1 for geometric correction. The collateral and auxiliary datasets, such as

Digital Elevation Model (DEM) of Shuttle Radar Topography Mission (SRTM) were obtained

from the United States Geological Survey (USGS) using the website: http://srtm.usgs.gov/,

Fig. 1 Geographical location of the study area
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while the drainage and major road networks were obtained after digitization of Survey of India

topographical sheets. The field observation and surveys were made to collect ground truth

datasets. The LULC classification was performed using the unsupervised classification

technique for years 1990, 2000 and 2010 of satellite data. The classification accuracy

assessment was performed for each LULC map based on the collected ground control

points using Garmin eTrex@ 10 GPS device with ±15 m positional accuracy and

additional information. The thematic layers of supporting database, including different

demographic and biophysical drivers of LULC change, were collected from statistical

handbook of Census of India and from various other central and state government

agencies.

2.4 CA-Markov chain model description

The CAMCM has the capability to simulate changes and predict decadal variations using

satellite images (Kamusoko et al. 2009; Jokar Arsanjani et al. 2013). CAMCM is developed

combining two rationales- Cellular automata and a transition probability matrix based on land

cover changes generated by the cross tabulation of the two images adjusted by the proportional

errors. A cellular automation is a cellular entity and is based on proximity concept, which

indicates that the regions which are closer to the existing areas of the same class are more

probable to change to a different class, conditioned by Markov transition rule and adjacent

neighbors. The transition probability matrix determines the likelihood that a cell or pixel will

move from a land use category or class to every other category (Schweitzer 1968). The MCM

Table 1 Decadal growth rate of

population in district Allahabad Years Rural Urban

1901–1911 −1 −8

1911–1921 −4 −7

1921–1931 5 13

1931–1941 18 40

1941–1951 11 22

1951–1961 19 21

1961–1971 20 22

1971–1981 26 43

1981–1991 29 32

1991–2001 26.94 28.22

2001–2011 20.18 22.36

Table 2 Specification of the satellite data sets used

Year Satellite/Sensor Spatial

resolution

(m)

Path/row Available band

combination

Date of acquisition

1990 Landsat, TM 30 p143 r042 and

p143 r043

1,2,3,4,5,6,7 17 November 1990/16 October 1990

2000 Landsat, ETM+ 30 p143 r042 and

p143 r043

1,2,3,4,5,6, 7 20 November 2000/20 November 2000

2010 Landsat, ETM+ 30 p143 r042 and

p143 r043

1,2,3,4,5,6,7 18 October 2010/18 October 2010
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analysis describes the probability of land cover change from one period (t1) to another (t2)

(Bruzzone and Serpico 1997). In this study, a model was developed from transition probability

matrix for each of the land cover classes representing the changes from the periods 1990 and

2000. The Markov chain process can be expressed as given in Eq. (1) (Memarian et al. 2012):

Fx X tnþ1ð Þ≤xnþ1 X tnð Þ ¼ xn; X tn−1ð Þj ¼ xn−1;−−−; X t1ð Þ ¼ x1ð Þ

¼ X tnþ1ð Þ≤xnþ1 X tnð Þj ¼ xnð Þ ð1Þ

where: X(t) represents the Markovian chain process for a particular time (t), tn defines the

present time while the time for changes in the future is defined by tn+1. Similarly, the notation

tn−1 is used to denote the previous changes.

Equation (2), as given in Memarian et al. (2012), denotes the transition probability from

state i to state j, while X[k] represents the states {x1, x2, x3, ···}. However, many times Markov

chain follow a finite number of states (n); in the latter case the transition probability matrix can

be defined by Eq. (3) (Memarian et al. 2012):

Pi; j ¼ Pr X k þ 1½ � ¼ j X k½ �j ¼ ið Þ ð2Þ

P1;1 P1;2 − −

P2;1 P2;2 − −

− − − −

− − − −

− − − P1;n

− − − P2;n

− − − −

− − − −

Pn;1 Pn;2 − − − − − Pn;n

2

6

6

6

6

4

3

7

7

7

7

5

ð3Þ

2.5 Implementation and accuracy assessment of CAMCM

The suitability maps were created by applying the Multicriteria Evaluation (MCE) module

(Weight Liner Combination Method, WLC) and two constraints of built-up and water bodies

using MCE module (Boolean intersection method, BIM). The criteria of the suitability maps

were determined based on the behavioral pattern of past land transformation scenario in the

landscape. MCE is matrix based optimization linear algorithm which allows data set of

different criteria and constraints based on their weight derived from decision making process.

MCE is a decision making tool embedded in IDRISI Kilimanjaro (Figs. 2 and 3).

Model calibration and validation are important steps in the modeling process

especially when one is predicting future decadal changes, where no datasets are

available for accuracy of prediction (Srivastava et al. 2013a). One way to evaluate

the predictive power of the model is to compare the result of the simulation with the

present day changes using Kappa statistics such as Kappa for no information (Kno),

Kappa for location (Klocation) and Kappa for quantity (Kquantity), and, once the

model is optimized with satisfactory performances, then use it for predicting the future

changes. The overall accuracy of simulation run is defined by Kno, which is the

variation of the standard kappa index of agreement. The Klocation validates the

ability of simulations to predict the location while Kquantity predicts the quantity

(Pontius and Schneider 2001). When the value of all three Kno, Klocation and

Kquantity indices are equal to 1 then the simulation is defined as perfect, and if it

is 0 then the simulation is considered as imperfect (Pontius and Schneider 2001;

Pontius 2002). The predictive power of CACAM is stronger, when the efficiency
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reaches≥80 % for initial year images (2000 and 2010) then it will be reasonably good

to make plausible future projections.

In this study, the prediction accuracy of the validation images are also presented through

agreement and disagreement statistics between the simulated map and the reference map of

2010. The precision of simulation or classification image results, pixel-by-pixel, is accessed

via the kappa accuracy index. This statistic measures the goodness of fit between model

Fig. 2 Transitional suitability maps for different land use/land cover classes using MCE module (Weight Leaner

Combination Method, WLC)
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predictions and reality, corrected for accuracy by chance (Mukherjee et al. 2009). According to

Omar et al. (2014) for the Kappa variations, the expressions used for the summary statistics are

listed as Eqs. (4–7):

Kno ¼ M mð ÞN nð Þð Þ
.

P pð Þ−N nð Þð Þ ð4Þ

Klocation ¼ M mð ÞN mð Þð Þ
.

P mð Þ−N mð Þð Þ ð5Þ

Kquantity ¼ M mð ÞH mð Þð Þ
.

K mð Þ−H mð Þð Þ ð6Þ

Kstandard ¼ M mð ÞN nð Þð Þ
.

P pð Þ−N nð Þð Þ ð7Þ

where no information is defined by N(n), medium stratum level information by H(m),

medium grid cell level information by M(m), perfect grid cell-level information given imper-

fect stratum-level information by K(m) mean, and perfect grid cell-level information across the

landscape by P(p).

2.6 Indicators of urbanization LAC and LCR

The expansion of urban area is generally related in search of better infrastructural facility. The

forces and drivers of urban expansion are different in each region. The change in urban area is

defined by the expansion index which indicates the change in the urban area in terms of

population and spatial expansion. Two different indices are used for measuring urban expan-

sions: LCR and LAC (Sharma et al. 2012; Pandey et al. 2012; Kumar et al. 2013). The value of

index LCR indicates a progressive spatial expansion of the land cover class and measures the

Fig. 3 Constraint layer of built-up and water bodies as obtained using MCE module (Boolean Intersection

Method, BIM)
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compactness, while LAC is directly related to population expansion. The following Eqs. (8, 9,

10) are employed for the estimation of these indices.

LCR ¼ A
�

P
ð8Þ

where: A is the areal extent of the land cover class in hectares; and P is the population.

LAC ¼
A2−A1ð Þ

P2−P1ð Þ
ð9Þ

where: A1 and A2 are the areal extents (ha); P1 and P2 are the population figures for the

early and later years respectively.

The predicted population of the desired time period can be calculated by using the

following formula (Siegel and Swanson 2004):

P ¼ Pb 1þ R
.

100
� �n

ð10Þ

where: P is population of the desired time period; Pb is the Population of base year; R is the

Rate of growth of population; and n is the number the years.

3 Results and discussion

3.1 Analysis of land use/ land cover change

After the classification of satellite data, the reliability of results depends on the overall

accuracies of the classified images. The result of this process indicates whether the LULC

changes have been accurately identified and extracted. In this study, the accuracy assessment

of the classified data of 1990, 2000 and 2010 confirmed that the results are reasonable and

satisfactory for any applications (Table 3). According to Anderson (1976), approving the

reliability of classified images is through estimation of overall accuracies. The overall accuracy

should clearly exceed the minimum acceptable standard of ≥85 % stipulated by the USGS

classification scheme. The overall classification accuracies meet this standard criterion in our

study. The results of LULC category achieved through classification are presented in Table 4.

The historical land use pattern of the district has been changing steadily at a slow pace which

also brings adverse effects on natural resources of the region (Singh et al. 2013b, c; Singh et al.

2014). The area has witnessed increase in urbanization which brought on the fundamental land

use change during the last two decades; this is proved by the rapid increase of urban and rural

population. The overall results of LULC distribution for years 1990, 2000, 2010, and 2020

showed that the agricultural land was the primary dominant land cover category (Table 4);

followed by the built up area. Similar trend is also prevalent in 2020 classified imagery. The

built up area showed an overall increasing trend, while the waste land and other fallow land

showed a decreasing trend. From the analysis of probability matrix (Table 5) and transition

area matrix (Table 6), we estimated the future LULCC such as for years 2010 and 2020.

Specifically, the built up area increased from 555.89 km2 in 1990 to 744.16 km2 in 2010 with a

percentage increase of 33.9 %. This increase probably took place due to migration of

population towards the district Allahabad, which offers better education activities, and busi-

ness and job opportunities. The total cultivable land area decreased from 246.19 km2 in 1990
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to 116.97 km2 in 2010, i.e., by 52.5 %. The decrease is due to expansion in urban area. The

area of other fallow land decreased from 186.04 km2 in 1990 to 179.91 km2 in 2010, i.e., by

32.4 %, which can be attributed to urbanization, some reforestation and industrial activities.

Some change in water body class was also seen, which decreased from 328.08 km2 in 1990 to

298.00 km2 in 2010, i.e., by 9.2 %. This decrease in water body was due to improper

management and over-exploitation of water. The forest area, which was 335.87 km2 in 1990

has decreased to 311.92 km2 in 2010, i.e., 7.1 % decrease; this can be attributed to defores-

tation activities for various purposes like agriculture, urbanization etc. There was a continuous

change in the agricultural area which increased from 3638.40 km2 in 1990 to 3793.25 km2 in

2010, i.e., by 4.25 %. It can be attributed to decrease in fallow and waste land area.

3.2 Analysis of LULC transition probabilities matrix

For this purpose, two different classified images of the years 1990 and 2000 are used to predict

the LULCC for year 2010 (simulated image) using CAMCM. Further, it is validated with the

Table 3 Accuracy assessment results of different land use/land cover classes of different years

LULC Class 1990 2000 2010

Producer’s

accuracy (%)

User’s

accuracy (%)

Producer’s

accuracy (%)

User’s

accuracy (%)

Producer’s

accuracy (%)

User’s

accuracy (%)

Built up area 85.71 100 86.92 100 87.5 100

Agriculture 93.33 82.35 96.23 82.30 100 81.82

Forest 62.5 83.33 63.01 84.21 89 92

Water body 83.33 100 93.24 100 100 100

Cultivable land 100 50 87.21 79 87.5 70

Other fallow land 88 89 82.01 89 88.89 100

Waste land 87 85.02 89 88 89 90

Overall accuracy 80.39 85.36 88.10

Kappa coefficient 0.7599 0.83211 0.8522

Table 4 Temporal distribution of land use/land cover distribution by years

Land use land cover distribution (1990,2000,2010, 2020)

Land use/Land

Cover Categories

1990 2000 2010 2020

Area

(km2)

Area

(%)

Area

(km2)

Area

(%)

Area

(km2)

Area

(%)

Area

(km2)

Area

(%)

No. Pixel

Forest 335.87 6.03 248.98 4.47 311.92 5.6 293.33 5.26 123,702

Waste land 279.62 5.02 234.50 4.21 179.91 3.23 222.45 3.99 547,172

Built up area 555.89 9.98 647.80 11.63 744.16 13.36 968.64 17.39 1,076,275

Cultivable land 246.19 4.42 193.28 3.47 116.97 2.1 23.47 0.42 26,087

Agriculture 3638.40 65.32 3739.22 67.13 3793.25 68.1 3381.79 60.72 3,679,774

Water body 328.08 5.89 324.18 5.82 298.00 5.35 423.85 7.61 470,947

Other fallow land 186.04 3.34 182.14 3.27 125.88 2.26 255.80 4.59 506,454

Total 5570.09 100 5570.09 100 5570.09 100 5570.09 100
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classified image of year 2010 (reference imagery). Similarly for years 2000 and 2010 classified

images are used for the prediction of 2020 LULC classes. To estimate the accuracy of the

classified and predicted images of 1990, 2000 and 2010, a detailed accuracy analysis was

conducted. After a satisfactory performance obtained during the trial periods through CAMC

M, attempts were made for generating 2020 LULC scenarios. The changes were depicted

through the 7×7 LULC class matrix table, in which rows represent the previous land cover

categories during the time (t1), while the column represents the later land cover categories (t2).

For example, the row in 1990 represents actual LULC classes while the column (year 2000)

categories, and helps in simulation of LULC for year 2010 (Table 5). Similarly, rows represent

year 2000 and column represents year 2010, and predicts the LULC of year 2020. Further, this

matrix represents the prior probabilities in LULC classes, which is then used to predict the

LULC of 2010. After validating the predicted 2010 image through the 2010 (real image), the

2020 future LULC scenario is generated.

The information generated from the model prediction is presented in Table 5 (probability in

%), and indicates that in year 2000 the water body class has a probability of 48.4 % to change

into agriculture. This may be attributed to change of wetland for agricultural activities. The

cultivable land indicates a highest transformation, with probability 0 % to remain as cultivable

land, which means it may be completely transformed into other classes such as other fallow

land (93.7 %) and agriculture (4.4 %). The built up area class indicates a highest stability to

remain as built up area with a probability 97.8 %. Similarly, the agriculture class was also

found stable with probability 74.2 % to remain as agriculture class. The forest class has 30 %

probability to remain as forest. It has 24.83 % probability to change to agriculture class and

39.4 % to other fallow land class, which can be attributed to increased deforestation activities

Table 5 Probability of LULC changes in 2010 by percentage

1990/2000 Water body Cultivable land Built up area Agriculture Forest Other

fallow land

Waste

land

Water body 0.4578 0.0076 0.0201 0.4842 0.0000 0.0235 0.0067

Cultivable land 0.0017 0.0001 0.0160 0.0441 0.0020 0.9365 0.0017

Built up area 0.0010 0.0027 0.9782 0.0000 0.0020 0.0106 0.0085

Agriculture 0.0955 0.0120 0.0710 0.7419 0.0001 0.0382 0.0413

Forest 0.0076 0.0044 0.0071 0.2483 0.3001 0.3940 0.0386

Other fallow land 0.0230 0.1434 0.0094 0.3485 0.0010 0.2830 0.1927

Waste land 0.1415 0.0094 0.3585 0.4811 0.0010 0.0094 0.0002

Table 6 Expected transition in 2010 by number of pixels

1990/2000 Water body Cultivable land Built up area Agriculture Forest Other

fallow land

Waste

land

Water body 192,473 3205 8431 203,578 113 9888 2818

Cultivable land 253 105 2362 6495 240 138,084 253

Built up area 120 900 330,263 203 123 3577 2873

Agriculture 490,597 61,385 364,875 3,810,333 94 196,352 211,972

Forest 160 250 213 187 133,702 126 153

Other fallow land 9257 57,779 3806 140,450 145 114,046 77,648

Waste land 37,520 2501 95,052 127,569 123 2501 170

Predicting Spatial and Decadal LULC Changes Through Cellular 71



pertaining increasing urban and rural population. The class other fallow land also shows

instability with a probability of 19.27 % to remain in the same class while having a probability

34.85 % to change into agriculture class. It means the other fallow land is converting into

agricultural field. The waste land class has 0 % probability to remain as waste land. It indicates

that it has been transformed into agriculture class with a probability 48.11 % and waste land

has a probability 35.85 % to convert into built up area. It is due to development of few thermal

power plants. The analysis indicates that the transformation of the different land use classes

into forest class has lower probability as compared to transformation into agriculture class. It

Fig. 4 Land use/land cover map by years a 1990, b 2000, c 2010 real, d 2010 simulated and e 2020 simulated
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may be due to growing population and urbanization and development of small scale industries

in the region (Singh et al. 2013c).

3.3 LULC changes for 2020 simulated map

The changes in LULC categories from 1990 to 2020 can be seen in Fig. 4e and Table 4. The

probability for LULCC in 2020 is presented in Table 7. The water body has 66.91 %

probability to change into agriculture land use class while it has 23.90 % to remain as water

body. The cultivable land has 51.96 % probability to convert into waste land, and 36.29 %

probability to change into agriculture class. The built up area has 97.60 % probability to

remain as built up area. The agriculture class has 70.99 % probability to remain as agriculture

category and 10.82 % probability to change into built up area. The forest has 70.47 %

probability to change into agriculture class and 14.99 % probability to remain as forest. The

other fallow has 31.36 % probability to remain as other fallow land, and 35.05 % probability to

change into waste land and 23.12 % to change into agriculture class. The waste land has

Fig. 4 (continued)

Table 7 Probability of LULC changes in 2020 by percentage

2000/2010 Water body Cultivable land Built up area Agriculture Forest Other

fallow land

Waste land

Water body 0.2390 0.0036 0.0341 0.6691 0.0058 0.0152 0.0331

Cultivable land 0.0176 0.0001 0.0249 0.3629 0.0201 0.0549 0.5196

Built up area 0.0000 0.0003 0.9760 0.0002 0.0010 0.0104 0.0124

Agriculture 0.0682 0.0015 0.1082 0.7099 0.0175 0.0473 0.0473

Forest 0.0254 0.0002 0.0450 0.7047 0.1499 0.0300 0.0450

Other fallow land 0.0366 0.0398 0.0116 0.2312 0.0165 0.3136 0.3505

Waste land 0.0097 0.0046 0.0150 0.3264 0.0146 0.3045 0.3252
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32.64 % probability to change into agriculture class. The information given in Table 8 shows

that about 81,713 pixels of water body class will remain unchanged. It also indicates that

approx. 228,728 pixels are expected to change into agriculture class. The change could be due

to urbanization as well as overexploitation of natural resources, such as water bodies and

forest. There could be some uncertainty in prediction, which might be due to imagery quality,

classification error and resolution of the sensors.

The analysis indicates that cultivable land will change the most, and will transform to

primarily three classes that are waste land, agriculture and built up. The major transformation is

of about 11,368 pixels in waste land, about 7940 pixels to agriculture, 544 pixels into built up

area, and 368 into water body. The built up class showed a maximum stability, with

approximately 519,147 pixels of this class remaining unchanged. This seemed to be a good

projection, although a slight transformation of this class is predicted to become waste land

(6577 pixels) and other fallow land (5558 pixels), as seen in Table 8. This may be due to the

migration of population from their old habitat to a new habitat (Singh et al. 2014). The class

agriculture, which remains the major class of the study area with 3,484,049 pixels, seems to be

highly transformed to other classes of the study area with major transformation towards built

up class (530,864 pixels). The overall analysis indicates satisfactory results, as the urban area

and the total population are also increasing. Furthermore, the prediction signed that classes of

waste land and fallow land is about to turn into the agricultural class.

The forest class indicates a major transformation with only 9955 pixels remaining in the

same class while a major portion will transform into other classes. For example, around

1685 pixels will change into water body, 46,790 pixels into agriculture class. It may be

ascribed to increased deforestation activities in the future. The other fallow land class will

also change, in which about 132,458 pixels will transform into waste land class, 87,374 pixels

into agriculture class, 15,056 pixels into other fallow land, and 13,839 pixels into water body.

The waste land class will also experience a transformation in which 150,522 pixels will be

converted into agricultural class and about 140,951 pixels into other fallow land class.

3.4 Modeling results and validation

Analysis of the modeling results showed that the reference and simulated maps of year 2010

were reasonably very much similar. Further, for the justification of this, a more detailed

analysis was performed using the Kappa variations. When the values of these indices reach

100 %, a stronger agreement between real and simulated maps is indicated. The value of Kno

gives the overall accuracy of the simulated map (88.5 %). The other model indices performed

relatively well in the ability to correctly specify location (Klocation Strata: 96.5 %; Kstandard:

Table 8 Expected transition in 2020 by number of pixels

2000/2010 Water body Cultivable land Built up area Agriculture Forest Other

fallow land

Waste land

Water body 81,713 1222 11,672 228,728 1996 5209 11,310

Cultivable land 386 105 544 7940 439 1202 11,368

Built up area 140 136 519,147 130 507 5558 6577

Agriculture 334,537 7556 530,864 3,484,049 86,072 232,063 232,361

Forest 1685 120 2987 46,790 9955 1991 2987

Other fallow land 13,839 15,056 4398 87,374 6234 118,515 132,458

Waste land 4503 2108 6965 151,070 6776 140,951 150,522
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84.8 %; and Kquantity: 83.0 %). Still the intrinsic discrepancies remain for the simulated map

of 2010. The probable reasons of these are inadequately suitable maps for modeling the correct

phenomenon, generalizations applied in image classification to achieve better results, and the

shape of the contiguity filter used. The role of suitability maps is to define the rules in the

modeling process, which has great influence on the result. Further, constraints and factors also

have effects on results. After defining the parameters used for the calibration and modeling,

and assessing the validity, it is interesting to examine the pattern and tendency of change in a

long term simulation. For examining the pattern and tendency of change in a long term

simulation, the method needs calibration and assessment of validity. Based on this, the land

cover projection was performed in a similar way for 2020 (Fig. 4e). CAMCM has a potential to

simulate the transition among any number of classes, and its nature of simulation is bidirec-

tional. The expected changes in the number of pixels from year 2010 to year 2020 are shown

in Table 4. The model showed poor results for the waste land and water body classes,

therefore, these class matrices did not predict any changes for 2020. The matrix has two

components; the diagonal of the matrix indicates the number of pixels that have persisted

during the simulation process, while the off-diagonal component of the matrix shows the

number of pixels that have changed class during the simulation.

3.5 LCR and LAC with urbanization

The annual population growth (n) and estimated population (Pn) was also calculated (Table 9).

From Table 9, the value of n changes from 112,392 to 104,540 and 104,540 to 102,226 in

periods 1990–2000 and 2000–2011, respectively, whereas Pn changes from 4,920,954 to

4,936,020 and 4,936,020 to 5,958,372 in periods 1990–2000 and 2000–2011, respectively.

The changes in the LAC and LCR values are shown in Table 10. LAC changed from 0.00621 to

0.00009 and from 0.00009 to 0.00018 between periods 1990–2000 and 2000–2010, respec-

tively (with respect to the built up area), whereas LCR changed from 0.00011 to 0.00013 and

from 0.00013 to 0.00012 between periods 1990–2000 and 2000–2010, respectively (with

respect to the built up area), which shows how changes are governing in the study area. Table 10

deciphers how cultivable land decreased with increasing population in the same years

(Table 10). The LCR values are 0.00012, 0.00011, 0.00013 (built up area) during 1990 to 2011,

and on the basis of estimated population for year 2021, we can give an idea of LCR value of the

built up area of Allahabad. Other classes can also be predicted on the basis of this population.

Table 10 LAC and LCR for built up area of Allahabad district

Year 1990/2000 2000/2010 1990/2010

LAC=(A2-A1/P2-P1) (Built up area) +0.00621 0.00009 +0.00018

LCR=A/P (Built up area) 0.00011 0.00013 0.00012

(+) sign stands decrease and (−) stand for increase

Table 9 Value of annual population growth and estimated population for 1990, 2000, 2011, and 2021 of

Allahabad

Year 1990 2000 2011 2021

Annual population growth 112,392 104,540 102,226 113,236

Population of desired time period 4,920,954 4,936,020 5,958,372 7,092,159
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3.6 Policy development for sustainable land use

The prominent features observed in the area are the growth of urban population which can be

related to urbanization. The increase in urban population due to people migration in search of

better infrastructural, medical and education facilities, leads to an increase of the number of

residential houses in the Allahabad district. The share of urban population has also seen an

increase, as expected, from 18.12 % in 1990 to 24.74 % in 2011. During this 21 year period, in

general an increase in population was seen in the district which also has been affecting the land

surface area on a day-by-day basis. These trends showed that there is a need for proper planning

for housing, in both urban and rural areas. It is imperative to take immediate measures for

conservation taking into consideration: afforestation programs by various governments, public

and private agencies, including several NGOs; limited groundwater use in a controlled way

coupled with grazing management; understanding the landscape and its bearings with the local

climate and environment to reduce human stress in the affected areas; restoring crop production,

food security and biodiversity. Moreover, different systems of agricultural practices should be

introduced following sustainable landmanagement policies, attuned to the local climatic factors

to mitigate the imminent problems of arable soil degradation and reduced soil fertility.

4 Conclusions

Remote sensing and GIS are very promising tools for management of natural resources on a

large spatial and temporal scale. In this study, satellite derived LULC maps were used in

association with biophysical and socioeconomic data to estimate the past and present changes,

and simulate future possibilities. Sophisticated algorithms such as CAMCM were used for the

prediction of the expansion or loss of different land use categories with time for 2020.

Extensive field visits and incorporation of local area knowledge were used along with

CAMCM to simulate the LULCC through GIS based multi-criteria analysis. The results after

validation seem quite satisfactory, which indicates that this methodology can be used for

simulation of future LULC change. Such studies are useful for developing countries, where

LULC changes occur at much faster rates. These developments have definite impacts on the

environment. This study provides a strategic guide to both urban and rural land use planners

for an effective land management. Our future objective is to embed the biophysical and

socioeconomic factors, and role of policies that influence the urbanization.
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